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EIGENVALUE PINCHING AND APPLICATION TO THE STABILITY AND

THE ALMOST UMBILICITY OF HYPERSURFACES

J.-F. GROSJEAN

Abstract. In this paper we give pinching theorems for the first nonzero eigenvalue of the
Laplacian on the compact hypersurfaces of ambient spaces with bounded sectional curvature.
As application we deduce rigidity results for stable constant mean curvature hypersurfaces M
of these spaces N . Indeed, we prove that if M is included in a ball of radius small enough
then the Hausdorff-distance between M and a geodesic sphere S of N is small. Moreover M is
diffeomorphic and quasi-isometric to S. As other application, we give rigidity results for almost
umbilic hypersurfaces.
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1. Introduction

One way to show that the geodesic spheres are the only stable constant mean
curvature hypersurfaces of classical model spaces (i.e. the Euclidean space, the
spherical space and the hyperbolic space) is to prove that there is equality in the
well-known Reilly’s inequality. One of the main points of the present paper is to
obtain new stability results for hypersufaces immersed in more general ambient
spaces.

First, let us recall the Reilly’s inequality. Let (Mm, g) be a compact, connected
and oriented m-dimensional Riemannian manifold without boundary isometrically
immersed by φ in the simply connected model space Nn+1(c) (c = 0, 1 ,−1 respec-
tively for the Euclidean space, the sphere or the hyperbolic space). The Reilly’s
inequality gives an extrinsic upper bound for the first nonzero eigenvalue λ1(M) of
the Laplacian of (Mm, g) in term of the square of the length of the mean curvature
H . Indeed we have
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λ1(M) 6
m

V (M)

∫

M

(|H|2 + c)dv(1)

where dv and V (M) denote respectively the Riemannian volume element and the
volume of (Mm, g). Moreover in the case of hypersurfaces (i.e. m = n), the equality
holds if and only if (Mn, g) is immersed as a geodesic sphere of Nn+1(c). For
c = 0 this inequality was proved by Reilly ([11]) and can easily be extended to the
spherical case c = 1 by considering the canonical embedding of S

n in R
n+1. For

c = −1 it has been proved by El Soufi and Ilias in [7].
In the sequel we will consider a weaker inequality due to Heintze ([8]) which

generalizes the previous for the case where (Mm, g) is isometrically immersed by φ
in a n + 1-dimensional Riemannian manifold (Nn+1, h) whose sectional curvature
KN is bounded above by δ. Indeed if φ(M) lies in a convex ball and if the radius
of this ball is π

4
√

δ
in the case δ > 0, we have

λ1(M) 6 m(‖H‖∞ + δ)(2)

where ‖H‖∞ denotes the L∞-norm of the mean curvature. Now for m = n if we
assume that KN is bounded below by µ and M has a constant mean curvature H
and is stable (see section 5) we have

n(H2 + µ) 6 λ1(M) 6 n(H2 + δ)

Consequently we see that if N is not of constant sectional curvature we can’t
conclude as in the model spaces. However, the above inequality is a kind of pinching
on the Reilly’s inequality, that is a condition of almost equality. Such conditions
have been studied for the Reilly’s inequality in the Euclidean space in [6]. In
the present paper we will generalize the results of [6] to the inequality (2) for
hypersurfaces (i.e. m = n) of ambient spaces with non constant sectional curvature.
That amounts to finding a constant C depending on minimum geometric invariants
so that if we have the condition

n(‖H‖2
∞ + δ) − C < λ1(M)

then M is close to a sphere in a certain sense.
Before giving the main theorems, we precise some notations which will be more

convenient. Throughout the paper, we will note h = (‖H‖2
∞ + δ)1/2 and b =

(

‖B‖2
∞

n
+ δ
)1/2

where B denotes the second fundamental form. Moreover if (Nn+1, h)

is a n+ 1-dimensional Riemannian manifold with KN 6 δ we will note H⋆(n, φ,N)
the space of all Riemannian compact, connected and oriented n-dimensional Rie-
mannian manifolds without boundary isometrically immersed by φ in (Nn+1, h)
so that the injectivity radius i(N) of N satisfies i(N) > π√

δ
if δ > 0. We call

HC(n, φ,N) the space of all Riemannian manifolds of H⋆(n, φ,N) satisfying the fol-
lowing convexity hypothesis : φ(M) lies in a convex ball and the radius of this ball
is π

4
√

δ
if δ > 0. Moreover HV (n, φ,N) will be the space of all Riemannian manifolds

of H⋆(n, φ,N) which satisfy the following hypothesis on the volume : V (M) 6 cωn

δn/2



3

if δ > 0 and V (M) 6 (cωn)1/ni(N) if δ 6 0 for some constant c. At last we put
H(n, φ,N) = HC(n, φ,N) ∩HV (n, φ,N).

Furthermore we need the following function sδ defined by

sδ(r) =











1√
δ
sin

√
δr if δ > 0

r if δ = 0
1√
|δ|

sinh
√

|δ|r if δ < 0 ,

Moreover we will note B(p, R) all geodesic ball in N of center p and radius R.
The first nonzero eigenvalue of the Laplacian is in fact the second eigenvalue since

the first λ0
1(M) is vanishing. The previous Reilly’s inequalities can be generalized for

the second eigenvalue λL
1 (M) of Schrödinger operators L = ∆+q where q ∈ C∞(M)

and we have

λL
1 (M) 6 n(‖H‖2

∞ + δ) + ‖q‖∞
The pinching theorems are stated for the second eigenvalue λL

1 (M) of a Schrödinger
operators L = ∆ + q

Theorem 1.1. Let (Nn+1, h) be a n + 1-dimensional Riemannian manifold whose
sectional curvature KN satisfies µ 6 KN 6 δ and let M ∈ H(n, φ,N). Let θ ∈ (0, 1)
and ε 6 θ

5b
. Then there exist a point p and positive constants Cε(n, b, h, V (M), δ)

and R(δ, µ, εb) so that if φ(M) is contained in the ball B(p, R(δ, µ, εb)) and if the
pinching condition (PCε)

n(‖H‖2
∞ + δ) + ‖q‖∞ − Cε < λL

1 (M)

is satisfied then the Gromov-Hausdorff is so that

dGH

(

φ(M), S

(

p, s−1
δ

(

1

h

)))

< ε

and M is diffeomorphic and θ-quasi-isometric to S(p, s−1
δ

(

1
h

)

). Namely there exists

a diffeomorphism from M into S(p, s−1
δ

(

1
h

)

) so that

∣

∣|dFx(u)|2 − 1
∣

∣ 6 θ

for any x ∈M , u ∈ TxM and |u| = 1.
Moreover, R(δ, µ, εb) −→ ∞ when δ − µ −→ 0. On the other hand,

(1) Cε(n, b, h, V (M), δ) −→ 0 when ε −→ 0.
(2) Cε(n, b, h, V (M), δ) −→ 0 when b −→ ∞.
(3) if V (M)1/nb 6 v and ε = κ

b
for positive constants v and κ, then

Cε(n, b, h, V (M), δ) −→ ∞ when b −→ ∞.

We recall that the Gromov-Hausdorff distance between two compact subsets A
and B of a metric space is given by

dGH(A,B) = inf{A ⊂ Vη(B) and B ⊂ Vη(A)}
where for any subset A, Vη(A) is the tubular neighborhood of A defined by Vη(A) =
{x|d(x,A) < η}.
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Remark 1.1. The point p is not depending on θ, ε, b or h. The point p is nothing
but the center of mass of M (see preliminaries).

Remark 1.2. We will see in the proofs that we need the dependence on b. However
in the case of nonnegative sectional curvature the dependence of Cε(n, b, h, V (M), δ)
on h can be omitted.

As in the euclidean case (see [6]), in the hyperbolic case or spherical case, we can
obtain the Hausdorff proximity strictly with a dependence on h. More precisely we
have the

Theorem 1.2. Let Nn+1(δ) with δ = −1, 0 or 1 where Nn+1(−1), Nn+1(0) and
Nn+1(1) are respectively the hyperbolic space, the euclidean space and the sphere. Let
M ∈ H(n, φ,N). Then for any ε > 0 there exists a positive constant Cε(n, h, V (M))
so that if the pinching condition (PCε)

n(‖H‖2
∞ + δ) + ‖q‖∞ − Cε < λL

1 (M)

is satisfied then the Gromov-Hausdorff satisfies

dGH

(

φ(M), S

(

p, s−1
δ

(

1

h

)))

< ε

The condition (3) of the theorem 1.1 allows to obtain an application for the stable
constant mean curvature hypersurfaces. Indeed we have the following stability
theorem

Theorem 1.3. Let (Nn+1, h) be a n + 1-dimensional Riemannian manifold whose
sectional curvature KN satisfies µ 6 KN 6 δ and let M ∈ HC(n, φ,N). Let v > 0
so that V (M)1/n 6 v

b
. For any θ ∈ (0, 1), there exists a constant R0(δ, µ, v, i(N)) >

0 so that if φ(M) lies in a ball of radius R0(δ, µ, v, i(N)) and φ is of constant mean
curvature H and is stable then there exists a point p so that

dGH

(

φ(M), S

(

p, s−1
δ

(

1

h

)))

<
θ

5b

and M is diffeomorphic and θ-quasi-isometric to S(p, s−1
δ

(

1
h

)

).

Remark 1.3. If δ > 0, R0(δ, µ, v, i(N)) is not depending on the injectivity radius.

We will end this paper in section 6 by another application of theorems 1.1 and
1.2 for the almost umbilic hypersurfaces of model spaces.

2. Preliminaries

Let (Mn, g) be a compact, connected n-dimensional Riemannian manifold iso-
metrically immersed by φ in an n + 1-dimensional Riemannian manifold (Nn+1, h)
which sectional curvature is bounded by δ. Let p ∈ N and exp be the exponential
map at this point. If δ > 0, we need to assume that φ(M) lies in a convex ball
around p of radius less than or equal to π

2
√

δ
. We consider (xi)16i6n the normal

coordinates of N centered at p and for all x ∈ N , we denote by r(x) = d(p, x), the
geodesic distance between p and x on (Nn+1, h).
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Moreover we define the function cδ by cδ = s′δ. Obviously, we have c2δ + δs2
δ = 1

and c′δ = −δsδ.
The gradient of a function u define on N with respect to h will be denoted by

∇N u and the gradient with respect to g of the restriction of u on M will be denoted
by ∇Mu.

Briefly, we recall the proof of Heintze ([8]) for the Reilly inequality. This proof
can be extend without problem to Schrödinger operators L = ∆ + q.

We will use sδ(r)
r
xi as test functions in the variational characterization of λ1(M)

but these functions must be L2-orthogonal to the first eigenfunction u of L which
can be chosen positive. For this purpose, we use a standard argument used by
Chavel and Heintze ([5] and [8]). Indeed, let Y be a vector field defined by

Yq =

∫

M

sδ(d(q, x))

d(q, x)
exp−1

q (x)u(x)dv(x) ∈ TqN, q ∈M ,

From the fixed point theorem of Brouwer, there exists a point p ∈ N such that

Yp = 0 and consequently, for a such p,

∫

M

sδ(r)

r
xiudv = 0. But for δ > 0, we must

assume φ(M) is contained in a ball of radius π
4
√

δ
. Indeed, in this case φ(M) lies in

a ball of center p (the point p so that Yp = 0) with a radius less or equal to π
2
√

δ
.

Now considering the vector field on M , Z = sδ∇N r and noting that the coordi-

nates of Z in the normal local frame are
(

sδ(r)
r
xi

)

16i6n
, we have

λL
1 (M)

∫

M

s2
δ(r)dv = λL

1 (M)

∫

M

|Z|2dv = λL
1 (M)

∫

M

n+1
∑

i=1

(

sδ(r)

r
xi

)2

dv

6

∫

M

n+1
∑

i=1

∣

∣

∣

∣

∇M

(

sδ(r)

r
xi

)
∣

∣

∣

∣

2

dv +

∫

M

q|Z|2dv

Now, Heintze proved that

n+1
∑

i=1

∣

∣

∣

∣

∇M

(

sδ(r)

r
xi

)
∣

∣

∣

∣

2

6 n− δ|ZT |2 and

div (ZT ) > ncδ − nH〈Z, ν〉(3)

Then

λL
1 (M)

∫

M

|Z|2dv 6

∫

M

(n− δ|ZT |2)dv +

∫

M

q|Z|2dv

=

∫

M

(n− div (ZT )cδ)dv +

∫

M

q|Z|2dv

6

∫

M

(n− nc2δ + nH〈Z, ν〉cδ)dv +

∫

M

q|Z|2dv

=

∫

M

(nδs2
δ + nH〈Z, ν〉cδ)dv +

∫

M

q|Z|2dv
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6

∫

M

nδs2
δdv + ‖H‖∞

∫

M

nsδcδdv +

∫

M

q|Z|2dv

and using again (3) we get

λL
1 (M)

∫

M

|Z|2dv 6 nδ

∫

M

|Z|2dv + ‖H‖∞
∫

M

(nH〈Z, ν〉sδ + div (ZT )sδ)dv +

∫

M

q|Z|2dv

= nδ

∫

M

|Z|2dv + ‖H‖∞
∫

M

(nH〈Z, ν〉sδ − cδsδ|∇Mr|2)dv +

∫

M

q|Z|2dv

6 nδ

∫

M

|Z|2dv + n‖H‖2
∞

∫

M

|〈Z, ν〉||Z|dv +

∫

M

q|Z|2dv

6 nδ

∫

M

|Z|2dv + n‖H‖2
∞

∫

M

|Z|2dv +

∫

M

q|Z|2dv

6 n(‖H‖2
∞ + δ)

∫

M

|Z|2dv + ‖q‖∞
∫

M

|Z|2dv

3. An L2-approach

First we recall the standard Sobolev inequality (cf [9], [10], [16] and p 216 in [4]).
If f is a smooth function and f > 0, then

(
∫

M

f
n

n−1dv

)1−(1/n)

6 K(n)

∫

M

(|df |+ |H|f) dv(4)

where K(n) is a constant depending on n and the volume of the unit ball in R
n.

Taking f = 1 on M and r ∈ [1,+∞], we deduce that

‖H‖2
2r

V (M)1/r
>

α

V (M)2/n
(5)

An easy computation shows us that

h2 >
α

V (M)2/n
(1 + o(1))(6)

Throughout the paper o(1) will denote any function depending on b, h, on the
dimension or the sectional curvature of (Nn+1, h) but not on the volume of M so
that o(1) tends to 0 when b or h goes to the infinity. Moreover α denotes a constant
depending on n.

Remark 3.1. Note that here we can choose o(1) = 0 for nonnegative sectional
curvature. But we can’t deduce such estimate with o(1) = 0 or o(1) depending
strictly on b for the negative sectional curvature case. This is the reason for which
we can omit the dependence on h in the theorem 1.1 as mentioned in the remark
1.2.

Lemma 3.1. If the pinching condition (PC) holds then ‖ZT‖2
2 6 βV (M)2/n‖Z‖2

2C.
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Proof. We have

‖ZT‖2
2 =

∫

M

|Z|2dv −
∫

M

〈Z, ν〉2dv =

∫

M

(|Z| + |〈Z, ν〉|)(|Z| − |〈Z, ν〉|)dv

6 2

∫

M

(|Z|2 − |〈Z, ν〉||Z|)dv

and from the proof of Reilly’s inequality and the pinching condition, we have

n‖H‖2
∞

(
∫

M

|Z|2dv −
∫

M

|〈Z, ν〉||Z|dv
)

< C‖Z‖2
2

Now the relation (5) allows us to conclude.
�

Lemma 3.2. If C < α
V (M)2/n (1 + o(1)) < 1

2

(

n2

n+2

)

h2, then (PC) implies that

‖Z‖2
2 6

nV (M)

nh2 −
(

n+2
n

)

C
6 βV (M)1+2/n(1 + o(1))

Proof. From the previous lemma we have

λL
1 (M)‖Z‖2

2 6 nV (M) − δ‖ZT‖2
2 +

∫

M

q|Z|2dv

If δ > 0, we then have (λL
1 (M) − ‖q‖∞)‖Z‖2

2 6 nV (M) and with the pinching
condition we get the desired inequality. If δ < 0

λL
1 (M)‖Z‖2

2 6 nV (M) − 2δC

n‖H‖2
∞
‖Z‖2

2 + ‖q‖∞‖Z‖2
2

Then

∫

M

(

λL
1 (M) − 2|δ|C

n‖H‖2
∞

− q

)

|Z|2dv 6 nV (M)

and combining this with the pinching again, we get

(

nh2 − C − 2|δ|C
n‖H‖2

∞

)

‖Z‖2
2 6 nV (M).

Since ‖H‖2
∞ + δ > 0, we deduce that

(

nh2 − C − 2C
n

)

‖Z‖2
2 6 nV (M) and taking

C < 1
2
<
(

n2

n+2

)

h2, we obtain the result of the lemma.

�

Lemma 3.3. If the pinching condition (PC) holds then

n(nh2 − C)

(nh2 + βV (M)2/nC)
2V (M) 6 ‖Z‖2

2
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Proof. From the previous proof, we have

0 6 nV (M) − δ

∫

M

|ZT |2dv 6 nh2

∫

M

s2
δdv

Then if δ 6 0 we have

λL
1 (M)

∫

M

|Z|2dv 6 nV (M) − δ

∫

M

|ZT |2dv +

∫

M

q|Z|2dv

=

(

nV (M) − δ

∫

M

|ZT |2dv
)2

nV (M) − δ

∫

M

|ZT |2dv
+

∫

M

q|Z|2dv

6
1

nV (M)

(

nh2

∫

M

|Z|2dv
)2

+

∫

M

q|Z|2dv

From this we deduce that

∫

M

(λL
1 (M) − q)|Z|2dv 6

1

V (M)
nh4‖Z‖4

2 and from the

pinching condition we obtain the desired inequality. For δ > 0, we have

λL
1 (M)

∫

M

|Z|2dv 6

(

nV (M) − δ

∫

M

|ZT |2dv + δ

∫

M

|ZT |2dv
)2

nV (M)
+

∫

M

q|Z|2dv

6

(

nh2

∫

M

|Z|2dv + δ

∫

M

|ZT |2dv
)2

nV (M)
+

∫

M

q|Z|2dv

6

(

nh2‖Z‖2
2 + βV (M)2/nC‖Z‖2

2

)2

nV (M)
+

∫

M

q|Z|2dv

=

(

nh2 + βV (M)2/nC
)2 ‖Z‖4

2

nV (M)
+

∫

M

q|Z|2dv

and we conclude as above in the nonpositive case.
�

Remark 3.2. All the results stated now in this section remain true if we replace
the dependence on b or ‖B‖∞ respectively by h or ‖H‖∞.

Lemma 3.4. Let X = nHcδν − ‖H‖2
∞Z. If C < α

V (M)2/n (1 + o(1)) < 1
2

(

n2

n+2

)

h2,

then the pinching condition (PC) implies

‖X‖2
2 6 βb2V (M)1+2/n(1 + o(1))C

where β is a constant depending only on the dimension.

Proof. Using again (3) we have
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‖X‖2
2 = n2

∫

M

H2c2δdv − 2n2‖H‖2
∞

∫

M

H〈Z, ν〉cδdv + n2‖H‖4
∞‖Z‖2

2

6 n2

∫

M

H2c2δdv + 2n‖H‖2
∞

∫

M

(div (ZT )cδ − nc2δ)dv + n2‖H‖4
∞‖Z‖2

2

= n2

∫

M

H2c2δdv + 2n‖H‖2
∞

∫

M

δ|ZT |2dv − 2n2‖H‖2
∞

∫

M

c2δdv + n2‖H‖4
∞‖Z‖2

2

6 −n2‖H‖2
∞

∫

M

c2δdv + n2‖H‖4
∞‖Z‖2

2 + 2n|δ|‖H‖2
∞‖ZT‖2

2

= −n2‖H‖2
∞V (M) + n2‖H‖2

∞δ‖Z‖2
2 + n2‖H‖4

∞‖Z‖2
2 + 2n|δ|‖H‖2

∞‖ZT‖2
2

= n2‖H‖2
∞(−V (M) + h2‖Z‖2

2) + 2n|δ|‖H‖2
∞‖ZT‖2

2

Now by applying the lemma 3.2 and lemma 3.1 we obtain

‖X‖2
2 6 n2‖H‖2

∞

(

(

n+2
n

)

nh2 −
(

n+2
n

)

C

)

V (M)C +
4n|δ|

nh2 −
(

n+2
n

)

C
V (M)C

and we end the proof by using the fact that C < 1
2

(

n2

n+2

)

h2 and the relation (6).

�

Lemma 3.5. Let Y = |Z|1/2
(

δZ +Hcδν − h Z
|Z|

)

. If C < α
V (M)2/n (1 + o(1)) <

1
2

(

n2

n+2

)

h2, then the condition (PC) implies

‖Y ‖2
2 6 [ βV (M)1/n(1 + o(1)) + β ′bγV (M)

γ+3
n (1 + o(1))

+ β ′′bγV (M)
γ+5

n (1 + o(1)) ]V (M)C

where γ ∈ (en/2 − 1, en − 1) and β, β ′ and β ′′ are constants depending only on n
and δ.

Proof. First we have

‖Y ‖2
2 6

∫

M

(

|Z||δZ +Hcδν|2 − 2h〈δZ +Hcδν, Z〉 + h2|Z|
)

dv

6

∫

M

(

|Z||δZ +Hcδν|2 − 2h〈δZ +Hcδν, Z〉
)

dv + h2‖Z‖2V (M)1/2(7)

Let us compute the first term
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∫

M

|Z||δZ +Hcδν|2dv =

∫

M

|Z|
(

δ2|Z|2 + 2δcδH〈Z, ν〉+H2c2δ
)

dv

=

∫

M

|Z|
(

H2 − δH2s2
δ + 2δcδH〈Z, ν〉+ δ − δc2δ

)

dv

=

∫

M

|Z|(H2 + δ − δ|HZ − cδν|2)dv

6 h2‖Z‖2V (M)1/2 − δ

∫

M

|Z||HZ − cδν|2dv

6 h2‖Z‖2V (M)1/2 + |δ|‖Z‖∞
∫

M

|HZ − cδν|2dv

On the other hand,

∫

M

|HZ − cδν|2dv 6 ‖H‖2
∞

∫

M

s2
δdv − 2

∫

M

H〈Z, ν〉cδdv +

∫

M

c2δdv

Now the pinching implies that

‖H‖2
∞

∫

M

s2
δdv −

∫

M

H〈Z, ν〉cδdv 6
C

n

∫

M

s2
δdv =

C

n
‖Z‖2

2

and

∫

M

c2δdv −
∫

M

H〈Z, ν〉cδdv 6
1

n

∫

M

div (ZT )cδdv =
|δ|
n
‖ZT‖2

2

Then we have proved

∫

M

|Z||δZ +Hcδν|2dv 6 h2‖Z‖2V (M)1/2 +
|δ|‖Z‖∞

n

(

C‖Z‖2
2 + |δ|‖ZT‖2

2

)

(8)

Now let us compute the two last terms of (7)

− 2h

∫

M

〈δZ +Hcδν, Z〉dv + h2‖Z‖2V (M)1/2

6 −2δh

∫

M

s2
δdv +

2h

n

∫

M

div (ZT )cδdv − 2h

∫

M

c2δdv + h2‖Z‖2V (M)1/2

= −2hV (M) +
2hδ

n

∫

M

|ZT |2dv + h2‖Z‖2V (M)1/2

6 −2hV (M) + h2V (M)1/2

Therefore reporting this and (8) in (7), we get

‖Y ‖2
2 6 2h2‖Z‖2 − 2hV (M) +

|δ|‖Z‖∞
n

(

C‖Z‖2
2 + |δ|‖ZT‖2

2

)

and using the estimates given in the lemmas 3.2 and 3.1 with the fact that C <
1
2

(

n2

n+2

)

h2, we get
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‖Y ‖2
2 6

2n1/2h2V (M)
(

nh2 −
(

n+2
n

)

C
)1/2

− 2hV (M) + (β + β ′V (M)2/n)‖Z‖∞‖Z‖2
2C

= 2hV (M)

(

n1/2h
(

nh2 −
(

n+2
n

)

C
)1/2

− 1

)

+ (β + β ′V (M)2/n)V (M)1+2/n(1 + o(1))‖Z‖∞C

6 2hV (M)

(

(

n+2
n

)

C

2
(

nh2 −
(

n+2
n

)

C
)

)

+ (βV (M)1+2/n + β ′V (M)1+4/n)(1 + o(1))‖Z‖∞C

6
β

h
V (M)C + (β ′V (M)1+2/n + β ′′V (M)1+4/n)(1 + o(1))‖Z‖∞C

Finally we have proved

‖Y ‖2
2 6

(

βV (M)1+1/n(1 + o(1)) + (β ′V (M)1+2/n + β ′′V (M)1+4/n)(1 + o(1))‖Z‖∞
)

C

Now the researched inequality is a straightforward consequence of the following
lemma

Lemma 3.6. If C < α
V (M)2/n (1 + o(1)) < 1

2

(

n2

n+2

)

h2, then the pinching condition

(PC) implies

‖Z‖∞ 6 βbγV (M)
γ+1

n (1 + o(1))

where β is a constant depending only on n and δ and γ ∈ (en/2 − 1, en − 1).

�

The proof of the above lemma is providing from a result stated in the following
proposition using a Nirenberg-Moser type of proof (see [6]).

Proposition 3.1. Let (Nn+1, h) be a Riemmannian manifold andM ∈ HV (n, φ,N).
Let ξ be a nonnegative continuous function so that ξk is smooth for k > 2. Let
0 6 r < s 6 2 so that

1

2

∫

M

∆ξ2ξ2k−2dv 6 (A1 + kA2)

∫

M

ξ2k−rdv + (B1 + kB2)

∫

M

ξ2k−sdv

where A1, A2, B1, B2 are nonnegative constants. Then for any η > 0, if ‖ξ‖∞ > η
then

‖ξ‖∞ 6 L(n,A1, A2, B1, B2, ‖B‖∞, V (M), η)‖ξ‖2

where

L(n,A1, A2, B1, B2, ‖B‖∞, V (M), η)

= K(n)

(

4A
1/2
1 + 4A

1/2
2

ηr/2
+

4B
1/2
1 + 4B

1/2
2

ηs/2
+ ‖B‖∞

)γ

V (M)
γ
n
− 1

2

and γ ∈ (en/2 − 1, en − 1).
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Remark 3.3. In particular we see that

(1) If ‖ξ‖2 6
η

L(n,A1, A2, B1, B2, ‖B‖∞, V (M), η)
, then ‖ξ‖∞ 6 η.

(2) If ‖ξ‖2 6 A, then for any η > 0,

‖ξ‖∞ 6 max(η, L(n,A1, A2, B1, B2, ‖B‖∞, V (M), η)A)

In [6] this proposition has been proved for hypersurfaces of the Euclidean space.
The proof is similar for hypersurfaces of some ambient space with bounded sectional
curvature. This proof uses a Sobolev inequality due to Hoffman and Spruck (see [9]
and [10]) which is available under the conditions on the injectivity radius of N and
the volume of M contained in the definition of HV (n, φ,N).

Proof of the lemma 3.6: First we compute the Laplacian of |Z|2. An easy
computation shows that ∆|Z|2 = (−2c2δ + 2δs2

δ)|∇Mr|2 + 2sδcδ∆r.
Since r 6 π

4
√

δ
for δ > 0, the first term is nonpositif. Now let us consider

(ei)16i6n+1 an orthonormal frame in a neighborhood of the point p ∈ M where
we compute the Laplacian and so that en+1 = ν. Then

∆|Z|2 6 2sδcδ

(

−
n
∑

i=1

∇N dr(ei, ei) + nH〈ν,∇N r〉
)

= 2sδcδ

(

−
n
∑

i=1

∇N dr(ei − 〈∇N r, ei〉∇N r, ei − 〈∇N r, ei〉∇N r) + nH〈ν,∇N r〉
)

6 2sδcδ

(

−cδ
sδ

n
∑

i=1

∣

∣ei − 〈∇N r, ei〉∇N r
∣

∣

2
+ n‖H‖∞

)

6 2n‖H‖∞sδcδ 6
2n‖H‖∞
√

|δ|
c2δ =

2n‖H‖∞
√

|δ|
(1 − δs2

δ)

6
2n‖H‖∞
√

|δ|
+ 2n‖H‖∞

√

|δ||Z|2 6
2
√
n‖B‖∞
√

|δ|
+ 2

√
n‖B‖∞

√

|δ||Z|2

And from the remark 3.3 about the proposition 3.1 and lemma 3.2 we deduce that

‖Z‖∞ 6 max

(

1, βL(n, 2
√
n‖B‖∞

√

|δ|, 0, 2
√
n‖B‖∞
√

|δ|
, 0, ‖B‖∞, 1)V (M)1/2+1/n(1 + o(1))

)

= βbγV (M)γ/n(1 + o(1))

Let’s introduce now the function ϕ = |Z|
(

|Z| − 1
h

)2
= |Z|

∣

∣

∣
Z − 1

h
Z
|Z|

∣

∣

∣

2

. In the

following lemma, we give an L2-estimate of ϕ

Lemma 3.7. If C < α
V (M)2/n (1 + o(1)) < 1

2

(

n2

n+2

)

h2, then (PC) implies that
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‖ϕ‖2 6 ‖ϕ‖3/4
∞
[

β(bV (M)1/n)1/2(1 + o(1)) + β ′(bV (M)1/n)γ/4V (M)1/2n(1 + o(1))

+β ′′(bV (M)1/n)γ/4V (M)1/n(1 + o(1)) + β ′′′(1 + o(1))
]

V (M)1/2+5/4nC1/4

where β, β ′ and β ′′ are constants depending only on n and δ.

Proof. First we have

(
∫

M

ϕ2dv

)1/2

6 ‖ϕ‖3/4
∞

(
∫

M

ϕ1/2dv

)1/2

. Moreover

ϕ1/2 = |Z|1/2

∣

∣

∣

∣

1

h2
(h2Z − δZ −Hcδν) +

1

h2

(

δZ +Hcδν − h
Z

|Z|

)
∣

∣

∣

∣

6
|Z|1/2

nh2
|X| + 1

h2
|Y |

Then

(
∫

M

ϕ1/2dv

)1/2

6
1

h

(
∫

M

|Z|1/2|X|dv
)1/2

+
1

h

(
∫

M

|Y |dv
)1/2

6
1

hn1/2

(
∫

M

|Z|dv
)1/4

‖X‖1/2 +
1

h
‖Y ‖1/2

2 V (M)1/4

6
V (M)1/8

hn1/2
‖Z‖1/4

2 ‖X‖1/2
2 +

1

h
‖Y ‖1/2

2 V (M)1/4

Since we have choose C < α
V (M)2/n (1 + o(1)) < 1

2

(

n2

n+2

)

h2, we deduce from the

lemma 3.2 and (6) that

(
∫

M

ϕ1/2dv

)1/2

6

(

βV (M)1/4n(1 + o(1))‖X‖1/2
2

+β ′(1 + o(1))‖Y ‖1/2
2

)

V (M)1/4+1/n

and the lemmas 3.4 and 3.5 give us

(
∫

M

ϕ1/2dv

)1/2

6

[

βb1/2V (M)3/4n(1 + o(1)) + β ′bγ/4V (M)
γ+3
4n (1 + o(1))

+β ′′bγ/4V (M)
γ+5
4n (1 + o(1)) + β ′′′V (M)1/4n(1 + o(1))

]

V (M)1/2+1/nC1/4

�

Lemma 3.8. There exists a constant A(n, b, h, δ, V (M), η) so that for any η > 0,

the pinching condition (PC) with C = min
(

η
A
, α

V (M)2/n (1 + o(1))
)

implies

‖ϕ‖∞ 6 η

Moreover,

A(n, b, h, δ, V (M), η)
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=

(

A1(n, b, h, δ, V (M), η)

η
+
A2(n, b, h, δ, V (M), η)

η1/2
+

‖B‖∞√
n

)4γ

×A3(n, b, h, δ, V (M), η)V (M)4γ/n

where the constants Ai(n, b, h, δ, V (M)) are of the form

Ai =

ki
∑

j=1

βij(bV (M)1/n)θijV (M)νij , βij are constants depending only on n and δ

and θi and νi are positive reals depending on n so that ν1j > 4/n, ν2j > 1/n and
ν3j > 5/n.

Proof. We have for any k > 2

1

2

∫

M

∆ϕ2ϕ2k−2dv =
1

2

∫

M

〈∇Mϕ2,∇Mϕ2k−2〉dv 6 2k

∫

M

|∇Mϕ|2ϕ2k−2dv(9)

Let us compute |∇Mϕ|2

|∇Mϕ|2 =

∣

∣

∣

∣

∣

∇M

(

|Z|
(

|Z| − 1

h

)2
)
∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∇M |Z|
(

|Z| − 1

h

)2

+ 2|Z|
(

|Z| − 1

h

)

∇M |Z|
∣

∣

∣

∣

∣

2

=

[

(

|Z| − 1

h

)4

+ 4|Z|
(

|Z| − 1

h

)3

+ 4|Z|2
(

|Z| − 1

h

)2
]

|∇M |Z||2

6

[

(

‖Z‖∞ +
1

h

)4

+ 4

(

(

‖Z‖∞ +
1

h

)2

+ ‖Z‖∞
)

ϕ

]

|∇M |Z||2

A straightforward computation shows that |∇M |Z||2 6 c2δ 6 1 + |δ|‖Z‖2
∞. Now

using the lemma 3.6 we get

|∇Mϕ|2 6

[

V (M)4/n
(

β(bV (M)1/n)γ(1 + o(1)) + β ′(1 + o(1))
)4

+ 4ϕ
(

V (M)2/n
[

β(bV (M)1/n)γ(1 + o(1)) + β ′(1 + o(1))
]2

+βV (M)1/n(bV (M)1/n)γ(1 + o(1))
)]

(1 + |δ|β ′′V (M)2/n(bV (M)1/n)2γ(1 + o(1)))

6 A1(n, b, h, δ, V (M)) + A2(n, b, h, δ, V (M))ϕ

where the constants Ai(n, b, h, δ, V (M)) are of the form

Ai =

ki
∑

j=1

βij(bV (M)1/n)θijV (M)νij with ν1j > 4/n, ν2j > 1/n.

Then reporting this in (9) we get

1

2

∫

M

∆ϕ2ϕ2k−2dv 6 2kA1

∫

M

ϕ2k−2dv + 2kA2

∫

M

ϕ2k−1dv
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Now, applying the lemma 3.1 we see that if ‖ϕ‖∞ > η then

‖ϕ‖∞ 6

(

A1

η
+

A2

η1/2
+

‖B‖∞√
n

)γ

V (M)
γ
n
− 1

2‖ϕ‖2

Combining this with the inequality of the lemma 3.7, we deduce that

‖ϕ‖∞ 6 A(n, b, h, δ, V (M), η)C

with

A(n, b, h, δ, V (M), η)

=

(

A1(n, b, h, δ, V (M))

η
+
A2(n, b, h, δ, V (M))

η1/2
+

‖B‖∞√
n

)4γ

× A3(n, b, h, δ, V (M))V (M)4γ/n

where the constant A3(n, b, h, δ, V (M)) is of the form

A3 =

k3
∑

j=1

β3j(bV (M)1/n)θ3jV (M)ν3j (1 + o(1)). It is easy to see that and ν3j > 5/n.

Now taking C = min
(

η
A
, α

V (M)2/n (1 + o(1))
)

, we see that ‖ϕ‖∞ 6 η.

�

Lemma 3.9. For any ε < 1
4b

, there exists a function ψ(ε, b) and a constant depend-
ing on n so that the pinching condition (PΓε) with

Γε(n, b, h, δ, V (M)) = min

(

α(1 + o(1))

V (M)4/n
,
α′(1 + o(1))

V (M)2/n
,

ψ(ε, b)

A(n, b, h, δ, V (M), ψ(ε, b))

)

implies

∣

∣

∣

∣

|Z| − 1

h

∣

∣

∣

∣

6 ε and

∣

∣

∣

∣

r − s−1
δ

(

1

h

)
∣

∣

∣

∣

6 ε

Moreover for a fixed ε or if ε = κ
b

for a positive real κ then ψ(ε, b) = β
b3

(1 + o(1)).

Proof. Consider the function f(t) = t
(

t− 1
h

)2
and g(t) =

(

1
b
− t
)

t2. The function

f is increasing on [0, 1
3h

] and [ 1
h
,+∞) and decreasing on [ 1

3h
, 1

h
]. For any ε > 0, put

ψ1(ε, b) = min

[

g

(

min

(

ε,
1

3b

))

, g

(

−min

(

ε,
1

3b

))]

and

Γ1,ε(n, b, h, δ, V (M)) = min

(

α(1 + o(1))

V (M)4/n
,
α′(1 + o(1))

V (M)2/n
,

ψ1(ε, b)

A(n, b, h, δ, V (M), ψ1(ε, b))

)

First note that ψ1(ε, b) 6 min
[

f
(

1
h
− min

(

ε, 1
3b

))

, f
(

1
h

+ min
(

ε, 1
3b

))]

, and since
1
h
−min

(

ε, 1
3b

)

> 1
3h

we deduce that ψ1(ε, b) < f
(

1
3h

)

. On the other hand we choose
the constants α and α′ so that
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α(1 + o(1))

V (M)4/n
6

nh2

2βV (M)2/n

where β is the constant of the lemma 3.1 and

α′(1 + o(1))

V (M)2/n
6 min

(

n

2
h2,

1

2

(

n2

n + 2

)

h2

)

From the definition of Γ1,ε and the lemma 3.8 it follows that the pinching condition
(PΓ1,ε) implies that ‖ϕ‖∞ 6 ψ1(ε, b), that is f(|Z|) 6 ψ1(ε, b) < f

(

1
3h

)

. Now,
because of the choice of α and α′, we deduce from the lemma 3.3 that

‖Z‖2
2 >

2

9h2
V (M)

Then there exists a point x0 of M so that |Z|x0 >
1
3h

. Then by the connexity of M ,

it follows that
∣

∣|Z| − 1
h

∣

∣ 6 ε.

Now a straightforward computation shows that
∣

∣r − s−1
δ

(

1
h

)
∣

∣ 6 (1 + o(1))ε (for
δ 6 0 we can choose o(1) = 0 whilst o(1) > 0 for δ > 0. Indeed

∣

∣

∣

∣

r − s−1
δ

(

1

h

)
∣

∣

∣

∣

6
ε

√

1 − δ
(

ε+ 1
h

)2
6

ε
√

1 − δ 25
16h2

The last term is well defined since the extrinsic radius R of M satisfies sδ(R) > 1
h

and R < π
4
√

δ
if δ > 0 (see for instance [2]). Then s−1

δ

(

1
h

)

∈ [0, π
4
√

δ
) for δ > 0).

Putting ψ(ε, b) = ψ1

(

ε
1+o(1)

, b
)

, we see that the pinching (PΓε) implies the desired

result.
�

We are now in a position to prove the theorem 1.2.

Proof of Theorem 1.2: As mentioned in remark 3.2 all the previous results remain
available by replacing b or ‖B‖∞ respectively by h or ‖H‖∞. The case δ = 0 is a
particular case of [6]. From the lemma above, we know that for any ε > 0, there
exists Cε(n, ‖H‖∞, V (M)) so that φ(M) ⊂ Bp

(

s−1
δ

(

1
h

)

+ ε
)

\Bp

(

s−1
δ

(

1
h

)

− ε
)

. Now

putting R = s−1
δ

(

1
h

)

+ ε and η = 2ε, then φ(M) ⊂ Bp(R) \ Bp(R − ε). Let

x0 ∈ Sp

(

s−1
δ

(

1
h

))

so that φ(M) ⊂
(

Bp(R) \Bp(R− ε)
)

\Bx0(ρ) where ρ satisfies

tδ

(

R + ρ

2

)

− tδ

(

R

2

)

= cη

if δ 6 0 and

tδ

(

R

2

)

− tδ

(

R− ρ

2

)

= cη

if δ > 0, where tδ = sδ

cδ
and c is a constant depending on n. Taking ε 6 1, from the

lemma 4.3 of [12] we deduce that there exist constants D1 and D2 depending on n,
‖H‖∞ and δ so that if η 6 D1 then there exists y0 ∈M so that
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|H(y0)| >
c′D2

η
=
c′D2

2ε

where c′ is a constant depending on n. Now if we assume ε 6 c′D2

2‖H‖∞ we obtain a

contradiction and we conclude that for all x0 ∈ Sp

(

s−1
δ

(

1
h

))

, φ(M) ∩ Bx0(ρ) 6= ∅
and Sp

(

s−1
δ

(

1
h

))

⊂ V2ρ(M). If δ < 0,

ρ

2
= t−1

δ

(

tδ

(

R + ρ

2

))

− t−1
δ

(

tδ

(

R

2

))

6
cη

1 + δtδ
(

R
2

)

6
2cε

1 + δ(cη + tδ(R/2)
6 a(n, ‖H‖∞)ε

Similarly we obtain the same estimate for the case δ > 0 with a(n, ‖H‖∞) > 1 (for
δ > 0 we can choose a(n, ‖H‖∞) = 1). Finally considering the pinching (PC′

ε
) with

C ′
ε(n, ‖H‖∞, V (M)) = C ε

2a(n,‖H‖∞)
(n, ‖H‖∞, V (M)) we obtain the desired conclu-

sion.

4. The proof of the diffeomorphism

Let us consider

F : M −→ S
(

p, s−1
δ

(

1
h

))

x 7−→ expp

(

s−1
δ

(

1
h

)

X
|X|

)

where X = exp−1
p (x). For more convenience we will put ̺ = s−1

δ

(

1
h

)

X
|X| .

Lemma 4.1. Let u ∈ TxM and v = u− 〈u,∇Mr〉∇N r. We have

1

h2sµ(r)2
|v|2 6 |dFx(u)|2 6

sµ

(

s−1
δ

(

1
h

))2

sδ(r)2
|v|2

Proof. An easy computation shows that

d

(

X

|X|

)

|x(u) =
1

r
d exp−1

p |x(u) −
dr(u)

r2
exp−1

p (x)

Then we deduce that

dFx(u) = d expp |̺
(

s−1
δ

(

1

h

)

d

(

X

|X|

)

|x(u)
)

=
s−1

δ

(

1
h

)

r
d expp |̺

(

d exp−1
p |x(u)

)

− s−1
δ

(

1
h

)

dr(u)

r2
d expp |̺ (exp−1

p (x))

=
s−1

δ

(

1
h

)

r
d expp |̺

(

d exp−1
p |x(u)

)

− s−1
δ

(

1
h

)

dr(u)

r
∇N r

∣

∣

F (x)
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Now let us compute the norm of dFx(u). We have

|dFx(u)|2 =
s−1

δ

(

1
h

)2

r2

[

∣

∣d expp |̺
(

d exp−1
p |x(u)

)
∣

∣

2

−2〈d expp |̺
(

d exp−1
p |x(u)

)

,∇N r〉F (x)dr(u) + dr(u)2
]

Now since expp is a radial isometry (see for instance [13]), we have

〈d expp |̺
(

d exp−1
p |x(u)

)

,∇N r〉F (x) = 〈d exp−1
p |x(u) ,

X

|X|〉 = 〈u,∇N r〉x

and it follows that

|dFx(u)|2 =
s−1

δ

(

1
h

)2

r2

[

∣

∣d expp |̺
(

d exp−1
p |x(u)

)
∣

∣

2 − 〈∇Mr, u〉2
]

(10)

Now

∣

∣d expp |̺
(

d exp−1
p |x(u)

)
∣

∣

2
=
∣

∣d expp |̺ (d exp−1
p |x(v))

+〈u,∇Mr〉d expp |̺
(

d exp−1
p

∣

∣

x(∇N r)
)
∣

∣

2

where v = u− 〈u,∇Mr〉∇N r. Developping this expression we get

∣

∣d expp |̺
(

d exp−1
p |x(u)

)
∣

∣

2
=

∣

∣d expp |̺ (d exp−1
p |x(v))

∣

∣

2
+ 〈u,∇Mr〉2

∣

∣d expp |̺
(

d exp−1
p

∣

∣

x(∇N r)
)
∣

∣

2

+ 2〈u,∇Mr〉〈d expp |̺ (d exp−1
p |x(v)), d expp |̺

(

d exp−1
p

∣

∣

x(∇N r)
)

〉
=
∣

∣d expp |̺ (d exp−1
p |x(v))

∣

∣

2
+ 〈u,∇Mr〉2

where in the last equality we have used again the radial isometry property of the
exponential map. And reporting this in (10) we obtain

|dFx(u)|2 =
s−1

δ

(

1
h

)2

r2

∣

∣d expp |̺ (d exp−1
p |x(v))

∣

∣

2

Since µ 6 KN 6 δ the standard Jacobi field estimates (see for instance corollary
2.8, p 153 of [13]) say that for any vector w orthogonal to ∇N r at y we have

|w|2 r2

sµ(r)2
6 |d exp−1

p |y(w) |2 6 |w|2 r2

sδ(r)2

This gives

sδ(s
−1
δ

(

1
h

)

)2

r2
|d exp−1

p |x(v) |2 6 |dFx(u)|2 6
sµ(s

−1
δ

(

1
h

)

)2

r2
|d exp−1

p |x(v) |2

and applying again the standard Jacobi field estimates we obtain the desired in-
equalities of the lemma.

�
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Lemma 4.2. Let u ∈ TxM so that |u| = 1. Then for any η > 0, there exists a
constant ρ(δ, µ, η) > 0 so that if M is contained in the ball B(p, ρ(δ, µ, η)), then

(1 − η)2

h2s2
δ(r)

(1 − |∇Mr|2) 6 |dFx(u)|2 6
(1 + η)2

h2s2
δ(r)

Moreover ρ(δ, µ, η) −→ ∞ when δ − µ −→ 0 and ρ(δ, µ, η) −→ 0 when η −→ 0.

Proof. Let r > 0. For t ∈ (−∞, π2

16r2 ), consider the function σ(t) = st(r). An easy

verification yields that σ is C1 on (−∞, π2

16r2 ) and

σ′(t) =















r3ct(r)
2

(√
tr−tan(

√
tr)

(
√

tr)3

)

if t ∈ (0, π2

16r2 )

−r3

6
if t = 0

r3ct(r)
2

(

−
√
−tr+tanh(

√
−tr)

(
√
−tr)3

)

if t ∈ (−∞, 0)

It follows that σ is decreasing on (−∞, π2

16r2 ) and that there exists a constant D so

that |σ′(t)| 6 Dr3ct(r), for any t ∈ (−∞, π2

16r2 ). It follows that

0 6 sµ(r) − sδ(r) 6 Dr3cµ(r)(δ − µ)(11)

Now we have

1

hsµ(r)
>

1

h (sδ(r) +Dr3cµ(r)(δ − µ))

>
1

hsδ(r)(1 +D
(

r
sδ(r)

)

r2cµ(r)(δ − µ))

The function t 7−→ t
sδ(t)

beeing bounded on [0,∞) and on [0, π
4
√

δ
) for δ > 0 there

exists a constant D′ so that

1

hsµ(r)
>

1

hsδ(r) (1 +D′r2cµ(r)(δ − µ))
(12)

On the other hand, as we have seen it in the proof of the lemma 3.9, s−1
δ

(

1
h

)

∈
[0, π

4
√

δ
) for δ > 0 and we can apply the inequality (11) which gives

sµ

(

s−1
δ

(

1

h

))

6
1

h
+D

(

s−1
δ

(

1

h

))3

cµ

(

s−1
δ

(

1

h

))

(δ − µ)

6
1

h

[

1 +D

(

s−1
δ

(

1
h

)

1/h

)

s−1
δ

(

1

h

)2

cµ

(

s−1
δ

(

1

h

))

(δ − µ)

]

And using the same arguments concerning the function t 7−→ t
sδ(t)

, we have

sµ

(

s−1
δ

(

1

h

))

6
1

h

(

1 +D′R2c̃µ(R)(δ − µ)
)

(13)

where
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c̃µ(r) =

{

1 if µ > 0
cµ(r) if µ < 0

From the two inequalities (12) and (13) we deduce that there exists a constant
ρ(δ, µ, η) so that if R 6 ρ(δ, µ, η) then 1

hsµ(r)
>

1−η
hsδ(r)

and sµ

(

s−1
δ

(

1
h

))

6 1
h
(1 + η).

Finally from the lemma 4.1 we deduce that

(1 − η)2

h2s2
δ(r)

|v|2 6 |dFx(u)|2 6
(1 + η)2

h2s2
δ(r)

|v|2

Since we have assumed that |u| = 1 and v = u− 〈u,∇Mr〉∇N r we get the desired
result.

�

We can now give the proof of the theorem 1.1

Proof of Theorem 1.1: Let ε < 1
4b

6 1
4h

. From the lemma 3.9 there exists a

constant Γε(n, b, h, δ, V (M)) so that if (PΓε) holds then
∣

∣|Z| − 1
h

∣

∣ < ε. From this
and the lemma 4.2 we deduce that if M is contained in the ball B(p, ρ(δ, µ, η)) then

[

(1 − η)2

(1 + εh)2
− 1

]

− (1 − η)2

(1 + εh)2
‖∇Mr‖2

∞ 6 |dFx(u)|2 − 1 6
(1 + η)2

(1 − εh)2
− 1

To complete the proof of the theorem 1.1 we need the following lemma

Lemma 4.3. There exists ρ′(δ, µ) so that for any ε < 1
4b

and η > 0, the pinching
condition (PΓ̃ε,η

) with

Γ̃ε,η(n, b, h, δ, V (M)) = min(Γε(n, b, h, δ, V (M)),Λη(n, b, h, δ, V (M)))

and

Λη(n, b, h, δ, V (M)) =
η2

(

βb(1+o(1))
η

+ β ′b(1 + o(1))
)2γ

V (M)
2(γ+2)

n b2(1 + o(1))

implies that for any immersion φ so that φ(M) ⊂ B(p, ρ′(δ, µ)) we have

‖∇Mr‖∞ 6 η

Proof. As usually by computing the Laplacian of |∇Mr|2 and using the Bochner
formula we get

1

2

∫

M

∆|∇Mr|2|∇Mr|2k−2dv 6

∫

M

(〈∆dr, dr〉 − Ric(∇Mr,∇Mr))|∇Mr|2k−2dv

Now integrating by part and using the Gauss formula we obtain
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1

2

∫

M

∆|∇Mr|2|∇Mr|2k−2dv 6

∫

M

((∆r)2 −R
φ
(∇Mr,∇Mr) − nHB(∇Mr,∇Mr)

+ |B∇Mr|2)|∇Mr|2k−2dv −
∫

M

∆r〈∇Mr,∇M |∇Mr|2k−2〉dv

6

∫

M

((∆r)2|∇Mr|2k−2dv + ((n− 1)|µ|+ (
√
n + 1)‖B‖2

∞))

∫

M

|∇Mr|2kdv

(14)

− 2(k − 1)

∫

M

∆r∇Mdr(∇Mr,∇Mr)|∇Mr|2k−4dv

Now

∇Mdr(∇Mr,∇Mr) = ∇N dr(∇Mr,∇Mr) −B(∇Mr,∇Mr)〈∇N r, ν〉
= ∇N dr(∇Mr − |∇Mr|2∇N r,∇Mr − |∇Mr|2∇N r)

− B(∇Mr,∇Mr)〈∇N r, ν〉

From the comparisons theorems (see for instance [13] p 153) we deduce that

|∇Mdr(∇Mr,∇Mr)| 6

(

cµ
sµ

+ ‖B‖∞
)

|∇Mr|2(15)

Similarly, (ei)16i6n being an orthonormal frame in a neighborhood of the point
where we are computing we have

|∆r| 6

n
∑

i=1

|∇N r(ei, ei)| + nH〈∇N r, ν〉

=
n
∑

i=1

|∇N (ei − 〈ei,∇N r〉∇N r, ei − 〈ei,∇N r〉∇N r)| + √
n‖B‖∞

6 n
cµ
sµ

+
√
n‖B‖∞

and reporting this and (15) in (14) we get

1

2

∫

M

∆|∇Mr|2|∇Mr|2k−2dv 6 2k

(

n
cµ
sµ

+
√
n‖B‖∞

)2 ∫

M

|∇Mr|2k−2dv

+ ((n− 1)|µ| + (
√
n+ 1)‖B‖2

∞)

∫

M

|∇Mr|2kdv

Now we choose ρ′(δ, µ) so that in the ball of radius ρ′(δ, µ), cµ(r) 6 1. Now for

ε < 1
2b

6 1
2h

the pinching condition ((PΓε)) implies that cµ(r)
sµ(r)

6 1
sδ(r)

6 2h 6 2b.

Finally we have



22 J.-F. GROSJEAN

1

2

∫

M

∆|∇Mr|2|∇Mr|2k−2dv 6 βb2(1 + o(1))k

∫

M

|∇Mr|2k−2dv

+ β ′b2(1 + o(1))

∫

M

|∇Mr|2kdv

where β and β ′ are constants depending only on n or µ.
Now let ε < 1/2h. Then note that |∇Mr|2 6 1

s2
δ(r)

|ZT |2 6 h2

(1−εh)2
|ZT |2 6 4b2|ZT |2

and ‖∇Mr‖2 6 2b‖ZT‖2 6 βbV (M)1/n‖Z‖2Γ
1/2
ε 6 βbV (M)2/n+1/2(1 + o(1))Γ

1/2
ε .

Again from the proposition 3.1, if ‖∇Mr‖∞ > η then

‖∇Mr‖∞ 6

(

βb(1 + o(1))

η
+ β ′b(1 + o(1))

)γ

V (M)γ/n−1/2‖∇Mr‖2

From this and the estimate of ‖∇Mr‖2 above, we have the desired result.
�

Now we are allowed to complete the proof of theorem 1.1. Let us recall that we
have chosen η = εb < 1

4
and put η′ = (εb)1/2. Then if φ(M) ⊂ B(p, R(δ, µ, η)) (with

R(δ, µ, η) = min(ρ(δ, µ, η), ρ′(δ, µ))) and if (PΓ̃ε,η′
) is satisfied then

(

(1 − εb)2

(1 + εb)2
− 1

)

− (1 − εb)2εb 6 |dFx(u)|2 − 1 6
(1 + εb)2

(1 − εb)2
− 1

noting that
(

(1−εb)2

(1+εb)2
− 1
)

− (1 − εb)2εb = −4εb
(1+εb)2

− (1 − εb)2εb > −5εb and

(1+εb)2

(1−εb)2
− 1 = 4εb

(1−εb)2
6 16

9
εb, we deduce that ||dFx(u)|2 − 1| 6 5εb. From the choice

of θ and ε, we deduce that F is a diffeomorphism and from the definition of the
Gromov-Hausdorff distance it follows that we have also

dGH

(

φ(M), S

(

p, s−1
δ

(

1

h

)))

< ε

On the other hand the we have

Cε(n, b, h, δ, V (M)) = Γ̃ε,η′(n, b, h, δ, V (M))

= min(Γε(n, b, h, δ, V (M)),Λ(εb)1/2(n, b, h, δ, V (M)))

where

Γε(n, b, h, δ, V (M)) = min

(

α(1 + o(1))

V (M)4/n
,
α′(1 + o(1))

V (M)2/n
,

ψ(ε, b)

A(n, b, h, δ, V (M), ψ(ε, b))

)

and

Λ(εb)1/2(n, b, h, δ, V (M)) =
ε

(

βb1/2(1+o(1))

ε1/2 + β ′b(1 + o(1))
)2γ

V (M)
2(γ+2)

n b(1 + o(1))

From the definition of A and ψ we see that Cε(n, b, h, V (M), δ) −→ 0 when ε −→ 0
and Cε(n, b, h, V (M), δ) −→ 0 when b −→ ∞.
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Moreover if V (M)1/nb 6 v and ε = κ
b

for positive constants v and κ, we have

ψ(ε, b)

A(n, b, h, δ, V (M), ψ(ε, b))

=
β

(β1A1b3(1 + o(1)) + β2A2b3/2(1 + o(1)) + β3b(1 + o(1)))
4γ
b3A3V (M)4γ/n

>
β

(β1A1b2v(1 + o(1)) + β2A2b1/2v(1 + o(1)) + β3(1 + o(1)))
4γ
b3A3

and from the definition of A1, A2 and A3, we see that A1b
2 −→ 0, A2b

1/2 −→ 0 and
A3b

3 −→ 0 when b −→ ∞ and then Γε(n, b, h, δ, V (M)) too. Moreover

Λ(εb)1/2(n, b, h, δ, V (M)) >
κ

(

β(1+o(1))

κ1/2 + β ′(1 + o(1))
)2γ

v2γ+2V (M)2/n(1 + o(1))

This completes the proof.

5. Application to the stability

Briefly, we recall the problem of the stability of hypersurfaces with constant mean
curvature (see for instance [3]).

Let (Mn, g) be an oriented compact n -dimensional hypersurface isometrically
immersed by φ in a n+1-dimensional oriented manifold (Nn+1, h). We assume that
M is oriented by the global unit normal field ν so that ν is compatible with the
orientations of M and N . Let F : (−ε, ε) ×M −→ N be a variation of φ so that
F (0, .) = φ. We recall that the balance volume is the function V : (−ε, ε) −→ R

defined by

∫

[0,t]×M

F ⋆dvh

where dvh is the element volume associated to the metric h. It is well known that

V ′(0) =

∫

M

fdv

where f(x) = 〈∂F
∂t

(0, x), ν〉. Moreover the area function A(t) =

∫

M

dvF ⋆
t h satisfies

A′(0) = −n
∫

M

Hfdv

The balance volume V is said to be preserving volume if V (t) = V (0) in a

neighborhood of 0 ; in this case we have

∫

M

fdv = 0. Conversely, for all smooth

function f so that

∫

M

fdv = 0, there exists a preserving volume variation so that

f = 〈∂F
∂t

(0, x), ν〉. The following assertions are equivalent
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(1) The immersion φ is a critical point of the area (i.e. A′(0) = 0 ) for all
variation with preserving volume.

(2)

∫

M

Hfdv = 0 for any smooth function so that

∫

M

fdv = 0.

(3) There exists a constant H0 so that A′(0) + nH0V
′(0) = 0 for any variation.

(4) φ is of constant mean curvature H0.

An immersion with constant mean curvature H0 will be said stable if A′′(0) > 0
for all preserving volume variation. Now we consider the function J(t) defined by

J(t) = A(t) + nH0V (t)

Then J ′′(0) is depending only on f and we have

J ′′(0) =

∫

M

|df |2dv −
∫

M

(RicN (ν, ν) + |B|2)f 2dv

where RicN is the Ricci curvature of N with respect to the metric h. It is known
that φ is a stable constant mean curvature immersion if and only if J ′′(0) > 0 for

any smooth function so that

∫

M

fdv = 0.

Now let us give a proof of the theorem 1.3
Proof of Theorem 1.3: Let f be the first eigenfunction associated to λ1(M). Since
∫

M

fdv = 0 then J ′′(0) > 0 and

λ1(M)

∫

M

f 2dv −
∫

M

(RicN (ν, ν) + nH2 + |τ |2)f 2dv > 0

where τ is the umbilicity tensor (i.e. τ = nHg−B). Since µ 6 KN 6 δ, we deduce
that

n(H2 + µ) 6 λ1(M) 6 n(H2 + δ)

In other words, we have the pinching condition

n(H2 + δ) − n(δ − µ) 6 λ1(M) 6 n(H2 + δ)

Now fix ε = θ
5b

and let R > 0 so that φ(M) lies on a ball or radius R. Let ρ be the
extrinsic radius of M (i.e. the radius of the smallest ball containing φ(M)). Then
sδ(R) > sδ(ρ). On the other hand, we know that sδ(ρ) > 1

h
> 1

b
(see [2]). If we

assume that V (M)1/n 6 v
b
, we see that M ∈ H(n, φ,N) for R small enough. On

the other hand from the theorem 1.1 it follows that Cθ/5b(n, b, h, V (M), δ) −→ ∞
when R −→ 0 and there exists R′(δ, µ, v, i(N)) so that if φ(M) lies in a ball of
radius R′(δ, µ, v, i(N))) then Cθ/5b(n, b, h, V (M), δ) > n(δ − µ). Now we conclude
by putting R0(δ, µ, v, i(N)) = min(R(δ, µ, θ/5), R′(δ, µ, v, i(N))) and the point p is
nothing but the center of mass of M (the quantity R(δ, µ, θ/5) is defined in the
theorem 1.1).
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6. Application to the almost umbilic hypersurfaces

In this section we give an other application of eigenvalue pinching theorems for
almost umbilic hypersurfaces. We consider only the case where the ambient space
is of constant sectional curvature.

Theorem 6.1. Let (Nn+1, h) be a n + 1-dimensional Riemannian manifold with
constant sectional curvature δ and let M ∈ H(n, φ,N). Let p be the center of mass
of M . Let q > n

2
, θ ∈ (0, 1) and ε 6 θ

5b
. Then there exist positive constants

η1,ε(n, b, h, V (M), δ) and η2,ε(n, b, h, V (M), δ) so that if

(1) ‖τ‖2q 6 η1,ε.
(2) ‖H2 − ‖H‖2

∞‖q 6 η2,ε.

Then

dGH

(

φ(M), S

(

p, s−1
δ

(

1

h

)))

< ε

and M is diffeomorphic and θ-quasi-isometric to S(p, s−1
δ

(

1
h

)

).

Remark 6.1. In the hyperbolic case we can obtain the Hausdorff proximity with
the dependence on the mean curvature.

In the Euclidean case providing from the pinching theorem proved in [6] we can
improve the condition 2)

Theorem 6.2. Let (Mn, g) be a compact, connected and oriented n-dimensional
Riemannian manifold without boundary isometrically immersed by φ in R

n+1. Let
p be the center of mass of M . Then for any ε > 0, there exist two constants
η1,ε(n, ‖H‖∞, V (M)) and η2,ε(n, ‖H‖∞, V (M)) so that if

(1) ‖τ‖2q 6 η1,ε.

(2)
∥

∥

∥
H2 − ‖H‖2

2r

V (M)1/r

∥

∥

∥

q
6 η2,ε for r > 2.

Then

dGH

(

φ(M), S

(

p,
V (M)1/2r

‖H‖2r

))

< ε

Moreover for any θ ∈ (0, 1), there exist two constants η1,ε(n, ‖B‖∞, V (M)) and
η2,ε(n, ‖B‖∞, V (M)) so that if the two conditions 1) and 2) are satisfied then M is

diffeomorphic and θ-quasi-isometric to S
(

p, V (M)1/2r

‖H‖2r

)

.

These theorems are obtained by combining the theorem 1.1 and the eigenvalue
pinching theorems of [6] with an eigenvalue pinching result in almost positive Ricci
curvature due to E. Aubry ([1]).

In the following theorem we denote Ric(x) the lowest eigenvalue of the Ricci
tensor Ric(x) at x ∈M . Moreover for any function f , we put f− = min(−f, 0).

Theorem 6.3. (E.Aubry) Let (Mn, g) be a complete n-dimensional Riemannian
manifold and q > n/2. If M has finite volume and
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ρq =
1

kV (M)1/q

(
∫

M

(Ric − (n− 1)k)q
− dv

)1/q

6 C(q, n)−1/q

then M is compact and

λ1(M) > nk(1 − C(n, q)ρq)

Proof of Theorems: Using Gauss formula and the fact that N is of constant
sectional curvature δ, we have

‖Ric − (n− 1)(H2 + δ)g‖q

V (M)1/q
=

‖Rφ
+ nHB − B2 − (n− 1)H2g − (n− 1)δg‖q

V (M)1/q

=
‖(n− 2)Hτ − τ 2‖q

V (M)1/q

6
(n− 2)‖H‖∞‖τ‖2q

V (M)1/2q
+

‖τ‖2
2q

V (M)1/q

Now, putting k =
‖H‖2

2r

V (M)1/r + δ we get

‖Ric − (n− 1)kg‖q

V (M)1/q
6

‖Ric − (n− 1)(H2 + δ)g‖q

V (M)1/q
+

(n− 1)
√
n

V (M)1/q

∥

∥

∥

∥

H2 − ‖H‖2
2r

V (M)1/r

∥

∥

∥

∥

q

6
(n− 2)‖H‖∞‖τ‖2q

V (M)1/2q
+

‖τ‖2
2q

V (M)1/q
+

(n− 1)
√
n

V (M)1/q

∥

∥

∥

∥

H2 − ‖H‖2
2r

V (M)1/r

∥

∥

∥

∥

q

There exists two constants η1,ε(n, b, h, V (M), δ) and η2,ε(n, b, h, V (M), δ) so that

if ‖τ‖2q 6 η1,ε and
∥

∥

∥
H2 − ‖H‖2

2r

V (M)1/r

∥

∥

∥

q
6 η2,ε(n, b, h, V (M), δ) so that

‖Ric − (n− 1)kg‖q

V (M)1/q
6 Aε(n, b, h, V (M))

where Aε(n, b, h, V (M)) = min
((

α
V (M)2/n + δ

)

C(q, n)−1/q, Cε(n,b,h,V (M))
nC(n,q)

)

. The esti-

mate (5) and the theorem 6.3 allows us to conclude that

λ1(M) > n

( ‖H‖2
2r

V (M)1/r
+ δ

)

− Cε

Now the conclusion is immediate from the pinching theorems of this paper and [6].
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