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EIGENVALUE PINCHING AND APPLICATION TO THE STABILITY AND
THE ALMOST UMBILICITY OF HYPERSURFACES

J.-F. GROSJEAN

ABSTRACT. In this paper we give pinching theorems for the first nonzero eigenvalue of the
Laplacian on the compact hypersurfaces of ambient spaces with bounded sectional curvature.
As application we deduce rigidity results for stable constant mean curvature hypersurfaces M
of these spaces N. Indeed, we prove that if M is included in a ball of radius small enough
then the Hausdorff-distance between M and a geodesic sphere S of N is small. Moreover M is
diffeomorphic and quasi-isometric to S. As other application, we give rigidity results for almost
umbilic hypersurfaces.
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1. INTRODUCTION

One way to show that the geodesic spheres are the only stable constant mean
curvature hypersurfaces of classical model spaces (i.e. the Euclidean space, the
spherical space and the hyperbolic space) is to prove that there is equality in the
well-known Reilly’s inequality. One of the main points of the present paper is to
obtain new stability results for hypersufaces immersed in more general ambient
spaces.

First, let us recall the Reilly’s inequality. Let (M™, g) be a compact, connected
and oriented m-dimensional Riemannian manifold without boundary isometrically
immersed by ¢ in the simply connected model space N"*!(c) (¢ =0, 1 ,—1 respec-
tively for the Euclidean space, the sphere or the hyperbolic space). The Reilly’s
inequality gives an extrinsic upper bound for the first nonzero eigenvalue A\ (M) of
the Laplacian of (M™, g) in term of the square of the length of the mean curvature
H. Indeed we have
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m

(1) A(M) < W/MHHPJrC)dU

where dv and V(M) denote respectively the Riemannian volume element and the
volume of (M™, g). Moreover in the case of hypersurfaces (i.e. m = n), the equality
holds if and only if (M™", g) is immersed as a geodesic sphere of N"™!(c). For
¢ = 0 this inequality was proved by Reilly ([L1]) and can easily be extended to the
spherical case ¢ = 1 by considering the canonical embedding of S* in R"*1. For
¢ = —1 it has been proved by El Soufi and Ilias in [f].

In the sequel we will consider a weaker inequality due to Heintze ([§]) which
generalizes the previous for the case where (M™, g) is isometrically immersed by ¢
in a n + 1-dimensional Riemannian manifold (N™*! h) whose sectional curvature
K" is bounded above by 6. Indeed if ¢(M) lies in a convex ball and if the radius

of this ball is 4—\% in the case § > 0, we have

(2) A(M) < m(|[Hlloo +9)

where ||H ||~ denotes the L*-norm of the mean curvature. Now for m = n if we
assume that K% is bounded below by x and M has a constant mean curvature H
and is stable (see section 5) we have

n(H? + p) < M\ (M) < n(H? +6)

Consequently we see that if IV is not of constant sectional curvature we can’t
conclude as in the model spaces. However, the above inequality is a kind of pinching
on the Reilly’s inequality, that is a condition of almost equality. Such conditions
have been studied for the Reilly’s inequality in the Euclidean space in [B]. In
the present paper we will generalize the results of [ff] to the inequality (P]) for
hypersurfaces (i.e. m = n) of ambient spaces with non constant sectional curvature.
That amounts to finding a constant C' depending on minimum geometric invariants
so that if we have the condition

([ |5 +0) = C < M (M)
then M is close to a sphere in a certain sense.

Before giving the main theorems, we precise some notations which will be more
convenient. Throughout the paper, we will note h = (||H|? + §)"/? and b =

1/2
(% + 5) where B denotes the second fundamental form. Moreover if (N1 h)
is a n + l-dimensional Riemannian manifold with K~ < ¢ we will note H*(n, ¢, N)
the space of all Riemannian compact, connected and oriented n-dimensional Rie-
mannian manifolds without boundary isometrically immersed by ¢ in (N"*1 h)

so that the injectivity radius i(N) of N satisfies i(N) > Z=if § > 0. We call
He(n, ¢, N) the space of all Riemannian manifolds of H*(n, ¢, N) satisfying the fol-
lowing convexity hypothesis : ¢(M) lies in a convex ball and the radius of this ball
is 4—\% if § > 0. Moreover Hy (n, ¢, N) will be the space of all Riemannian manifolds

of H*(n, ¢, N) which satisfy the following hypothesis on the volume : V(M) < £
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if § >0 and V(M) < (cw,)Y™i(N) if § < 0 for some constant c. At last we put
H(’I’L, ¢, N) = HC’(na ¢, N) N HV(na ¢, N)

Furthermore we need the following function ss defined by

%sin or if §>0

55(7*): T if 6=0
ﬁsinh\/wr if <0,

Moreover we will note B(p, R) all geodesic ball in N of center p and radius R.

The first nonzero eigenvalue of the Laplacian is in fact the second eigenvalue since
the first A\{(M) is vanishing. The previous Reilly’s inequalities can be generalized for
the second eigenvalue A\¥(M) of Schrodinger operators L = A+q where ¢ € C°°(M)
and we have

M (M) < n((lH (% +6) + llalloc
The pinching theorems are stated for the second eigenvalue A\¥(M) of a Schrédinger
operators L = A + ¢

Theorem 1.1. Let (N"*! h) be a n + 1-dimensional Riemannian manifold whose
sectional curvature K™ satisfies u < K~ < 6 and let M € H(n, ¢, N). Let € (0,1)
and £ < L. Then there exist a point p and positive constants C.(n,b, h,V (M), d)
and R(0, p,€b) so that if (M) is contained in the ball B(p, R(0, u, b)) and if the
pinching condition (Pc,)

n([H 1% +6) + llalloo — Co < AF(M)
15 satisfied then the Gromov-Hausdorff is so that

o s o (1)

and M is diffeomorphic and 0-quasi-isometric to S(p, sgl (l)) Namely there exists

h
a diffeomorphism from M into S(p, s;5* (%)) so that
||dFy(w)]* = 1] <6

foranyx € M, ue T,M and |u| = 1.

Moreover, R(6, i1, eb) — oo when § — . — 0. On the other hand,

(1) Ce(n,b, h, V(M),6) — 0 when ¢ — 0.

(2) Co(n,b,h,V(M),6) — 0 when b — oo.

(3) if V(M) < v and e = & for positive constants v  and K, then

C.(n,b,h,V(M),d§) — oo when b — 0.

We recall that the Gromov-Hausdorff distance between two compact subsets A
and B of a metric space is given by

deu(A,B) = inf{A C V,(B) and B C V,(A)}
where for any subset A, V; (A) is the tubular neighborhood of A defined by V,(A) =
{z]d(z, A) < n}.
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Remark 1.1. The point p is not depending on 0, €, b or h. The point p is nothing
but the center of mass of M (see preliminaries).

Remark 1.2. We will see in the proofs that we need the dependence on b. However
in the case of nonnegative sectional curvature the dependence of C.(n,b, h, V (M), )
on h can be omitted.

As in the euclidean case (see [[]), in the hyperbolic case or spherical case, we can
obtain the Hausdorff proximity strictly with a dependence on h. More precisely we
have the

Theorem 1.2. Let N"*(§) with 6 = —1,0 or 1 where N"**(—1), N"*(0) and
N™ (1) are respectively the hyperbolic space, the euclidean space and the sphere. Let
M € H(n,$,N). Then for any e > 0 there exists a positive constant Ce(n, h, V (M))
so that if the pinching condition (Pc.)

n([[H% +0) +llalle — Co < AT (M)
15 satisfied then the Gromov-Hausdorff satisfies

o (o005 o (1)) <

The condition (3) of the theorem [[.]] allows to obtain an application for the stable
constant mean curvature hypersurfaces. Indeed we have the following stability
theorem

Theorem 1.3. Let (N"*! h) be a n + 1-dimensional Riemannian manifold whose
sectional curvature KV satisfies p < K~ < 8 and let M € Ho(n, ¢, N). Let v > 0
so that V(M)Y™ < 2. For any 0 € (0,1), there exists a constant Ro(6, p, v, i(N)) >
0 so that if (M) lies in a ball of radius Ro(0, pu,v,i(N)) and ¢ is of constant mean
curvature H and is stable then there exists a point p so that

don (00005 (055" (7)) < 5

and M s diffeomorphic and 6-quasi-isometric to S(p, s;* (%))

Remark 1.3. If 0 > 0, Ry(d, p,v,i(N)) is not depending on the injectivity radius.

We will end this paper in section 6 by another application of theorems [T and
[[.] for the almost umbilic hypersurfaces of model spaces.

2. PRELIMINARIES

Let (M™,g) be a compact, connected n-dimensional Riemannian manifold iso-
metrically immersed by ¢ in an n + 1-dimensional Riemannian manifold (N"*1 k)
which sectional curvature is bounded by d. Let p € N and exp be the exponential
map at this point. If § > 0, we need to assume that ¢(M) lies in a convex ball
around p of radius less than or equal to 2—\’;3. We consider (z;)1<i<, the normal
coordinates of N centered at p and for all € N, we denote by r(x) = d(p, z), the
geodesic distance between p and z on (N" ™! h).
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Moreover we define the function ¢; by cs = s5. Obviously, we have ¢ + ds7 = 1
and c§ = —ds;.

The gradient of a function u define on N with respect to h will be denoted by
V¥ u and the gradient with respect to g of the restriction of u on M will be denoted
by VMu,

Briefly, we recall the proof of Heintze ([f]) for the Reilly inequality. This proof
can be extend without problem to Schrédinger operators L = A + q.

We will use &‘T(r)xl as test functions in the variational characterization of Ay (M)
but these functions must be L?-orthogonal to the first eigenfunction u of L which

can be chosen positive. For this purpose, we use a standard argument used by
Chavel and Heintze ([{] and [{]). Indeed, let Y be a vector field defined by

_ [ ssldlgs )
Y(]—/MWequ (x)u(x)dv(z) € T,N, g€ M

From the fixed point theorem of Brouwer, there exists a point p € N such that

ss(r)

Y, = 0 and consequently, for a such p, / r;udv = 0. But for § > 0, we must

assume ¢(M) is contained in a ball of radius 75 Indeed, in this case ¢(M) lies in
a ball of center p (the point p so that Y, = 0) with a radius less or equal to 2%.
Now considering the vector field on M, Z = 55V r and noting that the coordi-

)xi)Zdv

nates of Z in the normal local frame are (S“T(T):EZ) , we have
1<i<n

b [ o= koo [ 12pa =t [ Z((

S |gr (220, [
g/ Z VM< d xl) dv+/ q|Z|*dv
M M

S~ g (200, [

Now, Heintze proved that Z vM (—xl) n —6|Z%|? and
r

i=1

(3) div (Z") = nes — nH{(Z, V)

Then

Af(M)/ \Z\deg/(n—é\ZT|2)dv+/ 4|7 2dv
M M

/ (n —div ( )05)dv+/ q|Z|*dv

M M

/ (n —nc; +nH(Z, u)05)dv+/ q|Z|*dv
M M

/ (ndsi +nH(Z, V)c(g)var/ q|Z|*dv
M M
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g/ n55§d0+HHHOO/ n5505dv+/ q|Z|*dv
M M M
and using again (B) we get
Af(M)/ \Z\degn(s/ \Z\de+HHHOO/ (nH{(Z,v)ss + div (ZT)Sg)dU-l—/ q|Z|*dv
M M M M
:n5/ |Z|2dv+||H||Oo/ (nH(Z,y>35—0555|VM7“|2)dv+/ q|Z|*dv
M M M
<n5/ \Z\2dv+nHHH§O/ |(Z,y>\|Z\dv+/ 4|2 v
M M M
<n5/ |Z|2dv+n||H||go/ |Z|2dv+/ q|Z)?dv
M M M

<n(HE+0) [ 12Pdo+ gl [ (2P0
M M

3. AN L2-APPROACH

First we recall the standard Sobolev inequality (cf [], [I0], [[G] and p 216 in [{]).
If f is a smooth function and f > 0, then

(4) (Ag%mfﬂmgxwﬁﬂm+wmm

where K(n) is a constant depending on n and the volume of the unit ball in R™.
Taking f =1 on M and r € [1, +o0], we deduce that

14113, a
>
(5) V(M)Yr = V(M)2/n

An easy computation shows us that

o

(14 0(1))

Throughout the paper o(1) will denote any function depending on b, h, on the
dimension or the sectional curvature of (N"™! 1) but not on the volume of M so
that o(1) tends to 0 when b or h goes to the infinity. Moreover a denotes a constant
depending on n.

Remark 3.1. Note that here we can choose o(1) = 0 for nonnegative sectional
curvature. But we can’t deduce such estimate with o(1) = 0 or o(1) depending
strictly on b for the negative sectional curvature case. This is the reason for which
we can omil the dependence on h in the theorem as mentioned in the remark

77,
Lemma 3.1. If the pinching condition (Pg) holds then || Z7||2 < BV (M)*™| Z|2C.



Proof. We have

||ZT||§=/M|Z|2dv—/M<Z,u>2dv=/M<|Z|+|<Z,u>|><|2|—|<Z,u>|>dv
< /M (12 — (2. 0)||Z))dv

and from the proof of Reilly’s inequality and the pinching condition, we have

|| 2 ( [ vz [ \<Z,v>||Zldv)<CHZH§
M M

Now the relation (f) allows us to conclude.

Lemma 3.2. If C < V(M)Q/n(l +0(1)) < % <n+2) h?, then (Pc) implies that

nV (M)
i~ (22) 0

n

1215 < < BV(M)2" (1 + o(1))

Proof. From the previous lemma we have

AL (M)NIZ]5 < nV (M) = 8] 27|13 + /MQ\Z\de

If 6 > 0, we then have (AF(M) — |lqll)|Z|13 < nV(M) and with the pinching
condition we get the desired inequality. If § < 0

20C
M (MIZ]5 < nV (M) — WHZH% +llallll 2115

Then

2/8|C
M) — —q) Z|2dv < nV (M
/M(l( )~ e 91 (M)

and combining this with the pinching again, we get
2/4|C )
nh?> —C — ——— | || Z|l5 < nV(M).
( nl| H]Z, ’
Since ||H||% + 6 > 0, we deduce that (nh*—C —29)||Z||3 < nV (M) and taking
C< % < (n+2> h?, we obtain the result of the lemma.
O

Lemma 3.3. If the pinching condition (Pc) holds then

n(nh? — C)
(nh? + BV (M)?/"C)

V(M) <213
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Proof. From the previous proof, we have

0<nV (M) — 5/ |1ZT|2dv < nh2/ sZdv
M M

Then if 6 < 0 we have

)\f(M)/ |Z|2dv<nV(M)—5/ \ZT\deJr/ 417 2dv
M M M

<nV(M)—5/M|ZT|2dv)2

_ +/ 4172
nV(M)—a/ | ZT|2dv M
M

1 2
< nhQ/ Zde) +/ q|Z|2dv
”V(M)< M| | M o

From this we deduce that / (AE(M) — ¢)|Z)%dv <

V(j\/[)nh‘lHZH;l and from the

M
pinching condition we obtain the desired inequality. For § > 0, we have

)\1L(M)/M|Z|2dv< (nV(M)_(SAf;:ﬁ)H/MZ“dv) +/M

2

<nh2/ \Z\2dv+5/ |ZT|2dv)
< M M Z2d
WV T +/MQ| |“dv

gl Z[*dv

(nh2|| 2|2+ BV (M)*"C| Z|2)*
< Z1%d
nV (M) +/M‘-’| [“dv

h2 + BV (M)*"C)* || 7|4
_ (k2 4+ BV )>mC)” | H2+/ J|Zdv
nV (M) M

and we conclude as above in the nonpositive case.

O

Remark 3.2. All the results stated now in this section remain true if we replace
the dependence on b or || B||s respectively by h or || H||.

Lemma 3.4. Let X = nHesw — |H|2ZZ. If C < y2am(1+0(1)) < 4 (;—H) h?,

then the pinching condition (Pg) implies
IX 13 < B0*V (M)2"(1 + 0(1))C
where B is a constant depending only on the dimension.

Proof. Using again (f) we have



X8 =n? [ Hecdo - 2R [ H(Zvesdo+ 2 HIL 21
M M
<wt [ #cavs 2 HI [ (@iv (20— ncd)do + | HIL 23
M M
=t [ v a1 [ 61200 2| [ o | HIL) 2]
M M M

< —n2HHH§o/MC§dv+n2HHHioHZH§+2n|5\HHH§oHZTH§
= —n?|H |3V (M) +n?|[H|[230]| Z|I + n* | HIISI 213 + 2nlo| [ H 15127112
= n?| H|[2.(=V (M) + 1?[| Z|I3) + 2no] | H 151273

Now by applying the lemma and lemma B.1] we obtain

nt2 4n)d]
X2 < n?||H|? (% V(MC V(M)C
1X13 < | ||w<nh2_(n7+2)c) (MO + sy gV (M)

n

and we end the proof by using the fact that C' < % (n"—j2> h? and the relation (B).
0

Lemma 3.5. Let Y = |Z|'/? (5Z+Hc(;y—h|—§‘>. I/ C < yuam(l+o(1)) <

% (J—L) h?, then the condition (Pc) implies

IVI3 < [ BV(M)"(1+0(1)) + 85V (M) (14 o(1))

145

+ 8"V (M) ™= (1+o0(1))|V(M)C

where v € (e™? —1,e" — 1) and B3, ' and 3" are constants depending only on n

and 9.

Proof. First we have

1Y ||3 </ (12167 + Hesv|? = 20(6Z + Hesv, Z) + hP| Z]) dv
M

(7) g/ (121162 + Hesv|* — 20(8Z + Hezw, Z)) dv + 2| Z||oV (M)
M

Let us compute the first term
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/ |Z||6Z + Hesv|*dv = / | Z) (62| Z)? + 20csH(Z,v) + H?c3) dv
M M
= / | Z| (H? — 6H?s§ + 26¢sH(Z,v) + 6 — bc5) dv
M
= / |Z|(H?* + 6 — §|HZ — csv|?)dv
M
< W2 Z)|.V (M) — 5/ |Z||HZ — csv|*dv
M

< K2\ Z|2V (M)Y? + \5IHZHoo/ |HZ — csv|*dv
M

On the other hand,

/ |HZ — csv|*dv < HHH§O/ s§dv—2/ H(Z,u>c5dv+/ cidv
M M M M

Now the pinching implies that

| H|)2, / dv—/ H{(Z,v)csdv < —/ alv——||Z||2

1 J
/ cidv —/ H{Z, v)csdv < —/ div (Z7)esdv = u||ZT||§
M M M n

n

and

Then we have proved

(CIZ13 + 1811 Z7]13)

5[ 2| oo
/ 12162 + HegPdv < 02 2]V ()72 4 212D
M n

Now let us compute the two last terms of ([)
— 2h/ (67 4 Hesw, Z)dv + h*|| Z||,V (M)Y?

25h/ dv+—/ div ( 05dv—2h/ Adv + h*|| Z||,V (M)Y?
M
2h
— _onV(M) + 5/ 2T Pdv + 1| 2|15V (M)

—2hV (M) + B*V (M)"/?
Therefore reporting this and (§) in ([]), we get

A
Y113 < 27| Z] 2hV(M)+%

(ClIZ13 + 1811 Z7112)

and using the estimates given in the lemmas B.9 and B.I] with the fact that C' <
1 2
3 (n +2) h*, we get
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2n'2h2V (M)
IY[l3 < 12
(nh? — (222) ©)
n'/2h
(nh? - (22) €)'

— 20V (M) + (B + B'V (M) || Z]| [ 21150

= 2hV (M) ( - 1) +(B+ BV (M)M)V(M)H2"(1 + (1)) Z]|C

< 2hV (M) (2 ( ) + (BV (M) 4 BV (M) (L + 0(1))[| 2] €

< %V(M)C +(BV (M) 4 5V (M) (L + 0(1)) 1 Z]|C

Finally we have proved

nh? — (=2) 0

Y13 < (BV(M)V7(1+ o(1)) + (B'V (M) + 5"V (M) /™) (1 + 0(1) | Z o) €

Now the researched inequality is a straightforward consequence of the following
lemma

Lemma 3.6. If C' < W(l +0(1)) < 3 (n"—;) h%, then the pinching condition

(Pc) implies
12l < 86V (M) (1 +0(1))
where 3 is a constant depending only onn and § and v € (e™? —1,e" —1).
O

The proof of the above lemma is providing from a result stated in the following
proposition using a Nirenberg-Moser type of proof (see [g]).

Proposition 3.1. Let (N"*1 h) be a Riemmannian manifold and M € Hy (n, ¢, N).
Let € be a nonnegative continuous function so that £ is smooth for k > 2. Let
0<r<s<2so that

1

- / A2 20y < (A + kAy) / EF"du + (By + kBs) / 25 dy
2 M M M

where Ay, Ay, By, By are nonnegative constants. Then for any n > 0, if [|]lec > 7
then

Hf”oo < L<n7A17A27Blu BQ? ”BHOO7 V<M)777)H£H2

where

L(n7A17A27BlaBZ7 ||B||OO7V(M)7T’)
4AY? L 4A? 4By 4B
= K(n) ( T i

,
+ Bl | V(M)
o o 1B ) (M)

and v € (eV? —1,e" —1).
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Remark 3.3. In particular we see that

Ui
I < ’
(1) If €]l < ( L A1, Ay, By, Bs, | Bllso, V(M), 1)

(2) Ifligllz < A, then for any 1 > 0,

then [|€]lo <7

||§||OO maX(nv (n7A17A27BlaBQ7 ||B||007V(M)7n)A)

In [[] this proposition has been proved for hypersurfaces of the Euclidean space.
The proof is similar for hypersurfaces of some ambient space with bounded sectional
curvature. This proof uses a Sobolev inequality due to Hoffman and Spruck (see [H]
and [[[0]) which is available under the conditions on the injectivity radius of N and
the volume of M contained in the definition of Hy (n, ¢, N).

PROOF OF THE LEMMA [B.6: First we compute the Laplacian of |Z|>. An easy
computation shovvs that A|Z|? = (—2¢2 + 26s2)|VMr|? + 2sscsAr.

Since r < : \/g for 0 > 0, the first term is nonpositif. Now let us consider
(€i)1<i<n+1 an orthonormal frame in a neighborhood of the point p € M where

we compute the Laplacian and so that e, ; = v. Then

AlZ|* < 2s5¢5 —ZVN dr(e;, e;) +nH (v, VN r})

= 255C5 —ZVN dr(e; — (VN r,e)VY roe; — (VN r,e)VY r) +nH (v, VY 7“))

< 25505 _8 Z ’€z‘ - <VN r, €z‘>VN 7“}2 +nHH”oo>
S5 “—

20 Hlloo o _ 20 H]loc
2 =
9] 9]

20 H |oo 2v/n||Blloo
< VG +2n||Hloo /1011 2] < 0 +2vn|| Bl /18] Z*

And from the remark B3 about the proposition B.]] and lemma we deduce that

< 2n||Hl[eos505 < (1—ds3)

2] < max (1,ﬁL<n,2ﬁ||B||oo\/|5|,o, M'%,o, I Blloos DV (M)!241/7 (1 4 o<1>>>

= BLV(M)Y™(1 4 o(1))

Let’s introduce now the function ¢ = |Z| (|Z| — —) |Z| ’

following lemma, we give an L2-estimate of ¢

Lemma 3.7. If C' < Vo (1+0(1)) < 3 (n”—;) h?, then (Pc) implies that
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il < LY [BOV (M) /2(1 -+ o(1)) + BBV (M) AV (M) (1 + o(1))
6" OV M)V (ML (1) + 57 (14 0(1)] V(M) Y25/

where 3, ' and 3" are constants depending only on n and §.

1/2 1/2
Proof. First we have (/ <p2dv) < ||g0||ié4 (/ g01/2dv) . Moreover
M M

1/2 — ‘2‘1/2

1, 1 A
ﬁ(h Z —0Z — Hegv) + = (5Z+H051/ |Z|)'

|Z|1/2
< | X+ Q\Y\

2y 2y 1/2
(/ cpl/zdv) < 5 (/ |Z|1/2|X|dv) + 7 (/ |Y|dv)
M M

1 1/4 o
< (/ Zido) IXI 4 VY (e

V(M)'*
= pnl/2

Then

121151 X157 + ||Y||”2 V(M)

Since we have choose C' < W(l +0(1)) < 3 (n+2> h* we deduce from the
lemma B.2 and ([) that

(/M @1/2(1@) V2 < <BV(M)1/4n(1 +o(l ))”XHl/z

AL+ o(D)[Y]3/?) V(b
and the lemmas .4 and B.j give us

(/ WW) e BBV (M) (1 -+ 0(1) + B4V (M) 4 (1 + 0(1))

+A"EV (MY (L4 o(1)) + 8"V (M) (1 + (1)) | v (2)/2Hm 1A
0J

Lemma 3.8. There exists a constant A(n,b, h,0,V(M),n) so that for any n > 0,
the pinching condition (Pc) with C' = min (A, VAT (14 0(1))) implies

lello <
Moreover,

A(n,b, h,6,V(M),n)
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_ <A1(n, b,h, 6, V(M),n) . As(n,b,h, 6, V(M),m) ”BHOO)M
n nl/2 Jn
x As(n,b, h,6,V (M), )V(M)‘l’y/n

where the constants A;(n,b, h,0,V(M)) are of the form

A = Zﬁ” (LV (M™% (M)"3, Bi; are constants depending only on n and &

and 0; cmd v; are positive reals depending on n so that v1; > 4/n, vy > 1/n and
V3 2 5/’/’L

Proof. We have for any k > 2

1

1
(9) 5/ AQOQQka_Qd’U:é/ <VMQ02,VMQ02k_2>d’U<2/€/ |VM(p|2g02k_2dU
M M M

Let us compute |V¥p|?

2
12
V2 = vM(uﬂozw—ﬁ)>‘
1\’ 1 i
— vzl (121 - 1) v 2121 (121 - 1) vz
h h
[ 1\* 1\* 1)
= Z| — - 41Z1 1 | Z] — = A4z 1Z] — =
(121-3) + a2 (121- ;) +aze (121~ 1)
: 1\* 1\?
< (wmm+ﬁ)+4<(wmw+g)+wzm)w

A straightforward computation shows that |[VM|Z||> < ¢ < 1+ |§]||Z||%. Now
using the lemma B.6 we get

V¥ Z]*

V¥ Z]*

VYl < [V (B0 (M)M") (14 0(1)) + B/(1+ (1))
+ 4o (VM) [BOV (M)™) (14 0(1)) + B/(1 + o(1))]”

+ﬁV( YOV (M) (14 0(1))) ] (1 +18]8"V (M)*™ 0V (M)Y")> (1 + o(1)))
Ai(n,b,h, 6,V (M)) + Ax(n,b,h, 6,V (M))e
Where the constants A;(n,b,h,d,V(M)) are of the form

A= Zﬁw bV (M™% (M) with vy > 4/n, vy; = 1/n.
Then reportmg this in (P]) we get

1
—/ AP?p?2dy < 2k A, / cp%_deJerAQ/ oty
2 Ju M M



15

Now, applying the lemma B.1] we see that if ||¢||o > 1 then

A 13- 1
lolle < (224 25+ LB wanyi-sya,

Combining this with the inequality of the lemma .7, we deduce that

[plloo < A(n, bk, 6,V (M),n)C
with

A(n,b, h, 0,V (M),n)

— Al(n7 b7 h, 57 V<M)) + AQ(n7 b7 h7 57 V<M)) + ”BHOO o
a 1 /2 Vn
x Ag(n,b,h, 6,V (M))V (M)

where the constant  Asz(n,b,h,d,V(M)) is of the form

Zﬁgj BV (M)Y™)8V (M) (1 + o(1)). Tt is easy to see that and vs; > 5/n.

Now takmg C' = min (A, VO )2/n(1 + 0(1))), we see that ||¢|l. < 7.
UJ

Lemma 3.9. For any e < 3, there exists a function v¥(g,b) and a constant depend-
ing on n so that the pmchzng condition (Pr_) with

a(1+0(1)) /(14 0(1)) ¥(e,b) )
VM) V(M2 Aln, b, 0,V (M), 9=, b))

1
r— 55_1 <E)

Moreover for a fized € or if e = § for a positive real K then 1 (,b) = ( +0(1)).

I'.(n,b, h,d,V(M)) = min (
implies

1

|Z|_E'<€ and <e

Proof. Consider the function f(t) =t (¢t — —) and g(t) = (3 —t) t2. The function

f is increasing on [0, 3-] and [+, +00) and decreasing onf ==, +]. For any € > 0, put
¥1(e,b) = min {g (min (E, %)) ( min ( ))}
and
. (al+o0(1) /(1+0(1)) 1 (e, b)
Pt VO0) = min (3 S s V)

First note that 1/11(6 b) < min [f (% - mm( g 3b))

%—min (s, 3_1b) > 3h we deduce that ¢, (e,b) < f (

the constants o and o’ so that

f (% +min (£, 5))], and since

ih) On the other hand we choose
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a(l+o(1)) o nh?
V(M)4n = 238V (M)2/m
where (3 is the constant of the lemma B.]] and

/(14 o(1)) . (n o, 1 [ n? 5
————— < —h*, = h
v ST R 2 \ne

From the definition of I'; . and the lemma [.§ it follows that the pinching condition
(Pp,.) implies that [[¢]le < ¥1(e,b), that is f(|Z]) < Yi(e,b) < f (3%) Now,
because of the choice of a and o/, we deduce from the lemma B.J that

2
1213 > 5oV (M)

Then there exists a point zo of M so that |Z|,, > 3-. Then by the connexity of M,
it follows that ’|Z| -+ <e.
Now a straightforward computation shows that ’T — 55! (l)} < (14 0(1))e (for

h
9 < 0 we can choose o(1) = 0 whilst o(1) > 0 for § > 0. Indeed

1 1 3 £
r — S; 7 < > < -
\/1—5<5+%) \/1_51622
The last term is well defined since the extrinsic radius R of M satisfies ss(R) >

and R < 7= if § > 0 (see for instance [@]). Then s;' (+) € [0, 75) for 6 >0

Putting ¢ (g,b) = ¢y <1+0 Ty ) we see that the pinching (Pr_) implies the desired
result.

%
)-

O

We are now in a position to prove the theorem [[.2.

Proof of Theorem [[.3: As mentioned in remark B.9 all the previous results remain
available by replacing b or || B||« respectively by h or ||H||s. The case § =0 is a
particular case of [f]. From the lemma above, We know that for any e > 0, there
exists C.(n, || H||oo, V/(M)) so that ¢(M) C B, (s;5' () +5)\B (s;' (+) —¢). Now
putting R = s;' () + ¢ and n = 2¢, then ¢(M) C B,(R) \ By(R — €). Let

zo € Sy (55" (+)) so that ¢(M) C (By(R) \ By(R —¢)) \ By, (p) where p satisfies
if § <0 and

if & > 0, where t5 = i—g and c is a constant depending on n. Taking ¢ < 1, from the

lemma 4.3 of [[J] we deduce that there exist constants Dy and Dy depending on n,
| H || and 0 so that if n < D; then there exists yo € M so that
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C,DQ C/DQ
H(yo)| > =
| H (yo)| n 9

. . . / .
where ¢ is a constant depending on n. Now if we assume ¢ < ﬁ we obtain a
oo

contradiction and we conclude that for all zg € S, (s;" (3)), ¢(M) N Byy(p) # 0
and S, (557 (3)) C Vao(M). If § <0,

F=t(6(50) -5 (4 (3)) < i

2ce
< <aln, ||Hl||ls)e
1+ d(en +ts5(R/2) (7, 1 loo)
Similarly we obtain the same estimate for the case § > 0 with a(n, ||H||~) = 1 (for
d > 0 we can choose a(n, |[H|«) = 1). Finally considering the pinching (Pc;) with
Cl(n, ||H|loos V(M)) = C n, || H||oo, V(M)) we obtain the desired conclu-

e (n,
' 2a(n, 1 Hllo0)
sion.

O

4. THE PROOF OF THE DIFFEOMORPHISM

Let us consider

F : M — S(p,35 (%)
v e, (50 (1) )

where X = exp, !(z). For more convenience we will put o = s;" (%) %

Lemma 4.1. Let u € T,M and v =u — (u, VMr)V¥ r. We have

1 2 2 Su (55 (%))2
h2SH<T)2|v| <|de(U)| < 2

Proof. An easy computation shows that
X 1 d
() 1e0) = Saespy o) = 5 ey o)
Then we deduce that

v, = desp, |, (s () (57 ) b))

53" (a)

— Tdexpp lo (alexp;1 |$(u))

Sy (%)dr()

— T—Qd exp, lo (expljl(:p))

- r(ﬁ)depr‘Q (dexp, " [o(u)) — M
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Now let us compute the norm of dF,(u). We have

|de(u)|2 _ % r(2h) Ddexpp lo (dexp;1 |x(u))}
—2(dexp, |, (dexp, ' [o(u)), VY 1) pydr(u) + dr(u)?]

Now since exp,, is a radial isometry (see for instance [[J]), we have

2

_ _ X
(dex |y (dexpy o(u)) . 7 1)y = (dexpy ! o) 757) = (0.9 7).

and it follows that

-1

(10)  |dR @) =2

(1)’

S [Jdesp, |y (dex; o) = (95,07

=

Now

’dexpp lo (alexp;1 |$(u)) ’2 = ’dexpp lo (alexp;1 l(v))
+(u, VMT)depr lo (dexp;l ‘x(VN r))‘z

where v = u — (u, VMr)V¥ r. Developping this expression we get

}dexpp lo (dexp}j1 \x(u)) }2 =

|dexp, |, (dexp,’ |x(v))}2 + (u, VMr)?|dexp, |, (dexp,* (VY 7)) ‘2
+ 2(u, VMr)(dexp, |, (dexp," |(v)),dexp, |, (dexp, ' |.(V 7)))

= |dexp, |, (dexp, |.(v)]" + (u, VMr)?

where in the last equality we have used again the radial isometry property of the
exponential map. And reporting this in ([[(J) we obtain

|dF,(u)|* = M }dexpp o (alexp;1 |m(v))}2

r2
Since u < KV < 6 the standard Jacobi field estimates (see for instance corollary
2.8, p 153 of [[J]) say that for any vector w orthogonal to V¥ r at y we have

2 2

- T
< |depr1 |y (w) |2 < |w|2$5(7“)2

This gives

35(3_1 1 )2 - s (8—1 1 )2
5T(h)|dexpp1 . (v) |2 < |dF$(u)|2 < M
and applying again the standard Jacobi field estimates we obtain the desired in-

equalities of the lemma.
O
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Lemma 4.2. Let uw € T, M so that |u| = 1. Then for any n > 0, there exists a
constant p(6, 1,m) > 0 so that if M is contained in the ball B(p, p(d, 1, m)), then

(1—mn)? M (1 +1)°
1— dF,
T (1= [V P) < R (P < s
Moreover p(d, u,n) — oo when 6 — u — 0 and p(d, u,n) — 0 when n — 0.

Proof. Let r > 0. For t € (—oo0, 12;), consider the function o(t) = s;(r). An easy

verification yields that o is C' on (—o0, %) and
(r) [ Vtr—tan(y/tr) . 2
;3 (L gmyin) ift € (0, )
o' (t) = —% if t=0
(r) ( —v/—=tr+tanh(v/=tr) :
Pl (/eI g e (—00,0)

It follows that o is decreasing on (—oo, 176%) and that there exists a constant D so

that |o’(t)| < Drcy(r), for any t € (—oco, 5= ). It follows that
() 0 < 5(r) — 55(r) < D (r)(5 — )
Now we have
1 S 1
hsu(r) = h(ss(r) + Dricu(r)(é — p))
1

=

hss(r)(1+ D (555 ) 126,(r)(0 = 1))

The function ¢ — ?’f(t) beeing bounded on [0,00) and on [0, ;Z=) for § > 0 there
exists a constant D’ so that

g

1 1
>
hs,(r) = hss(r) (1 + D'r2c,(r)(d — 1))
On the other hand, as we have seen it in the proof of the lemma (.9, 55_1 (%) €
[0, 4%) for 6 > 0 and we can apply the inequality ([[1]) which gives

o) <bol () o ()
oo (50 (0 (e ()]

And using the same arguments concerning the function ¢ — ﬁ(t), we have

(12)

(13) s (st (7)) < 5 0+ DR - )

where
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(1 if >0
C“(T)_{cu('r) if p<0

From the two inequalities ([2) and (I3) we deduce that there exists a constant

p(6, 1, m) so that if R < p(d, p,n) then m > %5_(% and s, (s; (1)) < (1 +17).

Finally from the lemma [f.1 we deduce that

(I=mn)? o (141
< JdF,(u)? <
R253(r) [o]” < [dE(u)l P20 [0]
Since we have assumed that |u| =1 and v = u — (u, VMr)VY r we get the desired

result.
O

We can now give the proof of the theorem

Proof of Theorem [[.]: Let ¢ < ﬁ < ﬁ. From the lemma B.9 there exists a
constant Ie(n, b, h, 8,V (M)) so that if (Pp.) holds then ||Z] — }| < e. From this

and the lemma .3 we deduce that if M is contained in the ball B(p, p(d, 1, 7)) then

(1—n)? (1 —n)? M,.||2 2 (1+n)?
[m—l] —mﬂv 75 < |dFy(u)] —1<m—

To complete the proof of the theorem we need the following lemma

Lemma 4.3. There exists p'(d, 1) so that for any e < ﬁ and n > 0, the pinching
condition (Pr_ ) with

T...(n,b, b6,V (M)) = min(Co(n, b, h, 8,V (M)), A, (n, b, b, 8, V(M)))

and

An(na ba ha 57 V(M)) = n22’¥ 2(y+2
(Bb(lJro(l)) + a1 + 0(1))> V(M) 52 02(1 + o(1))

n

implies that for any immersion ¢ so that (M) C B(p, p'(, 1)) we have

V¥l <7

Proof. As usually by computing the Laplacian of |VMr|?> and using the Bochner
formula we get

1
3 / AV PV P2 de < / ((Adr, dr)y — Ric(V¥r, VM) [V r [ ~2du
M M

Now integrating by part and using the Gauss formula we obtain
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% / AV 2 VMr 22y < / (Ar)2 = RO (VMr, VM) — nHB(VMr, VM7)
M M

BT — [ Ar(V 9V dy
M
(14)
< [ rPITY 04 (0= Dl + (Vi DIBIR) [V
M M
—2(k—1) / ArvMdr(VMr, VM) VY PP dy
M
Now
VMdr(VMr, VMr)y = VN dr(VMr, VM) — B(VMr, VM) (VY 1 0)
= VY dr(VMy — VM 2VY r, My — VM2V 1)
— B(VMpr, VM) (VN 7 v)
From the comparisons theorems (see for instance [[[J] p 153) we deduce that

(15) VM dr (VM 7, V)| < (2—“ + HBHOO> V|2

I

Similarly, (e;)1<i<n being an orthonormal frame in a neighborhood of the point
where we are computing we have

|Ar| < Z VY r(es, e0)| + nH(VY r,v)
i=1

= Z (VY (e; — (e, VN 1)V rie; — (e, VY r)VY 1) + V1| B oo
i—1

C
<nE 4 Vil| Bl
“w

and reporting this and ([F) in (I4) we get

1 2
—/ AIVMr 2 VM |2 2d0 < 2k (nc—” + \/ﬁ||B||OO) / |V M| 2F2dy
2 Jm Sp M

(= D)l + (Vi £ DBIR) /M M2y

Now we choose p'(6, ) so that in the ball of radius p'(d, 1), c,(r) < 1. Now for

€ < 5; < 3 the pinching condition ((Pr,)) implies that EZE:; < = < 2h < 20.

Finally we have
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1
5/ AV PIVM P2 do < BH3 (1 / (VM2 dw
M

(1 + o(1) / 92 do
M

where § and 3’ are constants depending only on n or [i.
Now let ¢ < 1/2h. Then note that |[V¥r|? < )|ZT|2 i sh S| 2112 < 4b?| Z7T |2

and [ V¥rly < 26272 < BBV (M)Y") Z] T ri/e < BV (M) (1 4 o1)1E2,
Again from the proposition B, if ||V¥r|ls > 7 then

19 < (PO o)) vy

From this and the estimate of ||[V*r||y above, we have the desired result.

O

Now we are allowed to complete the proof of theorem [[.T. Let us recall that we
have chosen n = €b < 1 and put ' = (gb)!/2. Then if $(M) C B(p, R(d, 1, n)) (with
R(0, 1,m) = min(p(9, 1, m), p'(0, 1)) and if (Pr ) is satisfied then

&,M

<7(1 —cb)” 1) — (1 —eb)’eb < |dF,(u)]* — 1 < (L +eb)° -1

(1+ eb)? (1 —eb)?
noting that (U= 1) — (1 — eb)2eb = —=%b — (1 — eb)2%eh > —5eb and
(1+2b) (1+eb)

E}fig;z —1= (1f€£)2 < Leb, we deduce that ||dF,(u)|* — 1| < 5eb. From the choice
of 6 and e, we deduce that F' is a diffeomorphism and from the definition of the

Gromov-Hausdorf distance it follows that we have also

w5 (1)

On the other hand the we have

C.(n,b,h,6,V(M)) =T y(n,b,h,d8,V(M))
= min(I'c(n, b, h, 6, V(M)), Acyyrr2(n, b, hy 6,V (M)))

where

(i o)) a1+ (1)) b(e,)
Fe(”’b’h’é’wM”‘mm( VOIS VTR ’A<n,b,h,6,v<M>,w<a,b>>)
and

(220 4 g(1 + 0(1 )))27 V(M) b(1+ o(1))

From the definition of A and v we see that C.(n,b,h, V(M),0) — 0 when ¢ — 0
and C.(n,b,h,V(M),d) — 0 when b — oo.

A(ab)l/2 (na b, h, 9, V(M)) -

2(v+2)
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Moreover if V(M) < v and € = 7 for positive constants v and r, we have

Y(e,b)
A(n, b, h, 0, V(M), ¥(e, b))
_ p
T (BLADB (L + 0(1)) + BaAsb¥2(1 + o(1)) + Bsb(1 + (1)) b3 A,V (M)/n

s
o (BrA1020(1 + 0(1)) + BoAsb/20(1 + o(1)) + Ba(1 + 0(1)))7 13 A4

and from the definition of A;, A, and As, we see that A;6> — 0, A5bY/? — 0 and
Azb® — 0 when b — oo and then T'.(n,b, h,d, V(M)) too. Moreover

K

A(ab)l/Q(n, b, h, 5,V(M)) 2 2y
(P02 1+ 0(1)))” 2r42V (Y21 -+ o(1)

This completes the proof.

5. APPLICATION TO THE STABILITY

Briefly, we recall the problem of the stability of hypersurfaces with constant mean
curvature (see for instance [g]).

Let (M™,g) be an oriented compact n -dimensional hypersurface isometrically
immersed by ¢ in a n+ 1-dimensional oriented manifold (N"*! i). We assume that
M is oriented by the global unit normal field v so that v is compatible with the
orientations of M and N. Let F': (—e,e) x M — N be a variation of ¢ so that
F(0,.) = ¢. We recall that the balance volume is the function V : (—¢,e) — R
defined by

/ F*dvh
[0,t]x M

where dvy, is the element volume associated to the metric A. It is well known that

V'(0) = / fdv
M
where f(z) = (2X(0,2),v). Moreover the area function A(t) = / dvpy, satisfies
M
A'(0) = —n/ Hfdv
M
The balance volume V' is said to be preserving volume if V(¢) = V(0) in a

neighborhood of 0 ; in this case we have / fdv = 0. Conversely, for all smooth
M

function f so that / fdv = 0, there exists a preserving volume variation so that
M

f= (%—I;(O, x),v). The following assertions are equivalent
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(1) The immersion ¢ is a critical point of the area (i.e. A’(0) = 0 ) for all
variation with preserving volume.

/ H fdv = 0 for any smooth function so that / fdv=0.

(3) There exists a constant Hy so that A’(0) +nHyV'(0) = 0 for any variation.
(4) ¢ is of constant mean curvature H.

An immersion with constant mean curvature H, will be said stable if A”(0) > 0
for all preserving volume variation. Now we consider the function J(t) defined by

J(t) = A(t) + nHyV (t)
Then J”(0) is depending only on f and we have

7(0) = [ JdPav = [ (Ric¥ () + B foo
M M
where Ric" is the Ricci curvature of N with respect to the metric h. It is known
that ¢ is a stable constant mean curvature immersion if and only if J”(0) > 0 for
any smooth function so that / fdv=0.

M
Now let us give a proof of the theorem
Proof of Theorem [[.3: Let f be the first eigenfunction associated to A;(M). Since

fdv =0 then J”(0) > 0 and

M
M)/ fPdv — / (RicN (v, v) +nH* 4 |7|*) f2dv = 0
M M
where 7 is the umbilicity tensor (i.e. 7 =nHg— B). Since u < K < §, we deduce
that

n(H? 4 p) < M (M) < n(H? +6)

In other words, we have the pinching condition

n(H? +0) —n(6 — p) < M (M) < n(H* 4 6)

Now fix e = & and let R > 0 so that ¢(M) lies on a ball or radius R. Let p be the
extrinsic radius of M (i.e. the radius of the smallest ball containing ¢(M)). Then
ss(R) = ss(p). On the other hand, we know that ss(p) > ]11 > 5 + (see [B]). If we
assume that V(M) < 2, we see that M € H(n, ¢, N) for R small enough. On
the other hand from the theorem [ it follows that Cy/s,(n, b, h, V (M), ) — oo
when R — 0 and there exists R'(d, u,v,i(N)) so that if ¢(M) lies in a ball of
radius R'(9, i1, v,4(NN))) then Cyszp(n, b, h,V(M),5) = n(6 — p). Now we conclude
by putting Ro(d, i, v,i(N)) = min(R(d, u, 0/5), R'(9, pr,v,i(N))) and the point p is
nothing but the center of mass of M (the quantity R(d,u,60/5) is defined in the
theorem [I.])).

O
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6. APPLICATION TO THE ALMOST UMBILIC HYPERSURFACES

In this section we give an other application of eigenvalue pinching theorems for
almost umbilic hypersurfaces. We consider only the case where the ambient space
is of constant sectional curvature.

Theorem 6.1. Let (N""' h) be a n + 1-dimensional Riemannian manifold with
constant sectional curvature § and let M € H(n, ¢, N). Let p be the center of mass
of M. Letq > %, 6 € (0,1) and ¢ < %. Then there exist positive constants
Mme(n,b,h, V(M),0) and na-(n,b, h, V(M),§) so that if

(1) [[7ll2g < 7e.

(2) 1?2 = [[H %], < e

Then
o s o (1)

and M is diffeomorphic and -quasi-isometric to S(p, s;5* (%))

Remark 6.1. In the hyperbolic case we can obtain the Hausdorff proximity with
the dependence on the mean curvature.

In the Euclidean case providing from the pinching theorem proved in [ we can
improve the condition 2)

Theorem 6.2. Let (M",g) be a compact, connected and oriented n-dimensional
Riemannian manifold without boundary isometrically immersed by ¢ in R, Let
p be the center of mass of M. Then for any € > 0, there exist two constants
e (1, | H oo, V(M) and nac(n, [[Hl|oo, V(M)) so that if

(1) [|7ll2g < 71e-

(2) HH2 =S,

HEG < Mo forr = 2.

q

Moreover for any 6 € (0,1), there exist two constants m c(n,|B|«,V(M)) and
N2.e(N, || Blloo, V(M)) so that if the two conditions 1) and 2) are satisfied then M is

V(M)1/2r>
[Hll2r )~

Then

diffeomorphic and 0-quasi-isometric to S (p,

These theorems are obtained by combining the theorem [ and the eigenvalue
pinching theorems of [f] with an eigenvalue pinching result in almost positive Ricci
curvature due to E. Aubry ([]).

In the following theorem we denote Ric(x) the lowest eigenvalue of the Ricci
tensor Ric(z) at € M. Moreover for any function f, we put f_ = min(—f,0).

Theorem 6.3. (E.AUBRY) Let (M", g) be a complete n-dimensional Riemannian
manifold and ¢ > n/2. If M has finite volume and
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Pa = W </M (Ric — (n —1)k)Z dv) " < C(g,n)

then M 1s compact and

M (M) > nk(1 = C(n,q)p,)

Proof of Theorems:  Using Gauss formula and the fact that N is of constant
sectional curvature d, we have

|Ric — (n — 1)(H2 +8)gll,  |R®+nHB = B* — (n— 1)H%g — (n — 1)5g],

V(M) T V)
_ln = 2)Hr — 2|,
V(M)V/a
(n = 2)[ HlloolITll2g . NI715
ST von e TV
Now, putting k = V(M| =+ 0 we get

[Ric = (n = Dkglly _ [Ric = (n = D)(H* +0)glly , (n=Dvn || o _[IH]5
V(M) V(M) V(M) V(M)
(n =2 Hllllllog | _lI7ll5, (=Dl s IH]S
o V(M) V(M)Ya V(M) VM),
There exists two constants 1y -(n, b, h, V (M), ) and ny.(n, b, h, V (M), ) so that
i 7l < me and | H2 = G| < moc(n. b0 V(M).6) so that
[Ric — (n — Dkgll,
< AE ) Y Y M
VO (n,b,h,V(M))

where A.(n,b,h, V(M)) = min <<V(M s + 5) C(q,n)4, W) The esti-
mate (f]) and the theorem [p.3 allows us to conclude that

M(M) =n %+5 - C
~ A\ V(M)Yr :

Now the conclusion is immediate from the pinching theorems of this paper and [f].
O
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