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EIGENVALUE PINCHING AND APPLICATION TO THE STABILITY AND

THE ALMOST UMBILICITY OF HYPERSURFACES

J.-F. GROSJEAN

Abstract. In this paper we give pinching theorems for the first nonzero eigenvalue of the
Laplacian on the compact hypersurfaces of ambient spaces with bounded sectional curvature.
As application we deduce a rigidity result for stable constant mean curvature hypersurfaces M
of these spaces N . Indeed, we prove that if M is included in a ball of radius small enough
then the Hausdorff-distance between M and a geodesic sphere S of N is small. Moreover M
is diffeomorphic and quasi-isometric to S. As other application, we obtain rigidity results for
almost umbilic hypersurfaces.
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1. Introduction

One way to show that the geodesic spheres are the only stable constant mean
curvature hypersurfaces of classical model spaces (i.e. the Euclidean space, the
spherical space and the hyperbolic space) is to prove that there is equality in the
well-known Reilly’s inequality. One of the main points of the present paper is to
obtain new stability results for hypersufaces immersed in more general ambient
spaces.

First, let us recall the Reilly’s inequality. Let (Mm, g) be a compact, connected
and oriented m-dimensional Riemannian manifold without boundary isometrically
immersed by φ in the simply connected model space Nn+1(c) (c = 0, 1 ,−1 respec-
tively for the Euclidean space, the sphere or the hyperbolic space). The Reilly’s
inequality gives an extrinsic upper bound for the first nonzero eigenvalue λ1(M) of
the Laplacian of (Mm, g) in term of the square of the length of the mean curvature
H . Indeed we have
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λ1(M) 6
m

V (M)

∫

M

(|H|2 + c)dv(1)

where dv and V (M) denote respectively the Riemannian volume element and the
volume of (Mm, g). Moreover in the case of hypersurfaces (i.e. m = n), the equality
holds if and only if (Mn, g) is immersed as a geodesic sphere of Nn+1(c). For
c = 0 this inequality was proved by Reilly ([11]) and can easily be extended to the
spherical case c = 1 by considering the canonical embedding of S

n in R
n+1. For

c = −1 it has been proved by El Soufi and Ilias in [7].
In the sequel we will consider a weaker inequality due to Heintze ([8]) which

generalizes the previous for the case where (Mm, g) is isometrically immersed by φ
in a n + 1-dimensional Riemannian manifold (Nn+1, h) whose sectional curvature
KN is bounded above by δ. Indeed if φ(M) lies in a convex ball and if the radius
of this ball is π

4
√

δ
in the case δ > 0, we have

λ1(M) 6 m(‖H‖2
∞ + δ)(2)

where ‖H‖∞ denotes the L∞-norm of the mean curvature. Now for m = n if we
assume that KN is bounded below by µ and M has a constant mean curvature H
and is stable (see section 5) we have

n(H2 + µ) 6 λ1(M) 6 n(H2 + δ)

Consequently we see that if N is not of constant sectional curvature we can’t con-
clude as in the model spaces. However, the above inequality is a kind of pinching on
the Reilly’s inequality, that is a condition of almost equality. Such conditions have
been studied for the Reilly’s inequality in the Euclidean space in [6]. In the present
paper we will generalize the results of [6] to the inequality (2) for hypersurfaces (i.e.
m = n) of ambient spaces with non constant sectional curvature. That amounts
to finding a constant C depending on minimum geometric invariants so that if we
have the condition

(PC) n(‖H‖2
∞ + δ)(1 − C) < λ1(M)

then M is close to a sphere in a certain sense.
Before giving the main theorems, we precise some notations which will be more

convenient. Throughout the paper, we will note h = (‖H‖2
∞ + δ)1/2 and B the

second fundamental form. Moreover if (Nn+1, h) is a n+1-dimensional Riemannian
manifold so that KN 6 δ and the injectivity radius i(N) satisfies i(N) > π√

δ
if δ > 0,

we will note H⋆(n, N) the space of all Riemannian compact, connected and oriented
n-dimensional Riemannian manifolds without boundary isometrically immersed by
φ in (Nn+1, h). We call HC(n, N) the space of all Riemannian manifolds of H⋆(n, N)
satisfying the following convexity hypothesis : φ(M) lies in a convex ball and the
radius of this ball is π

4
√

δ
if δ > 0. Moreover HV (n, N) will be the space of all

Riemannian manifolds of H⋆(n, N) which satisfy the following hypothesis on the
volume : V (M) 6 cωn

δn/2
if δ > 0 and V (M) 6 cωni(N)n if δ 6 0 for some constant

c. These two hypotheses on the volume of M with the condition on i(N) for δ > 0
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are providing from hypotheses assumed in a result on a Sobolev inequality due to
Hoffman and Spruck ([9] and [10]). At last we put H(n, N) = HC(n, N)∩HV (n, N).

Furthermore we need the following function sδ defined by

sδ(r) =











1√
δ
sin

√
δr if δ > 0

r if δ = 0
1√
|δ|

sinh
√

|δ|r if δ < 0 ,

Moreover we will note B(p, R) all geodesic ball in N of center p and radius R.
Let us state the first main theorem.

Theorem 1.1. Let (Nn+1, h) be a n + 1-dimensional Riemannian manifold whose
sectional curvature KN satisfies µ 6 KN 6 δ and i(N) > π√

δ
if δ > 0 and let

M ∈ H(n, N). Let ε 6 1/18. Then there exist a point p and positive constants
Cε(n, ‖H‖∞, ‖B‖∞, V (M), δ, µ) and R(δ, µ, ε) so that if φ(M) is contained in the
ball B(p, R(δ, µ, ε)) and if the pinching condition (PCε)

n(‖H‖2
∞ + δ)(1 − Cε) < λ1(M)

is satisfied then M is ε-Gromov-Hausdorff close to S(p, s−1
δ

(

1
h

)

). Namely the Gromov-
Hausdorff distance satisfies

dGH

(

φ(M), S

(

p, s−1
δ

(

1

h

)))

6
ε

h

and M is diffeomorphic and ε-quasi-isometric to S(p, s−1
δ

(

1
h

)

). Namely there exists

a diffeomorphism from M into S(p, s−1
δ

(

1
h

)

) so that

∣

∣|dFx(u)|2 − 1
∣

∣ 6 ε

for any x ∈ M , u ∈ TxM and |u| = 1.
Moreover, R(δ, µ, ε) −→ ∞ when δ − µ −→ 0. On the other hand,

(1) Cε(n, ‖H‖∞, ‖B‖∞, V (M), δ) −→ 0 when ε −→ 0.
(2) Cε(n, ‖H‖∞, ‖B‖∞, V (M), δ) −→ 0 when ‖H‖∞ −→ ∞.
(3) if V (M)1/n‖B‖∞ 6 v, then h2Cε(n, ‖H‖∞, ‖B‖∞, V (M), δ) −→ ∞ when

‖H‖∞ −→ ∞.

We recall that the Gromov-Hausdorff distance between two compact subsets A
and B of a metric space is given by

dGH(A, B) = inf{A ⊂ Vη(B) and B ⊂ Vη(A)}
where for any subset A, Vη(A) is the tubular neighborhood of A defined by Vη(A) =
{x|d(x, A) < η}.
Remark 1.1. The point p is not depending on ε, ‖H‖∞ or ‖B‖∞. The point p is
nothing but the center of mass of M (see preliminaries).

On the other hand, for δ > 0, we can omitted the dependence on ‖H‖∞.

As in the euclidean case (see [6]), in the hyperbolic case or spherical case, we
can obtain the Hausdorff proximity strictly with a dependence on ‖H‖∞. More
precisely we have the
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Theorem 1.2. Let Nn+1(δ) with δ = −1, 0 or 1 where Nn+1(−1), Nn+1(0) and
Nn+1(1) are respectively the hyperbolic space, the euclidean space and the sphere. Let
M ∈ H(n, N). Then for any ε > 0 there exists a positive constant Cε(n, ‖H‖∞, V (M))
so that if the pinching condition (PCε)

n(‖H‖2
∞ + δ)(1 − Cε) < λ1(M)

then M is ε-Gromov-Hausdorff close to S(p, s−1
δ

(

1
h

)

).

The condition (3) of the theorem 1.1 allows to obtain an application for the stable
constant mean curvature hypersurfaces. Indeed we have the following stability
theorem

Theorem 1.3. Let (Nn+1, h) be a n + 1-dimensional Riemannian manifold whose
sectional curvature KN satisfies µ 6 KN 6 δ and i(N) > π√

δ
if δ > 0 and let

M ∈ HC(n, N). Let v > 0 so that V (M)1/n‖B‖∞ 6 v. For any ε < 1/18,
there exists a constant Rε(δ, µ, v, i(N)) > 0 so that if φ(M) lies in a ball of radius
Rε(δ, µ, v, i(N)) and φ is of constant mean curvature H and is stable then there
exists a point p so that M is ε-Gromov-Hausdorff close, diffeomorphic and ε-quasi-
isometric to S(p, s−1

δ

(

1
h

)

).

Remark 1.2. If δ > 0, Rε(δ, µ, v, i(N)) is not depending on i(N).

As another application of theorems 1.1 and 1.2 we have results for the almost
umbilic hypersurfaces of model spaces. These theorems are to compare with results
of Shiohama and Xu ([14] and [15]) which obtain conditions on the Betti numbers.

Theorem 1.4. Let (Nn+1, h) be a n+1-dimensional Riemannian manifold with con-
stant sectional curvature δ and let M ∈ H(n, N). Let p be the center of mass of M .
Let q > n

2
and ε < 1/18. Then there exist positive constants η1,ε(n, ‖H‖∞, ‖B‖∞, V (M), δ)

and η2,ε(n, ‖H‖∞, ‖B‖∞, V (M), δ) so that if

(1) ‖τ‖2q 6 η1,ε‖H‖∞V (M)1/2q.
(2) ‖H2 − ‖H‖2

∞‖q 6 η2,ε‖H‖2
∞V (M)1/q.

Then M is ε-Gromov-Hausdorff close, diffeomorphic and ε-quasi-isometric to
S(p, s−1

δ

(

1
h

)

).

Remark 1.3. The dependence on ‖B‖∞ is not necessary for the Hausdorff prox-
imity.

In the Euclidean case providing from the pinching theorem proved in [6] we can
improve the condition 2)

Theorem 1.5. Let (Mn, g) be a compact, connected and oriented n-dimensional
Riemannian manifold without boundary isometrically immersed by φ in R

n+1. Let
p be the center of mass of M . Then for any ε > 0, there exist two constants
η1,ε(n, ‖H‖∞, V (M)) and η2,ε(n, ‖H‖∞, V (M)) so that if

(1) ‖τ‖2q 6 η1,ε‖H‖∞V (M)1/2q.

(2)
∥

∥

∥
H2 − ‖H‖2

2r

V (M)1/r

∥

∥

∥

q
6 η2,ε‖H‖2

∞V (M)1/q for r > 2.
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Then M is ε-Gromov-Hausdorff close to S
(

p, V (M)1/2r

‖H‖2r

)

. Moreover there exist two

constants η1,ε(n, ‖B‖∞, V (M)) and η2,ε(n, ‖B‖∞, V (M)) so that if the two condi-
tions 1) and 2) (by replacing ‖H‖∞ by ‖B‖∞) are satisfied then M is diffeomorphic

and ε-quasi-isometric to S
(

p, V (M)1/2r

‖H‖2r

)

.

2. Preliminaries

Let (Mn, g) be a compact, connected n-dimensional Riemannian manifold iso-
metrically immersed by φ in an n + 1-dimensional Riemannian manifold (Nn+1, h)
which sectional curvature is bounded by δ. For any point p ∈ N let us consider
exp be the exponential map at this point. Locally we consider (xi)16i6n the normal
coordinates of N centered at p and for all x ∈ N , we denote by r(x) = d(p, x), the
geodesic distance between p and x on (Nn+1, h).

Moreover we define the function cδ by cδ = s′δ. Obviously, we have c2
δ + δs2

δ = 1
and c′δ = −δsδ.

The gradient of a function u define on N with respect to h will be denoted by
∇N u and the gradient with respect to g of the restriction of u on M will be denoted
by ∇Mu.

Briefly, we recall the proof of Heintze ([8]) for the Reilly’s inequality.

We will use sδ(r)
r

xi as test functions in the variational characterization of λ1(M).
But these functions must be L2-orthogonal to the constant functions. For this
purpose, we use a standard argument used by Chavel and Heintze ([5] and [8]).
Indeed, if φ(M) lies in a convex ball we can define the vector field Y by

Yq =

∫

M

sδ(d(q, x))

d(q, x)
exp−1

q (x)dv(x) ∈ TqN, q ∈ M ,

From the fixed point theorem of Brouwer, there exists a point p ∈ N such that

Yp = 0 and consequently, for a such p,

∫

M

sδ(r)

r
xidv = 0. For δ > 0, we assume in

addition that φ(M) is contained in a ball of radius π
4
√

δ
. Indeed, in this case φ(M)

lies in a ball of center p (the point p so that Yp = 0) with a radius less or equal to
π

2
√

δ
and cδ is then a nonnegative function.

Now considering the vector field on M , Z = sδ∇N r and noting that the coordi-

nates of Z in the normal local frame are
(

sδ(r)
r

xi

)

16i6n
, we have

λ1(M)

∫

M

s2
δ(r)dv = λ1(M)

∫

M

|Z|2dv = λ1(M)

∫

M

n+1
∑

i=1

(

sδ(r)

r
xi

)2

dv

6

∫

M

n+1
∑

i=1

∣

∣

∣

∣

∇M

(

sδ(r)

r
xi

)
∣

∣

∣

∣

2

dv

Now, Heintze proved that
n+1
∑

i=1

∣

∣

∣

∣

∇M

(

sδ(r)

r
xi

)
∣

∣

∣

∣

2

6 n − δ|ZT |2 and

div (ZT ) > ncδ − nH〈Z, ν〉(3)
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Then

λ1(M)

∫

M

|Z|2dv 6

∫

M

(n − δ|ZT |2)dv

=

∫

M

(n − div (ZT )cδ)dv

6

∫

M

(n − nc2
δ + nH〈Z, ν〉cδ)dv

=

∫

M

(nδs2
δ + nH〈Z, ν〉cδ)dv

6

∫

M

nδs2
δdv + ‖H‖∞

∫

M

nsδcδdv

and using again (3) we get

λ1(M)

∫

M

|Z|2dv 6 nδ

∫

M

|Z|2dv + ‖H‖∞
∫

M

(nH〈Z, ν〉sδ + div (ZT )sδ)dv

= nδ

∫

M

|Z|2dv + ‖H‖∞
∫

M

(nH〈Z, ν〉sδ − cδsδ|∇Mr|2)dv

6 nδ

∫

M

|Z|2dv + n‖H‖2
∞

∫

M

|〈Z, ν〉||Z|dv

6 nδ

∫

M

|Z|2dv + n‖H‖2
∞

∫

M

|Z|2dv

6 n(‖H‖2
∞ + δ)

∫

M

|Z|2dv

3. An L2-approach

Throughout the paper we assume that φ(M) is included in a ball of radius π
4
√

δ

for δ > 0. Note that we have

|δ|
‖H‖2

∞
6 1(4)

This inequality is obvious for δ 6 0. For δ > 0, as we have assumed that φ(M) is

in a ball of radius π
4
√

δ
, it follows that

sδ

(

π

4
√

δ

)

cδ

(

π
4
√

δ

) > 1
‖H‖∞ and then δ

‖H‖2
∞

6 1.

Moreover α will denote a constant depending only on n.

Lemma 3.1. If the pinching condition (PC) holds then ‖ZT‖2
2 6 h2

‖H‖2
∞
‖Z‖2

2C.

Proof. We have

‖ZT‖2
2 =

∫

M

|Z|2dv −
∫

M

〈Z, ν〉2dv 6

∫

M

(|Z|2 − |〈Z, ν〉||Z|)dv

and from the proof of Reilly’s inequality and the pinching condition, we have
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n‖H‖2
∞

(
∫

M

|Z|2dv −
∫

M

|〈Z, ν〉||Z|dv

)

< nh2C‖Z‖2
2

�

Lemma 3.2. If C < n
2(n+1)

, then (PC) implies that

‖Z‖2
2 6

(

n

n − (n + 1)C

)

V (M)

h2
6

2V (M)

h2

Proof. From the proof of the Reilly’s inequality we have

λ1(M)‖Z‖2
2 6 nV (M) − δ‖ZT‖2

2

6 nV (M) +
|δ|

‖H‖2
∞

h2C‖Z‖2
2

From (4) and the pinching condition we have

h2(n − (n + 1)C)‖Z‖2
2 6 nV (M)

and the condition on C allows us to obtain the desired inequality.
�

Lemma 3.3. If C < n
2(n+1)

and if the pinching condition (PC) holds then ‖Z‖2
2 >

V (M)
4h2 .

Proof. From the proof of the Reilly’s inequality, we have

λ1(M)‖Z‖2
2 6 nV (M) − δ‖ZT‖2

2

6
(nV (M) − δ‖ZT‖2

2)
2

nV (M) − δ‖ZT‖2
2

6
n2h4‖Z‖4

2

nV (M) − |δ|h2

‖H‖2
∞
‖Z‖2

2C

and using successively (4), the pinching condition and the previous lemma we get

‖Z‖2
2 >

1

h2
(1 − C)

(

1 − 2

n
C

)

V (M)

>
(1 − C)2

h2
V (M) >

V (M)

4h2

�

Lemma 3.4. Let X = nHcδν − n‖H‖2
∞Z. If C < n

2(n+1)
, then the pinching condi-

tion (PC) implies ‖X‖2
2 6 α‖H‖2

∞V (M)C.

Proof. Using again (3) and the previous lemmas we have

‖X‖2
2 = n2

∫

M

H2c2
δdv − 2n2‖H‖2

∞

∫

M

H〈Z, ν〉cδdv + n2‖H‖4
∞‖Z‖2

2
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6 n2

∫

M

H2c2
δdv + 2n‖H‖2

∞

∫

M

(div (ZT )cδ − nc2
δ)dv + n2‖H‖4

∞‖Z‖2
2

= n2

∫

M

H2c2
δdv + 2n‖H‖2

∞

∫

M

δ|ZT |2dv − 2n2‖H‖2
∞

∫

M

c2
δdv + n2‖H‖4

∞‖Z‖2
2

6 −n2‖H‖2
∞

∫

M

c2
δdv + n2‖H‖4

∞‖Z‖2
2 + 2n|δ|‖H‖2

∞‖ZT‖2
2

= −n2‖H‖2
∞V (M) + n2‖H‖2

∞δ‖Z‖2
2 + n2‖H‖4

∞‖Z‖2
2 + 2n|δ|h2‖Z‖2

2C

= n2‖H‖2
∞(−V (M) + h2‖Z‖2

2) + 4n|δ|V (M)C

6 n2‖H‖2
∞

(

−1 +
n

n − (n + 1)C

)

V (M) + 4n|δ|V (M)C

= ‖H‖2
∞

(

n2(n + 1) + 4n
|δ|

‖H‖2
∞

)

V (M)C

And we complete the proof by applying again (4). �

Lemma 3.5. Let Y = |Z|1/2
(

δZ + Hcδν − h Z
|Z|

)

. If C < n
2(n+1)

, then the condition

(PC) implies

‖Y ‖2
2 6 α

(

h +
‖H‖2

∞
h

max(1, ‖H‖γ
∞V (M)γ/n)

)

V (M)C

where γ ∈ (en/2 − 1, en − 1).

Proof. First we have

‖Y ‖2
2 6

∫

M

(

|Z||δZ + Hcδν|2 − 2h〈δZ + Hcδν, Z〉 + h2|Z|
)

dv

6

∫

M

(

|Z||δZ + Hcδν|2 − 2h〈δZ + Hcδν, Z〉
)

dv + h2‖Z‖2V (M)1/2(5)

Let us compute the first term

∫

M

|Z||δZ + Hcδν|2dv =

∫

M

|Z|
(

δ2|Z|2 + 2δcδH〈Z, ν〉+ H2c2
δ

)

dv

=

∫

M

|Z|
(

H2 − δH2s2
δ + 2δcδH〈Z, ν〉+ δ − δc2

δ

)

dv

=

∫

M

|Z|(H2 + δ − δ|HZ − cδν|2)dv

6 h2‖Z‖2V (M)1/2 − δ

∫

M

|Z||HZ − cδν|2dv

6 h2‖Z‖2V (M)1/2 + |δ|‖Z‖∞
∫

M

|HZ − cδν|2dv

On the other hand,
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∫

M

|HZ − cδν|2dv 6 ‖H‖2
∞

∫

M

s2
δdv − 2

∫

M

H〈Z, ν〉cδdv +

∫

M

c2
δdv

Now the pinching implies that

‖H‖2
∞

∫

M

s2
δdv −

∫

M

H〈Z, ν〉cδdv 6 nh2‖Z‖2
2C 6 2nV (M)C

and

∫

M

c2
δdv −

∫

M

H〈Z, ν〉cδdv 6
1

n

∫

M

div (ZT )cδdv 6
|δ|
n
‖ZT‖2

2

6
2|δ|

n‖H‖2
∞

V (M)C 6
2

n
V (M)C

Then we have proved

∫

M

|Z||δZ + Hcδν|2dv 6 h2‖Z‖2V (M)1/2 + α|δ|‖Z‖∞V (M)C(6)

Now let us compute the two last terms of (5)

− 2h

∫

M

〈δZ + Hcδν, Z〉dv + h2‖Z‖2V (M)1/2

6 −2δh

∫

M

s2
δdv +

2h

n

∫

M

div (ZT )cδdv − 2h

∫

M

c2
δdv + h2‖Z‖2V (M)1/2

= −2hV (M) +
2hδ

n

∫

M

|ZT |2dv + h2‖Z‖2V (M)1/2

6 −2hV (M) + h2V (M)1/2

Therefore reporting this and (6) in (5), we get

‖Y ‖2
2 6 2h2‖Z‖2V (M)1/2 − 2hV (M) +

2hδ

n
‖ZT‖2

2 + α|δ|‖Z‖∞V (M)C

and using the previous lemmas, we get

‖Y ‖2
2 6 2h

(

(

n

n − (n + 1)C

)1/2

− 1

)

V (M) +

(

α|δ|‖Z‖∞ +
4h|δ|

n‖H‖2
∞

)

V (M)C

6

(

4h + α|δ|‖Z‖∞ +
4h|δ|

n‖H‖2
∞

)

V (M)C

6 α(h + |δ|‖Z‖∞)V (M)C

Now the researched inequality is a straightforward consequence of the following
lemma
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Lemma 3.6. If C < n
2(n+1)

, then the pinching condition (PC) implies

‖Z‖∞ 6
α

h
Z(n, ‖H‖∞, V (M))

where Z = max(1, ‖H‖γ
∞V (M)γ/n).

Then

‖Y ‖2
2 6 α

(

h +
|δ|
h

max(1, ‖H‖γ
∞V (M)γ/n)

)

V (M)C

6 α

(

h +
‖H‖2

∞
h

max(1, ‖H‖γ
∞V (M)γ/n

)

V (M)C

�

The proof of the lemma 3.6 is providing from a result stated in the following
proposition using a Nirenberg-Moser type of proof (see [6]).

Proposition 3.1. Let (Nn+1, h) be a Riemmannian manifold so that KN 6 δ and
i(N) > π√

δ
if δ > 0 and let M ∈ HV (n, N). Let ξ be a nonnegative continuous

function so that ξk is smooth for k > 2. Let 0 6 r < s 6 2 so that

1

2

∫

M

∆ξ2ξ2k−2dv 6 (A1 + kA2)

∫

M

ξ2k−rdv + (B1 + kB2)

∫

M

ξ2k−sdv

where A1, A2, B1, B2 are nonnegative constants. Then for any η > 0, if ‖ξ‖∞ > η
then

‖ξ‖∞ 6 L(n, A1, A2, B1, B2, ‖H‖∞, V (M), η)‖ξ‖2

where

L(n, A1, A2, B1, B2, ‖H‖∞, V (M), η)

= K(n)

(

4A
1/2
1 + 4A

1/2
2

ηr/2
+

4B
1/2
1 + 4B

1/2
2

ηs/2
+ ‖H‖∞

)γ

V (M)
γ
n
− 1

2

and γ ∈ (en/2 − 1, en − 1).

Remark 3.1. In particular we see that

(1) If ‖ξ‖2 6
η

L(n, A1, A2, B1, B2, ‖H‖∞, V (M), η)
, then ‖ξ‖∞ 6 η.

(2) If ‖ξ‖2 6 A, then for any η > 0,

‖ξ‖∞ 6 max(η, L(n, A1, A2, B1, B2, ‖H‖∞, V (M), η)A)

In [6] this proposition has been proved for hypersurfaces of the Euclidean space.
The proof is similar for hypersurfaces of some ambient space with bounded sectional
curvature. This proof uses a Sobolev inequality due to Hoffman and Spruck (see [9]
and [10]) which is available under the conditions on the injectivity radius of N and
the volume of M contained in the definition of HV (n, N).



11

Proof of the lemma 3.6: First we compute the Laplacian of |Z|2. An easy
computation shows that ∆|Z|2 = (−2c2

δ + 2δs2
δ)|∇Mr|2 + 2sδcδ∆r.

Since r 6 π
4
√

δ
for δ > 0, the first term is nonpositif. Now let us consider

(ei)16i6n+1 an orthonormal frame in a neighborhood of the point p ∈ M where
we compute the Laplacian and so that en+1 = ν. Then

∆|Z|2 6 2sδcδ

(

−
n
∑

i=1

∇N dr(ei, ei) + nH〈ν,∇N r〉
)

= 2sδcδ

(

−
n
∑

i=1

∇N dr(ei − 〈∇N r, ei〉∇N r, ei − 〈∇N r, ei〉∇N r) + nH〈ν,∇N r〉
)

6 2sδcδ

(

−cδ

sδ

n
∑

i=1

∣

∣ei − 〈∇N r, ei〉∇N r
∣

∣

2
+ n‖H‖∞

)

6 2n‖H‖∞sδcδ 6 2n‖H‖∞sδ(1 +
√

|δ|sδ)

= 2n‖H‖∞|Z| + 2n‖H‖∞
√

|δ||Z|2

And from the remark 3.1 about the proposition 3.1 and lemma 3.2 we deduce that

‖Z‖∞ 6 max
(

η, L
(

n, 2n‖H‖∞, 0, 2n‖H‖∞
√

|δ|, 0, ‖H‖∞, η
)

‖Z‖2

)

(7)

Now

L
(

n, 2n‖H‖∞, 0, 2n‖H‖∞
√

|δ|, 0, ‖H‖∞, η
)

= K(n)

(

4

η1/2
(2n‖H‖∞)1/2 + 4(2n‖H‖∞

√

|δ|)1/2 + ‖H‖∞
)γ

V (M)
γ
n
− 1

2

= K(n)

(

4(2n)1/2

η1/2‖H‖1/2
∞

+ 4
(2n
√

|δ|)1/2

‖H‖1/2
∞

+ 1

)γ

‖H‖γ
∞V (M)

γ
n
− 1

2

and choosing η = 1
h

with the fact that |δ|
‖H‖2

∞
6 1 we obtain that

L
(

n, 2n‖H‖∞, 0, 2n‖H‖∞
√

|δ|, 0, ‖H‖∞, η
)

6 α‖H‖γ
∞V (M)

γ
n
− 1

2

We conclude by reporting this in (7) and by using the lemma 3.2.

Let’s introduce now the function ϕ = |Z|
(

|Z| − 1
h

)2
= |Z|

∣

∣

∣
Z − 1

h
Z
|Z|

∣

∣

∣

2

. In the

following lemma, we give an L2-estimate of ϕ

Lemma 3.7. If C < n
2(n+1)

, then (PC) implies that

‖ϕ‖2 6 α‖ϕ‖3/4
∞ K1(n, ‖H‖∞, V (M))‖H‖1/2

∞
V (M)1/2C1/4

h5/4

where K1(n, ‖H‖∞, V (M)) = max(1, ‖H‖
γ
4∞V (M)γ/4n).
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Proof. First we have

(
∫

M

ϕ2dv

)1/2

6 ‖ϕ‖3/4
∞

(
∫

M

ϕ1/2dv

)1/2

. Moreover

ϕ1/2 = |Z|1/2

∣

∣

∣

∣

1

h2
(h2Z − δZ − Hcδν) +

1

h2

(

δZ + Hcδν − h
Z

|Z|

)
∣

∣

∣

∣

6
|Z|1/2

nh2
|X| + 1

h2
|Y |

Then

(
∫

M

ϕ1/2dv

)1/2

6
1

n1/2h

(
∫

M

|Z|1/2|X|dv

)1/2

+
1

h

(
∫

M

|Y |dv

)1/2

6
1

n1/2h

(
∫

M

|Z|dv

)1/4

‖X‖1/2
2 +

1

h
‖Y ‖1/2

2 V (M)1/4

6
V (M)1/8

hn1/2
‖Z‖1/4

2 ‖X‖1/2
2 +

1

h
‖Y ‖1/2

2 V (M)1/4

From the lemmas 3.2, 3.4 and 3.5 we deduce that

(
∫

M

ϕ1/2dv

)1/2

6 α

(

‖H‖1/2
∞

h5/4
+

1

h

(

h +
‖H‖2

∞
h

max
(

1, ‖H‖γ
∞V (M)

γ
n

)

)1/4
)

V (M)1/2C1/4

6 α

(

‖H‖1/2
∞

h5/4
+

1

h3/4
+

‖H‖1/2
∞

h5/4
max

(

1, ‖H‖
γ
4∞V (M)γ/4n

)

)

V (M)1/2C1/4

6 α
‖H‖1/2

∞

h5/4

(

1 + max(1, ‖H‖
γ
4∞V (M)γ/4n)

)

V (M)1/2C1/4

where in the last inequality we have used the fact that h 6
√

2‖H‖∞. This completes
the proof.

�

Lemma 3.8. Let η > 0 and

C(n, ‖H‖∞, δ, V (M), η) = min

(

n

2(n + 1)
,

h2η

‖H‖2
∞K4

2K
4
1V (M)4γ/n

)

where

K2(n, ‖H‖∞, δ, V (M), η) = α

(

A1

η
+

A2

η1/2
+ ‖H‖∞

)γ

and A1 = (Z+1)(h+|δ|1/2Z) and A2 = Z
1/2

(h+|δ|1/2Z). Then if (PC(n,‖H‖∞,δ,V (M),η))
holds then

‖ϕ‖∞ 6
η

h3
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Proof. We have for any k > 2

1

2

∫

M

∆ϕ2ϕ2k−2dv =
1

2

∫

M

〈∇Mϕ2,∇Mϕ2k−2〉dv 6 2k

∫

M

|∇Mϕ|2ϕ2k−2dv(8)

Let us compute |∇Mϕ|2

|∇Mϕ|2 =

∣

∣

∣

∣

∣

∇M

(

|Z|
(

|Z| − 1

h

)2
)
∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∇M |Z|
(

|Z| − 1

h

)2

+ 2|Z|
(

|Z| − 1

h

)

∇M |Z|
∣

∣

∣

∣

∣

2

=

(

|Z| − 1

h

)2(

3|Z| − 1

h

)2

|∇M |Z||2

6 9|Z|2
(

|Z| − 1

h

)2

|∇M |Z||2 +
1

h2

(

|Z| − 1

h

)2

|∇M |Z||2

A straightforward computation shows that |∇M |Z||2 6 c2
δ 6 1 + |δ|‖Z‖2

∞. Then

|∇Mϕ|2 6 A′
1 + A′

2ϕ

where A′
1 = α

h4 (Z + 1)2
(

1 + |δ|
h2 Z

2
)

and A′
2 = α

h
Z
(

1 + |δ|
h2 Z

2
)

.

Then reporting this in (8) we get

1

2

∫

M

∆ϕ2ϕ2k−2dv 6 2kA′
1

∫

M

ϕ2k−2dv + 2kA′
2

∫

M

ϕ2k−1dv

Now, applying the lemma 3.1 we see that if ‖ϕ‖∞ > η
h3 then

‖ϕ‖∞ 6

(

h3A′1/2
1

η
+

h3/2A′1/2
2

η1/2
+ ‖H‖∞

)γ

V (M)
γ
n
− 1

2‖ϕ‖2

A short computation yields that h3A′1/2
1 6 α(Z + 1)(h + |δ|1/2Z) = αA1 and

h3/2A′1/2
2 6 αZ

1/2
(h + |δ|1/2Z) = αA2. Combining this with the inequality of

the lemma 3.7, we deduce that

‖ϕ‖∞ 6

(

A1

η
+

A2

η1/2
+ ‖H‖∞

)4γ

V (M)4γ/nK1(n, ‖H‖∞, V (M))4 C

h5

Now we see that if C = min
(

n
2(n+1)

, h2η
‖H‖2

∞K4

2
K4

1
V (M)4γ/n

)

with K2 as in the lemma

then ‖ϕ‖∞ 6
η
h3 .

�

Lemma 3.9. For any ε < 1
3
, the pinching condition (PC′

ε(n,‖H‖∞,δ,V (M))) with

C ′
ε(n, ‖H‖∞, δ, V (M)) = C(n, ‖H‖∞, δ, V (M),

ε2

6
)
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implies

∣

∣

∣

∣

|Z| − 1

h

∣

∣

∣

∣

6
ε

h
and

∣

∣

∣

∣

r − s−1
δ

(

1

h

)
∣

∣

∣

∣

6
ε

h

Proof. Consider the function f(t) = t
(

t − 1
h

)2
. The function f is increasing on

[0, 1
3h

] and [ 1
h
, +∞) and decreasing on [ 1

3h
, 1

h
]. Choose η 6 1

27
. From the lemma 3.8

we deduce that the condition (PC(n,‖H‖∞,δ,V (M),η)) implies that f(|Z|) 6
η
h3 6 f

(

1
3h

)

.

Moreover from the lemma 3.1 we see that ‖Z‖2
2 >

V (M)
4h2 . Then there exists x0 ∈ M

so that |Zx0
| > 1

2h
> 1

3h
and by connexity of M , it follows that |Z| > 1

3h
over M .

Then
∣

∣|Z| − 1
h

∣

∣ 6

√
3
√

η

h
. Now

∣

∣

∣

∣

r − s−1
δ

(

1

h

)
∣

∣

∣

∣

6

(

sup
I

1
√

1 − δy2

)

∣

∣

∣

∣

|Z| − 1

h

∣

∣

∣

∣

6

√
2
√

3
√

η

h

where I = R
+ for δ 6 0 and I = [0, 1√

2δ
] for δ > 0. Now we conclude by choosing

η = ε2

6
.

�

We are now in a position to prove the theorem 1.2.

Proof of Theorem 1.2: The case δ = 0 is a particular case of [6]. From the
lemma above, we know that for any ε < 1

3
, the pinching (PCε) implies that φ(M) ⊂

Bp

(

R + ε
h

)

\Bp

(

R − ε
h

)

with R = s−1
δ

(

1
h

)

. Then φ(M) ⊂ Bp(R) \Bp(R− ε
h
). Let

x0 ∈ Sp(R) so that φ(M) ⊂
(

Bp(R + ε
h
) \ Bp(R − ε

h
)
)

\ Bx0
(ρ) where ρ satisfies

tδ

(

R + ρ

2

)

− tδ

(

R

2

)

=
ε

‖H‖∞
for δ 6 0 and

tδ

(

R

2

)

− tδ

(

R − ρ

2

)

=
ε

‖H‖∞
for δ > 0, where tδ = sδ

cδ
. From the proof of the lemma 4.3 of [12] we know that for

ε < a(n, ‖H‖∞) there exists a point x0 ∈ M so that |H(x0)| > b(n, ‖H‖∞)‖H‖∞
ε

.
Now if we have chosen ε < b(n, ‖H‖∞) we get a contradiction. Then φ(M) ∩
Bx0

(ρ) 6= ∅ and dGH

(

φ(M), S
(

p, s−1
δ

(

1
h

)))

< ε
h
.

4. The proof of the diffeomorphism

First we recall that C ′
ε = min

(

n
2(n+1)

, αε2h2

‖H‖2
∞(K2K1)4(n,‖H‖∞,δ,V (M),ε2)V (M)4γ/n

)

. Now

it is easy to see that

C ′
ε(n, ‖H‖∞, δ, V (M))

> min

(

n

2(n + 1)
,

αε2h2

‖H‖2
∞(K2K1)4(n, (1/

√
n)‖B‖∞, δ, V (M), ε2)V (M)4γ/n

)
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Then we consider the new constant

C ′
ε(n, ‖H‖∞, ‖B‖∞, δ, V (M))

= min

(

n

2(n + 1)
,

αε2h2

‖H‖2
∞(K2K1)4(n, (1/

√
n)‖B‖∞, δ, V (M), ε2)V (M)4γ/n

)

and since h2

‖H‖2
∞

> 1 for δ > 0, we obtain a constant which is not depending on

‖H‖∞.
From now we will need a dependence on ‖B‖∞ in order to prove the diffeomor-

phism and the quasi-isometry.

Now, let us consider F : M −→ S
(

p, s−1
δ

(

1
h

))

x 7−→ expp

(

s−1
δ

(

1
h

)

X
|X|

)

, where X = exp−1
p (x).

For more convenience we will put ̺ = s−1
δ

(

1
h

)

X
|X| .

Lemma 4.1. Let u ∈ TxM so that |u| = 1 and v = u − 〈u,∇Mr〉∇N r. We have

1

h2sµ(r)2
|v|2 6 |dFx(u)|2 6

sµ

(

s−1
δ

(

1
h

))2

sδ(r)2
|v|2

Proof. An easy computation shows that

d

(

X

|X|

)

|x(u) =
1

r
d exp−1

p |x(u) − dr(u)

r2
exp−1

p (x)

Then we deduce that

dFx(u) = d expp |̺
(

s−1
δ

(

1

h

)

d

(

X

|X|

)

|x(u)

)

=
s−1

δ

(

1
h

)

r
d expp |̺

(

d exp−1
p |x(u)

)

− s−1
δ

(

1
h

)

dr(u)

r2
d expp |̺ (exp−1

p (x))

=
s−1

δ

(

1
h

)

r
d expp |̺

(

d exp−1
p |x(u)

)

− s−1
δ

(

1
h

)

dr(u)

r
∇N r

∣

∣

F (x)

Now let us compute the norm of dFx(u). We have

|dFx(u)|2 =
s−1

δ

(

1
h

)2

r2

[

∣

∣d expp |̺
(

d exp−1
p |x(u)

)
∣

∣

2

−2〈d expp |̺
(

d exp−1
p |x(u)

)

,∇N r〉F (x)dr(u) + dr(u)2
]

Now since expp is a radial isometry (see for instance [13]), we have
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〈d expp |̺
(

d exp−1
p |x(u)

)

,∇N r〉F (x) = 〈d exp−1
p |x(u) ,

X

|X|〉 = 〈u,∇N r〉x

and it follows that

|dFx(u)|2 =
s−1

δ

(

1
h

)2

r2

[

∣

∣d expp |̺
(

d exp−1
p |x(u)

)
∣

∣

2 − 〈∇Mr, u〉2
]

(9)

Now

∣

∣d expp |̺
(

d exp−1
p |x(u)

)
∣

∣

2
=
∣

∣d expp |̺ (d exp−1
p |x(v))

+〈u,∇Mr〉d expp |̺
(

d exp−1
p

∣

∣

x(∇N r)
)
∣

∣

2

where v = u − 〈u,∇Mr〉∇N r. Developping this expression we get

∣

∣d expp |̺
(

d exp−1
p |x(u)

)
∣

∣

2
=

∣

∣d expp |̺ (d exp−1
p |x(v))

∣

∣

2
+ 〈u,∇Mr〉2

∣

∣d expp |̺
(

d exp−1
p

∣

∣

x(∇N r)
)
∣

∣

2

+ 2〈u,∇Mr〉〈d expp |̺ (d exp−1
p |x(v)), d expp |̺

(

d exp−1
p

∣

∣

x(∇N r)
)

〉
=
∣

∣d expp |̺ (d exp−1
p |x(v))

∣

∣

2
+ 〈u,∇Mr〉2

where in the last equality we have used again the radial isometry property of the
exponential map. And reporting this in (9) we obtain

|dFx(u)|2 =
s−1

δ

(

1
h

)2

r2

∣

∣d expp |̺ (d exp−1
p |x(v))

∣

∣

2

Since µ 6 KN 6 δ the standard Jacobi field estimates (see for instance corollary
2.8, p 153 of [13]) say that for any vector w orthogonal to ∇N r at y we have

|w|2 r2

sµ(r)2
6 |d exp−1

p |y(w) |2 6 |w|2 r2

sδ(r)2

This gives

sδ(s
−1
δ

(

1
h

)

)2

r2
|d exp−1

p |x(v) |2 6 |dFx(u)|2 6
sµ(s

−1
δ

(

1
h

)

)2

r2
|d exp−1

p |x(v) |2

and applying again the standard Jacobi field estimates we obtain the desired in-
equalities of the lemma.

�

Lemma 4.2. Let u ∈ TxM so that |u| = 1. Then for any η > 0, there exists a
constant ρ(δ, µ, η) > 0 so that if M is contained in the ball B(p, ρ(δ, µ, η)), then

(1 − η)2

h2s2
δ(r)

(1 − |∇Mr|2) 6 |dFx(u)|2 6
(1 + η)2

h2s2
δ(r)

Moreover ρ(δ, µ, η) −→ ∞ when δ − µ −→ 0 and ρ(δ, µ, η) −→ 0 when η −→ 0.
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Proof. Let r > 0. For t ∈ (−∞, π2

16r2 ), consider the function σ(t) = st(r). An easy

verification yields that σ is C1 on (−∞, π2

16r2 ) and

σ′(t) =















r3ct(r)
2

(√
tr−tan(

√
tr)

(
√

tr)3

)

if t ∈ (0, π2

16r2 )

−r3

6
if t = 0

r3ct(r)
2

(

−
√
−tr+tanh(

√
−tr)

(
√
−tr)3

)

if t ∈ (−∞, 0)

It follows that σ is decreasing on (−∞, π2

16r2 ) and that there exists a constant D so

that |σ′(t)| 6 Dr3ct(r), for any t ∈ (−∞, π2

16r2 ). It follows that

0 6 sµ(r) − sδ(r) 6 Dr3cµ(r)(δ − µ)(10)

Now we have

1

hsµ(r)
>

1

h (sδ(r) + Dr3cµ(r)(δ − µ))

>
1

hsδ(r)(1 + D
(

r
sδ(r)

)

r2cµ(r)(δ − µ))

The function t 7−→ t
sδ(t)

beeing bounded on [0,∞) and on [0, π
4
√

δ
) for δ > 0 there

exists a constant D′ so that

1

hsµ(r)
>

1

hsδ(r) (1 + D′r2cµ(r)(δ − µ))
(11)

On the other hand, as we have seen it in the proof of the lemma 3.9, s−1
δ

(

1
h

)

∈
[0, π

4
√

δ
) for δ > 0 and we can apply the inequality (10) which gives

sµ

(

s−1
δ

(

1

h

))

6
1

h
+ D

(

s−1
δ

(

1

h

))3

cµ

(

s−1
δ

(

1

h

))

(δ − µ)

6
1

h

[

1 + D

(

s−1
δ

(

1
h

)

1/h

)

s−1
δ

(

1

h

)2

cµ

(

s−1
δ

(

1

h

))

(δ − µ)

]

And using the same arguments concerning the function t 7−→ t
sδ(t)

, we have

sµ

(

s−1
δ

(

1

h

))

6
1

h

(

1 + D′R2c̃µ(R)(δ − µ)
)

(12)

where

c̃µ(r) =

{

1 if µ > 0
cµ(r) if µ < 0

From the two inequalities (11) and (12) we deduce that there exists a constant
ρ(δ, µ, η) so that if R 6 ρ(δ, µ, η) then 1

hsµ(r)
>

1−η
hsδ(r)

and sµ

(

s−1
δ

(

1
h

))

6 1
h
(1 + η).

Finally from the lemma 4.1 we deduce that
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(1 − η)2

h2s2
δ(r)

|v|2 6 |dFx(u)|2 6
(1 + η)2

h2s2
δ(r)

|v|2

Since we have assumed that |u| = 1 and v = u − 〈u,∇Mr〉∇N r we get the desired
result.

�

We can now give the proof of the theorem 1.1

Proof of Theorem 1.1: Let ε < 1
3
. From the lemma 3.9 if (PC′

ε
) holds then

∣

∣|Z| − 1
h

∣

∣ < ε
h
. From this and the lemma 4.2 we deduce that if M is contained in

the ball B(p, ρ(δ, µ, η)) then

[

(1 − η)2

(1 + ε)2
− 1

]

− (1 − η)2

(1 + ε)2
‖∇Mr‖2

∞ 6 |dFx(u)|2 − 1 6
(1 + η)2

(1 − ε)2
− 1

To complete the proof of the theorem 1.1 we need the following lemma

Lemma 4.3. Let C ′′
η = αη2

(( 1

η
+1)‖B‖∞+|µ|1/2)

2γ
V (M)2γ/n

and C̃ε,η = min(C ′
ε, C

′′
η ). Then

for ε < 1
3
, (PC̃ε,η

) implies that ‖∇Mr‖∞ 6 η.

Proof. As usually by computing the Laplacian of |∇Mr|2 and using the Bochner
formula we get

1

2

∫

M

∆|∇Mr|2|∇Mr|2k−2dv 6

∫

M

(〈∆dr, dr〉 − Ric(∇Mr,∇Mr))|∇Mr|2k−2dv

Now integrating by part and using the Gauss formula we obtain

1

2

∫

M

∆|∇Mr|2|∇Mr|2k−2dv 6

∫

M

((∆r)2 − R
φ
(∇Mr,∇Mr) − nHB(∇Mr,∇Mr)

+ |B∇Mr|2)|∇Mr|2k−2dv −
∫

M

∆r〈∇Mr,∇M |∇Mr|2k−2〉dv

6

∫

M

((∆r)2|∇Mr|2k−2dv + ((n − 1)|µ|+ (
√

n + 1)‖B‖2
∞))

∫

M

|∇Mr|2kdv

(13)

− 2(k − 1)

∫

M

∆r∇Mdr(∇Mr,∇Mr)|∇Mr|2k−4dv

Now

∇Mdr(∇Mr,∇Mr) = ∇N dr(∇Mr,∇Mr) − B(∇Mr,∇Mr)〈∇N r, ν〉
= ∇N dr(∇Mr − |∇Mr|2∇N r,∇Mr − |∇Mr|2∇N r)

− B(∇Mr,∇Mr)〈∇N r, ν〉
From the comparisons theorems (see for instance [13] p 153) we deduce that
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|∇Mdr(∇Mr,∇Mr)| 6

(

cµ

sµ
+ ‖B‖∞

)

|∇Mr|2(14)

Similarly, (ei)16i6n being an orthonormal frame in a neighborhood of the point
where we are computing we have

|∆r| 6

n
∑

i=1

|∇N r(ei, ei)| + nH〈∇N r, ν〉

=

n
∑

i=1

|∇N (ei − 〈ei,∇N r〉∇N r, ei − 〈ei,∇N r〉∇N r)| +
√

n‖B‖∞

6 n
cµ

sµ
+
√

n‖B‖∞

and reporting this and (14) in (13) we get

1

2

∫

M

∆|∇Mr|2|∇Mr|2k−2dv 6 2k

(

n
cµ

sµ
+
√

n‖B‖∞
)2 ∫

M

|∇Mr|2k−2dv

+ ((n − 1)|µ| + (
√

n + 1)‖B‖2
∞)

∫

M

|∇Mr|2kdv

Now we choose ρ′(δ, µ) so that in the ball of radius ρ′(δ, µ), cµ(r) 6 1. Now

the pinching condition (PC′
ε
) implies that cµ(r)

sµ(r)
6 1

sδ(r)
6 h

1−ε
. And since ε < 1

3
,

h 6
√

2‖H‖∞ and ‖H‖∞ 6
√

n‖B‖∞ we deduce that cµ(r)

sµ(r)
6 ‖B‖∞ and

1

2

∫

M

∆|∇Mr|2|∇Mr|2k−2dv 6 αk‖B‖2
∞

∫

M

|∇Mr|2k−2dv

+ α(|µ| + ‖B‖2
∞)

∫

M

|∇Mr|2kdv

where α is a constant depending only on n. Then from the proposition 3.1, if
‖∇Mr‖∞ > η then

‖∇Mr‖∞ 6 α

((

1 +
1

η

)

‖B‖∞ + |µ|1/2

)γ

V (M)
γ
n
− 1

2‖∇Mr‖2

Now let ε < 1/3 and assume that we have (PC′
ε
). Then note that

|∇Mr|2 6 1
s2

δ(r)
|ZT |2 6 h2

(1−ε)2
|ZT |2 6 9

2
‖H‖∞|ZT |2 and from the lemmas 3.1 and 3.2

‖∇Mr‖2 6 3V (M)1/2C
′1/2
ε . Therefore

‖∇Mr‖∞ 6 α

((

1 +
1

η

)

‖B‖∞ + |µ|1/2

)γ

V (M)
γ
n C ′1/2

ε

�
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Now we are allowed to complete the proof of theorem 1.1. First let us choose
η = ε and put Cε = C̃ε,ε. Then if φ(M) ⊂ B(p, R(δ, µ, ε)) (with R(δ, µ, ε) =
min(ρ(δ, µ, ε), ρ′(δ, µ))) and if (PCε) is satisfied then

(

1 − ε

1 + ε

)2

− 1 −
(

1 − ε

1 + ε

)2

ε2 6 |dFx(u)|2 − 1 6

(

1 − ε

1 + ε

)2

− 1

since ε < 1
3

it is easy to see that ||dFx(u)|2 − 1| 6 6ε. From the choice of ε, we
deduce that F is a diffeomorphism and from the definition of the Gromov-Hausdorff
distance it follows that we have also

dGH

(

φ(M), S

(

p, s−1
δ

(

1

h

)))

<
ε

h

Then choosing ε < 1/18 we obtain the desired result.
Now to complete the proof, from the expression of Cε the assertion (1) and (2)

are obvious. Now to prove that if V (M)1/n‖B‖∞ 6 v, then

h2Cε(n, ‖H‖∞, ‖B‖∞, V (M), δ) −→ ∞
when ‖H‖∞ −→ ∞ it is sufficient to notice that K1 6 max(1, v1/4),

K2V (M)γ/n 6 α
(

1
ε2 + 1

ε
+ 1
)γ

vγ and C ′
ε > αε2

(

1

ε
+1+|µ

δ |1/2

)2γ

v2γ

.

5. Application to the stability

Briefly, we recall the problem of the stability of hypersurfaces with constant mean
curvature (see for instance [3]).

Let (Mn, g) be an oriented compact n -dimensional hypersurface isometrically
immersed by φ in a n+1-dimensional oriented manifold (Nn+1, h). We assume that
M is oriented by the global unit normal field ν so that ν is compatible with the
orientations of M and N . Let F : (−ε, ε) × M −→ N be a variation of φ so that
F (0, .) = φ. We recall that the balance volume is the function V : (−ε, ε) −→ R

defined by

∫

[0,t]×M

F ⋆dvh

where dvh is the element volume associated to the metric h. It is well known that

V ′(0) =

∫

M

fdv

where f(x) = 〈∂F
∂t

(0, x), ν〉. Moreover the area function A(t) =

∫

M

dvF ⋆
t h satisfies

A′(0) = −n

∫

M

Hfdv

The balance volume V is said to be preserving volume if V (t) = V (0) in a

neighborhood of 0 ; in this case we have

∫

M

fdv = 0. Conversely, for all smooth
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function f so that

∫

M

fdv = 0, there exists a preserving volume variation so that

f = 〈∂F
∂t

(0, x), ν〉. The following assertions are equivalent

(1) The immersion φ is a critical point of the area (i.e. A′(0) = 0 ) for all
variation with preserving volume.

(2)

∫

M

Hfdv = 0 for any smooth function so that

∫

M

fdv = 0.

(3) There exists a constant H0 so that A′(0) + nH0V
′(0) = 0 for any variation.

(4) φ is of constant mean curvature H0.

An immersion with constant mean curvature H0 will be said stable if A′′(0) > 0
for all preserving volume variation. Now we consider the function J(t) defined by

J(t) = A(t) + nH0V (t)

Then J ′′(0) is depending only on f and we have

J ′′(0) =

∫

M

|df |2dv −
∫

M

(RicN (ν, ν) + |B|2)f 2dv

where RicN is the Ricci curvature of N with respect to the metric h. It is known
that φ is a stable constant mean curvature immersion if and only if J ′′(0) > 0 for

any smooth function so that

∫

M

fdv = 0.

Now let us give a proof of the theorem 1.3.
Proof of Theorem 1.3: Let f be the first eigenfunction associated to λ1(M). Since
∫

M

fdv = 0 then J ′′(0) > 0 and

λ1(M)

∫

M

f 2dv −
∫

M

(RicN (ν, ν) + nH2 + |τ |2)f 2dv > 0

where τ is the umbilicity tensor (i.e. τ = nHg−B). Since µ 6 KN 6 δ, we deduce
that

n(H2 + µ) 6 λ1(M) 6 n(H2 + δ)

In other words, we have the pinching condition

n(H2 + δ) − n(δ − µ) 6 λ1(M) 6 n(H2 + δ)

Now fix ε < 1
18

and let R > 0 so that φ(M) lies on a ball or radius R. Let ρ be
the extrinsic radius of M (i.e. the radius of the smallest ball containing φ(M)).
Then tδ(R) > tδ(ρ). On the other hand, we know that tδ(ρ) > 1

‖H‖∞ > 1
‖B‖∞

(see [2]). If we assume that V (M)1/n 6 v
‖B‖∞ , we see that M ∈ H(n, N)

for R small enough. On the other hand from the theorem 1.1 it follows
that h2Cε(n, ‖H‖∞, ‖B‖∞, V (M), δ) −→ ∞ when R −→ 0 and there exists
R′

ε(δ, µ, v, i(N)) so that if φ(M) lies in a ball of radius R′
ε(δ, µ, v, i(N)))

then Cε(n, ‖H‖∞, ‖B‖∞, V (M), δ) > (δ − µ)/h2. Now we conclude by putting
Rε(δ, µ, v, i(N)) = min(1

2
R(δ, µ, ε), R′

ε(δ, µ, v, i(N))) (the quantity R(δ, µ, ε) is de-
fined in the theorem 1.1). Then φ(M) is contained in the ball B(p, R(δ, µ, ε)) where
p is the center of mass of M and the conclusions of the theorem 1.1 are valid.
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6. Application to the almost umbilic hypersurfaces

The theorems 1.4 and 1.5 are obtained by combining the theorem 1.1 and the
eigenvalue pinching theorems of [6] with an eigenvalue pinching result in almost
positive Ricci curvature due to E. Aubry ([1]).

In the following theorem we denote Ric(x) the lowest eigenvalue of the Ricci
tensor Ric(x) at x ∈ M . Moreover for any function f , we put f− = min(−f, 0).

Theorem 6.1. (E.Aubry) Let (Mn, g) be a complete n-dimensional Riemannian
manifold and q > n/2. If M has finite volume and

ρq =
1

kV (M)1/q

(
∫

M

(Ric − (n − 1)k)q
− dv

)1/q

6 C(q, n)−1/q

then M is compact and λ1(M) > nk(1 − C(q, n)ρq).

Proof of Theorems 1.4 and 1.5: Using Gauss formula and the fact that N is of
constant sectional curvature δ, we have

‖Ric − (n − 1)(H2 + δ)g‖q

V (M)1/q
=

‖Rφ
+ nHB − B2 − (n − 1)H2g − (n − 1)δg‖q

V (M)1/q

=
‖(n − 2)Hτ − τ 2‖q

V (M)1/q

6
(n − 2)‖H‖∞‖τ‖2q

V (M)1/2q
+

‖τ‖2
2q

V (M)1/q

Now, putting k =
‖H‖2

2r

V (M)1/r + δ we get

‖Ric − (n − 1)kg‖q

V (M)1/q
6

‖Ric − (n − 1)(H2 + δ)g‖q

V (M)1/q
+

(n − 1)
√

n

V (M)1/q

∥

∥

∥

∥

H2 − ‖H‖2
2r

V (M)1/r

∥

∥

∥

∥

q

6
(n − 2)‖H‖∞‖τ‖2q

V (M)1/2q
+

‖τ‖2
2q

V (M)1/q
+

(n − 1)
√

n

V (M)1/q

∥

∥

∥

∥

H2 − ‖H‖2
2r

V (M)1/r

∥

∥

∥

∥

q

If ‖τ‖2q 6 η1,ε and
∥

∥

∥
H2 − ‖H‖2

2r

V (M)1/r

∥

∥

∥

q
6 η2,ε then

‖Ric − (n − 1)kg‖q

V (M)1/q
6 α‖H‖2

∞(η1,ε + η2,ε)

and if ηi,ε 6 k
2α‖H‖2

∞
min

(

C(q, n)−1/q, Cε(n,‖H‖∞,‖B‖∞,V (M))
C(n,q)

)

. The theorem 6.1 allows

us to conclude that

λ1(M) > n

( ‖H‖2
2r

V (M)1/r
+ δ

)

(1 − Cε)

Now the conclusion is immediate from the pinching theorems of this paper and [6].
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