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Sensitivity Analysis of the 
Orthoglide: A Three-DOF 
Translational Parallel Kinematic 
Machine
In this paper, two complementary methods are introduced to analyze the sensitivity of a 
three-degree-of-freedom (3-DOF) translational parallel kinematic machine (PKM) with 
orthogonal linear joints: the Orthoglide. Although these methods are applied to a par-
ticular PKM, they can be readily applied to 3-DOF Delta-Linear PKM such as ones with 
their linear joints parallel instead of orthogonal. On the one hand, a linkage kinematic 
analysis method is proposed to have a rough idea of the influence of the length variations 
of the manipulator on the location of its end-effector. On the other hand, a differential 
vector method is used to study the influence of the length and angular variations in the 
parts of the manipulator on the position and orientation of its end-effector. Besides, this 
method takes into account the variations in the parallelograms. It turns out that varia-
tions in the design parameters of the same type from one leg to another have the same 
effect on the position of the end-effector. Moreover, the sensitivity of its pose to geometric 
variations is a minimum in the kinematic isotropic configuration of the manipulator. On 
the contrary, this sensitivity approaches its maximum close to the kinematic singular 
configurations of the manipulator.
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1 Introduction
For two decades, parallel manipulators have attracted the atten-

tion of more and more researchers who consider them as valuable
alternative design for robotic mechanisms. As stated by numerous
authors, conventional serial kinematic machines have already
reached their dynamic performance limits, which are bounded by
high stiffness of the machine components required to support se-
quential joints, links, and actuators. Thus, while having good op-
erating characteristics �large workspace, high flexibility and ma-
neuverability�, serial manipulators have disadvantages of low
stiffness and low power. Conversely, parallel kinematic machines
�PKMs� offer essential advantages over their serial counterparts
�lower moving masses, higher stiffness and payload-to-weight ra-
tio, higher natural frequencies, better accuracy, simpler modular
mechanical construction, possibility to locate actuators on the
fixed base�.

However, PKMs are not necessarily more accurate than their
serial counterparts. Indeed, even if the dimensional variations can
be compensated with PKM, they can also be amplified contrary to
with their serial counterparts �1�. Wang and Masory �2� studied
the effect of manufacturing tolerances on the accuracy of a Stew-
art platform. Kim and Choi �3� used a forward error bound analy-
sis to find the error bound of the end-effector of a Stewart plat-
form when the error bounds of the joints are given, and an inverse
error bound analysis to determine those of the joints for the given
error bound of the end-effector. Kim and Tsai �4� studied the
effect of misalignment of linear actuators of a 3-DOF translational
parallel manipulator on the motion of its moving platform. Han et
al. �5� used a kinematic sensitivity analysis method to explain the
gross motions of a 3-UPU parallel mechanism, and they showed
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that it is highly sensitive to certain minute clearances. Fan et al.
�6� analyzed the sensitivity of the 3-PRS parallel kinematic
spindle platform of a serial-parallel machine tool. Verner et al. �7�
presented a new method for optimal calibration of PKM based on
the exploitation of the least error sensitive regions in their work-
space and geometric parameters space. As a matter of fact, they
used a Monte Carlo simulation to determine and map the sensi-
tivities to geometric parameters. Moreover, Caro et al. �8� devel-
oped a tolerance synthesis method for mechanisms based on a
robust design approach.

This paper aims at analyzing the sensitivity of the Orthoglide to
its dimensional and angular variations. The Orthoglide is a 3-DOF
translational PKM developed by Chablat and Wenger �9�. A small-
scale prototype of this manipulator was built at IRCCyN.

Here, the sensitivity of the Orthoglide is studied by means of
two complementary methods. First, a linkage kinematic analysis is
used to have a rough idea of the influence of the dimensional
variations to its end-effector and to show that the variations in
design parameters of the same type from one leg to another have
the same influence on the location of the end-effector. Although
this method is compact, it cannot be used to know the influence of
the variations in the parallelograms. Thus, a differential vector
method is developed to study the influence of the dimensional and
angular variations in the parts of the manipulator, and particularly
variations in the parallelograms, on the position and the orienta-
tion of its end-effector.

In the isotropic kinematic configuration, the end-effector of the
manipulator is located at the intersection between the directions of
its three actuated prismatic joints, and the condition number of its
kinematic Jacobian matrix is equal to 1 �10�. It is shown that this
configuration is the least sensitive one to geometrical variations,
contrary to the closest configurations to its kinematic singular
configurations, which are the most sensitive to geometrical
variations.
Although the two sensitivity analysis methods are applied to a



particular PKM, these methods can be readily applied to other
3-DOF Delta-linear PKM such as ones with parallel linear joints
instead of orthogonal ones.

2 Manipulator Geometry
The kinematic architecture of the Orthoglide is shown in Fig. 1.

It consists of three identical parallel chains that are formally de-
scribed as PRPaRR, where P, R, and Pa denote the prismatic,
revolute, and parallelogram joints, respectively, as shown in Fig.
2.

The mechanism input is made up of three actuated orthogonal
prismatic joints. The output body �with a tool mounting flange� is
connected to the prismatic joints through a set of three kinematic
chains. Inside each chain, one parallelogram is used and oriented
in a manner that the output body is restricted to translational
movements only.

The small-scale prototype of the Orthoglide was designed to
reach Cartesian velocity of 1.2 m/s and an acceleration of
17 m/s2. The desired payload is 4 kg �spindle, tool, included�.
The size of its prescribed cubic workspace Cu is 200�200
�200 mm, where the velocity transmission factors are bounded
between 1/2 and 2. The three legs are supposed to be identical.
According to �9�, the nominal lengths Li and widths di of the
parallelograms, and the nominal distances, ri, between points Ci
and the end-effector P are identical, i.e., L=L1=L2=L3
=310.58 mm, d=d1=d2=d3=80 mm, r=r1=r2=r3=31 mm.

As depicted in Fig. 3, Q1 and Q2, vertices of Cu, are defined at
the intersection between the Cartesian workspace boundary and
the axis x=y=z expressed in the reference coordinate frame Rb.
Q1 and Q2 are the closest points to the singularity surfaces. Their
Cartesian coordinates, expressed in Rb, are equal to �−73.21,
−73.21,−73.21� and �126.79, 126.79, 126.79�, respectively.

The parts of the manipulator are supposed to be rigid bodies
and there is no joint clearance. The legs of the manipulator, com-
posed of one prismatic joint, one parallelogram, and three revolute
joints, generate a five-DOF motion each. Besides, they are iden-

Fig. 1 Basic kinematic architecture of the Orthoglide
Fig. 2 Morphology of the ith leg of the Orthoglide
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tical. Therefore, according to Karouia et al. �11�, the manipulator
is isostatic. Thus, the results obtained by the sensitivity analysis
methods developed in this paper are meaningful.

3 Sensitivity Analysis
Two complementary methods are used to study the sensitivity

of the Orthoglide. First, a linkage kinematic analysis is used to
have a rough idea of the influence of the dimensional variations to
its end-effector. Although this method is compact, it cannot be
used to know the influence of the variations in the parallelograms.
Thus, a differential vector method is used to study the influence of
the dimensional and angular variations in the parts of the manipu-
lator, and particularly variations in the parallelograms, on the po-
sition and the orientation of its end-effector.

3.1 Linkage Kinematic Analysis. This method aims at com-
puting the sensitivity coefficients of the position of the end-
effector, P, to the design parameters of the manipulator. First,
three implicit functions depicting the kinematic of the manipulator
are obtained. A relation between the variations in the position of P
and the variations in the design parameters follows from these
functions. Finally a sensitivity matrix, which gathers the sensitiv-
ity coefficients of P, follows from the previous relation written in
matrix form.

3.1.1 Formulation. Figure 1 depicts the design parameters
taken into account. Points A1, A2, and A3 are the bases of the
prismatic joints. Their Cartesian coordinates, expressed in Rb, are
a1, a2, and a3, respectively.

a1 = �− a1 0 0�T �1a�

a2 = �0 − a2 0�T �1b�

a3 = �0 0 − a3�T �1c�

where ai is the distance between points Ai and O, the origin of Rb.
Points B1, B2, and B3 are the links between the prismatic and
parallelogram joints. Their Cartesian coordinates, expressed in Rb
are

b1 = �− a1 + �1

b1y

b1z
� �2a�

b2 = � b2x

− a2 + �2 � �2b�

Fig. 3 Cartesian workspace, Cu, points Q1 and Q2
b2z



b3 = � b3x

b3y

− a3 + �3
� �2c�

where �i is the displacement of the ith prismatic joint. b1y and b1z
are the position errors of point B1 according to y and z axes. b2x
and b2z are the position errors of point B2 according to the x and
z axes. b3x and b3y are the position errors of point B3 according to
x and y axes. These errors result from the orientation errors of the
directions of the prismatic actuated joints. The Cartesian coordi-
nates of C1, C2, and C3, expressed in Rb, are the following:

c1 = �px − r1 0 0�T �3a�

c2 = �0 py − r2 0�T �3b�

c3 = �0 0 pz − r3�T �3c�

where p= �px py pz�T is the vector of the Cartesian coordinates of
the end-effector P, expressed in Rb.

The expressions of the nominal lengths of the parallelograms
follow from Eq. �4�,

Li = �ci − bi�2, i = 1,2,3 �4�

where Li is the nominal length of the ith parallelogram and � · �2 is
the Euclidean norm. Three implicit functions follow from Eq. �4�
and are given by the following equations:

F1 = �− r1 + px + a1 − �1�2 + �py − b1y�2 + �pz − b1z�2 − L1
2 = 0

F2 = �px − b2x�2 + �− r2 + py + a2 − �2�2 + �pz − b2x�2 − L2
2 = 0

F3 = �px − b3x� + �py − b3y�2 + �− r3 + pz + a3 − �3�2 − L3
2 = 0

By differentiating functions F1, F2, and F3 with respect to the
design parameters of the manipulator and the position of the end-
effector, we obtain a relation between the positioning error of the
end-effector �p, and the variations in the design parameters �qi.

�Fi = Ai�p + Bi�qi = 0, i = 1,2,3 �5�
with

Ai = ��Fi/�px �Fi/�py �Fi/�pz� �6�

Bi = ��Fi/�ai �Fi/�biy �Fi/�biz �Fi/��i �Fi/�Li �Fi/�ri� �7�

�p = ��px �py �pz�T �8�

�qi = ��ai �hi �ki ��i �Li �ri�T �9�

where �ai, �hi, �ki, ��i, �Li, and �ri, depict the variations in ai, hi,
ki, �i, Li, and ri, respectively, with h1=b1y, k1=b1z, h2=b2x, k2
=b2z, h3=b3x, k3=b3y.

Integrating the three loops of Eq. �5� together and separating
the position parameters and design parameters to different sides

Fig. 4 Mean of sensitivity of px throughout Cu
yields the following simplified matrix form:
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A�p + B�q = 0 �10�
with

A = �A1
T A2

T A3
T�T � R3�3 �11�

B = �B1 0 0

0 B2 0

0 0 B3
� � R3�18 �12�

�q = ��q1
T �q2

T �q3
T�T � R18�1 �13�

Equation �10� takes into account the coupling effect of the three
independent structure loops. According to �9�, A is the parallel
Jacobian kinematic matrix of the Orthoglide, which does not meet
parallel kinematic singularities when its end-effector covers Cu.
Therefore, A is not singular and its inverse A−1 exists. Thus, the
positioning error of the end-effector can be computed using Eq.
�14�.

�p = C�q �14�
where

C = − A−1B = ��px/�a1 �px/�h1 ¯ �px/�r3

�py/�a1 �py/�h1 ¯ �py/�r3

�pz/�a1 �pz/�h1 ¯ �pz/�r3
� � R3�18

�15�
represents the sensitivity matrix of the manipulator. The terms of
C are the sensitivity coefficients of the Cartesian coordinates of
the end-effector to the design parameters and are used to analyze
the sensitivity of the Orthoglide.

3.1.2 Results of the Linkage Kinematic Analysis. The sensitiv-
ity matrix C of the manipulator depends on the position of its
end-effector.

Figures 4–7 depict the mean of the sensitivity coefficients of px,
py, pz, and p, when the end-effector covers Cu. It appears that the

Fig. 5 Mean of sensitivity of py throughout Cu
Fig. 6 Mean of sensitivity of pz throughout Cu



position of the end-effector is very sensitive to variations in the
position of points Ai, variations in the lengths of the parallelo-
grams, Li, variations in the lengths of prismatic joints, �i, and
variations in the position of points Ci defined by ri �see Fig. 2�.
However, it is little sensitive to the orientation errors of the direc-
tion of the prismatic joints, defined by parameters b1y, b1z, b2x,
b2z, b3x, b3y. Besides, it is noteworthy that px �py, pz, respectively�
is very sensitive to the design parameters which make up the 1st
�2nd, 3rd, respectively� leg of the manipulator, contrary to the
others. That is due to the symmetry of the architecture of the
manipulator. Henceforth, only the variations in the design param-
eters of the first leg of the manipulator will be taken into account.
Indeed, the sensitivity of the position of the end-effector to the
variations in the design parameters of the second and the third
legs of the manipulator can be deduced from the sensitivity of the
position of the end-effector to variations in the design parameters
of the first leg.

Chablat and Wenger �9� showed that if the prescribed bounds of
the velocity transmission factors �the kinematic criteria used to
dimension the manipulator� are satisfied at Q1 and Q2, then these
bounds are satisfied throughout the prescribed cubic Cartesian
workspace Cu. Q1 and Q2 are then the most critical points of Cu,
whereas O is the most interesting point because it corresponds to
the isotropic kinematic configuration of the manipulator. Here, we
assume that if the prescribed bounds of the sensitivity coefficients
are satisfied at Q1 and Q2, then these bounds are satisfied through-
out Cu.

Figures 8 and 9 depict the sensitivity coefficients of px and py to
the dimensional variations in the 1st leg, i.e., a1, b1y, b1z, �1, L1,
r1, along Q1Q2. It appears that these coefficients are a minimum in
the isotropic configuration, i.e., P�O, and a maximum when P
�Q2, i.e., in the closest configuration to the singular one. Figure
10 depicts the sensitivity coefficients of p along diagonal Q1Q2. It
is noteworthy that all the sensitivity coefficients are a minimum
when P�O and a maximum when P�Q2. Finally, Fig. 11 depicts
the global sensitivities of p, px, py, and pz to the dimensional
variations. It appears that they are a minimum when P�O, and a

Fig. 7 Mean of sensitivity of p throughout Cu

Fig. 8 Sensitivity of p to the variations in the 1st leg 
x 
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maximum when P�Q2.
Figures 12 and 13 depict the sensitivity coefficients of px and p

in the isotropic configuration. In this configuration, the position
error of the end-effector does not depend on the orientation errors
of the directions of the prismatic joints because the sensitivity of
the position of P to variations in b1y, b1z, b2x, b2z, b3x, b3y is null
in this configuration. Besides, variations in px, py, and pz are de-
coupled in this configuration. Indeed, variations in px, �py, pz,
respectively� are only due to dimensional variations in the 1st,
�2nd, 3rd, respectively� leg of the manipulator. The corresponding
sensitivity coefficients are equal to 1. It means that the dimen-
sional variations are neither amplified nor compensated in the iso-
tropic configuration.

Figures 14 and 15 depict the sensitivity coefficients of px and p
when the end-effector hits Q2 �P�Q2�. In this case, variations in
px, py, and pz are coupled. For example, variations in px are due to
both dimensional variations in the 1st leg and variations in the 2nd
and the 3rd legs. Besides, the amplification of the dimensional
variations is important. Indeed, the sensitivity coefficients of p are
close to 2 in this configuration. For example, as the sensitivity

Fig. 9 Sensitivity of py to the variations in the 1st leg

Fig. 10 Sensitivity of p to the variations in the 1st leg
Fig. 11 Global sensitivity of p, px, py, and pz



coefficient relating to L1 is equal to 1.9, the position error of the
end-effector will be equal to 19 �m if �L1=10 �m. Moreover, we
noticed numerically that Q2 configuration is the most sensitive
configuration to dimensional variations of the manipulator.

Fig. 12 Sensitivity of px in the isotropic configuration

Fig. 13 Sensitivity of p in the isotropic configuration

Fig. 14 Q2 configuration, sensitivity of px

Fig. 15 Q configuration, sensitivity of p 
2 
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According to Figs. 4–7 and 12–15, variations in design param-
eters of the same type from one leg to another have the same
influence on the location of the end-effector.

However, this linkage kinematic method does not take into ac-
count variations in the parallelograms, except the variations in
their global length. Thus, a differential vector method is devel-
oped below.

3.2 Differential Vector Method. In this section, we perfect a
sensitivity analysis method of the Orthoglide, which complements
the previous one. This method is used to analyze the sensitivity of
the position and the orientation of the end-effector to dimensional
and angular variations, and particularly to the variations in the
parallelograms. Moreover, it allows us to distinguish the varia-
tions which are responsible for the position errors of the end-
effector from the ones which are responsible for its orientation
errors. To develop this method, we were inspired by a Huang & al.
work on a parallel kinematic machine, which is made up of par-
allelogram joints too �12�.

First, we express the dimensional and angular variations in vec-
torial form. A relation between the position and the orientation
errors of the end-effector is then obtained from the closed-loop
kinematic equations. The expressions of the orientation and the
position errors of the end-effector, with respect to the variations in
the design parameters, are deduced from this relation. Finally, we
introduce two sensitivity indices to assess the sensitivity of the
position and the orientation of the end-effector to dimensional and
angular variations, and particularly to the parallelism errors of the
bars of the parallelograms.

3.2.1 Formulation. The schematic drawing of the ith leg of
the Orthoglide depicted in Fig. 2 is split in order to depict the
variations in design parameters in a vectorial form. The closed-
loop kinematic chains O−Ai−Bi−Bij −Cij −Ci− P, i=1,2 ,3, j
=1,2, are depicted by Figs. 16–19. Ri is the coordinate frame
attached to the ith prismatic joint. o, ai, bi, bij, cij, ci, p, are the
Cartesian coordinates of points O, Ai, Bi, Bij, Cij, Ci, P, respec-
tively, expressed in Ri and depicted in Fig. 2.

According to Fig. 16,

Fig. 16 Variations in O−Ai chain
Fig. 17 Variations in Ai−Bi chain



ai − o = Ri�a0 + �ai� �16�

where a0 is the nominal position vector of Ai with respect to O
expressed in Ri, �ai is the positioning error of Ai. Ri is the trans-
formation matrix from Ri to Rb. I3 is the �3�3� identity matrix
and

R1 = I3 �17�

R2 = �0 0 − 1

1 0 0

0 − 1 0
� �18�

R3 = �0 1 0

0 0 1

1 0 0
� �19�

According to Fig. 17,

bi − ai = Ri��i + ��i�e1 + Ri��Ai � ��i + ��i�e1 �20�

where �i is the displacement of the ith prismatic joint, ��i is its
displacement error, ��Ai= ���Aix ��Aiy ��Aiz�T is the angular varia-
tion of its direction, and

e1 = �1

0

0
� �21�

e2 = �0

0

1
� �22�

��j� = 	1, if j = 1

− 1, if j = 2

 �23�

Fig. 18 Variations in Bi−Bij−Cij chain

Fig. 19 Variations in C −C −P chain 
ij i 
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According to Fig. 18,

bij − bi = Ri�I3 + ��Ai � ����j��d/2 + �bi/2��I3 + ��Bi � �e2�
�24�

cij − bij = Liwi + �Liwi + Li�wi �25�

where d is the nominal width of the parallelogram, �bi is the
variation in the length of link Bi1Bi2 and is supposed to be equally
shared by each side of Bi. ��Bi= ���Bix ��Biy ��Biz�T is the orien-
tation error of link Bi1Bi2 with respect to the direction of the ith
prismatic joint, Li is the length of the ith parallelogram, �Lij is the
variation in the length of link BijCij, of which wi is the direction,
and �wi is the variation in this direction, orthogonal to wi.

According to Fig. 19,

cij − ci = Ri�I3 + �� � ����j��d/2 + �ci/2��I3 + ��Ci � �e2�
�26�

ci − p = �I3 + �� � �Ri�c0 + �ci� �27�

where �ci is the variation in the length of link Ci1Ci2, which is
supposed to be equally shared by each side of Ci.
��Ci= ���Cix ��Ciy ��Ciz�T is the orientation error of link Ci1Ci2

with respect to link CiP. c0 is the nominal position vector of Ci
with respect to end-effector P, expressed in Ri, �ci is the position
error of Ci expressed in Ri, and ��= ���x ��y ��z�T is the orien-
tation error of the end-effector, expressed in Rb.

Implementing linearization of Eqs. �16�–�26� and removing the
components associated with the nominal constrained equation p0
=Ri�a0+�ie1−c0�+Liwi, yields

�p = p − p0 = Ri��ei + �i���Ai � e1� + ��j�d/2���Ai � e2�

+ ��j�d/2���i � e2� + ��j��mi/2e2� + �Lijwi + Li�wi − ��

� Ri�c0 + d/2��j�e2� �28�

where �p is the position error of the end-effector of the manipu-
lator; �ei=�ai+��ie1−�ci is the sum of the position errors of
points Ai, Bi, and Ci expressed in Ri; ��i=��Bi−��Ci is the sum
of the orientation errors of the ith parallelogram with respect to
the ith prismatic joint and the end-effector; �mi=�bi−�ci corre-

sponds to the parallelism error of links Bi1Ci1 and Bi2Ci2, which is
depicted by Fig. 20.

Equation �28� shows the coupling of the position and orienta-
tion errors of the end-effector. Contrary to the orientation error,
the position error can be compensated because the manipulator is
a translational 3-DOF PKM. Thus, it is more important to mini-
mize the geometrical variations, which are responsible for the
orientation errors of the end-effector than the ones, which are
responsible for its position errors.

The following equation is obtained by multiplying both sides of
T

Fig. 20 Variations in the ith parallelogram
Eq. �28� by wi and utilizing the circularity of hybrid product.



wi
T�p = wi

TRi�ei + �i�Rie1 � wi�TRi��Ai + ��j�d/2�Rie2

� wi�TRi���Ai + ��i� + ��j��mi/2wi
TRie2 + �Lij − �Ri�c0

+ ��j�d/2e2� � wi�T�� �29�

3.2.1.1 Orientation Error Mapping Function. By subtraction
of Eqs. �29� written for j=1 and j=2, and for the ith kinematic
chain, a relation is obtained between the orientation error of the
end-effector and the variations in design parameters, which is in-
dependent of the position error of the end-effector.

d�Rie2 � wi�T�� = �li + d�Rie2 � wi�TRi���Ai + ��i� + �miwi
TRie2

�30�

where �li=�Li1−�Li2, the relative length error of links Bi1Ci1 and

Bi2Ci2, depicts the parallelism error of links Bi1Bi2 and Ci1Ci2 as
shown in Fig. 20. Equation �30� can be written in matrix form:

�� = J���� �31�

with

J�� = D−1E �32�

D = d��R1e2 � w1�T

�R2e2 � w2�T

�R3e2 � w3�T � �33�

E = �E1 ¯ ¯

¯ E2 ¯

¯ ¯ E3
� �34�

Ei = �1 wi
TRie2 d�Rie2 � wi�TRi d�Rie2 � wi�TRi� �35�

�� is the orientation error of the end-effector expressed in Rb, and
��= ���1

T ,��2
T ,��3

T �T such that ��i= ��li ,�mi ,��Ai
T ,��i

T�T. The deter-
minant of D will be null if the normal vectors to the plans, which
contain the three parallelograms respectively, are collinear, or if
one parallelogram is flat. Here, this determinant is not null when P
covers Cu because of the geometry of the manipulator. Therefore,
D is nonsingular and its inverse D−1 exists.

As �Rie2�wi�T�Rie2, ��Aiz, and ��iz, the third components of
��Ai and ��i expressed in Ri, have no effect on the orientation of
the end-effector. Thus, matrix J�� can be simplified by eliminating
its columns associated with ��Aiz and ��iz, i=1,2 ,3. Finally, eigh-
teen variations: �li, �mi, ��Aix, ��Aiy, ��ix, ��iy, i=1,2 ,3, should
be responsible for the orientation error of the end-effector.

3.2.1.2 Position Error Mapping Function. By addition of Eqs.
�29� written for j=1 and j=2, and for the ith kinematic chain, a
relation is obtained between the position error of the end-effector
and the variations in design parameters, which does not depend on
��i.

wi
T�p = �Li + wi

TRi�ei + �i�Rie1 � wi�TRi��Ai − �Ric0 � wi�T��

�36�

Equation �36� can be written in matrix form:

�p = Jpp�p + Jp��� = �JppJp���p

��
� �37�

with

Jpp = F−1G �38�

Jp� = F−1HJ�� �39�

F = �w1w2w3�T �40�
G = diag�Gi� �41�

7

Gi = �1 wi
TRi �i�Rie1 � wi�TRi� �42�

H = − �R1c0 � w1 R2c0 � w2 R3c0 � w3� �43�

�p = ��p1
T ,�p2

T ,�p3
T �T �44�

�pi = ��Li,�ei
T,��Ai

T �T �45�

�Li= ��Li1+�Li2� /2 is the mean value of the variations in links

Bi1Ci1 and Bi2Ci2, i.e., the variation in the length of the ith paral-
lelogram. �p is the set of the variations in design parameters,
which should be responsible for the position errors of the end-
effector, except the ones which should be responsible for its ori-
entation errors, i.e., ��. �p is made up of three kinds of errors: the
variation in the length of the ith parallelogram �i.e., �Li, i
=1,2 ,3�, the position errors of points Ai, Bi, and Ci, �i.e., �ei, i
=1,2 ,3� and the orientation errors of the directions of the pris-
matic joints �i.e., ��Ai, i=1,2 ,3�. Besides, F is nonsingular and its
inverse F−1 exists because F corresponds to the Jacobian kine-
matic matrix of the manipulator, which is not singular when P
covers Cu, �9�.

According to Eq. �36� and as �Rie1�wi�T�Rie1, matrix Jpp

can be simplified by eliminating its columns associated with ��Aix,
i=1,2 ,3. Finally, 33 variations: �Li, �eix, �eiy, �eiz, ��Aix, ��Aiy,
��Aiz, �li, �mi, ��ix, ��iy, i=1,2 ,3, should be responsible for the
position error of the end-effector.

Rearranging matrices Jpp and Jp�, the position error of the end-
effector can be expressed as:

�p = J�q = �J1 J2 J3���q1 �q2 �q3�T �46�

with �qi= ��Li ,�eix ,�eiy ,�eiz ,��Aix ,��Aiy ,��Aiz ,�li ,�mi ,
��ix ,��iy�, and J�R3�33.

3.2.1.3 Sensitivity Indices. In order to investigate the influence
of the design parameters errors on the position and the orientation
of the end-effector, sensitivity indices are required. According to
Sec. 3.1.2, variations in the design parameters of the same type
from one leg to the other have the same influence on the location
of the end-effector. Thus, assuming that variations in the design
parameters are independent, the sensitivity of the position of the
end-effector to the variations in the kth design parameter respon-
sible for its position error, i.e., �q�1,2,3�k, is called �k and is defined
by Eq. �47�.

�k =��
i=1

3

�
m=1

3

Jimk
2 , k = 1, . . . ,11 �47�

Likewise, 	r is a sensitivity index of the orientation of the end-
effector to the variations in the rth design parameter responsible
for its orientation error, i.e., ���1,2,3�r. 	r follows from; Eq. �31�
and is defined by Eq. �48�.

	r = arccos
tr�Qr� − 1

2
�48�

where Qr is the rotation matrix corresponding to the orientation
error of the end-effector, and 	r is a linear invariant: its global
rotation �13�.

Qr = �C	zr
C	yr

�C	zr
S	yr

S	xr
− S	zr

C	xr
� �C	zr

S	yr
C	xr

+ S	zr
S	xr

�

S	zr
C	yr

�S	zr
S	yr

S	xr
+ C	zr

C	xr
� �S	zr

S	yr
C	xr

− C	zr
S	xr

�

− S	yr
C	yr

S	xr
C	yr

C	xr

�
�49�

such that C	xr
=cos 	xr, S	xr

=sin 	xr, C	yr
=cos 	yr, S	yr

=sin 	yr,
C	zr

=cos 	zr, S	zr
=sin 	zr, and

	 =

2

J2 , r = 1, . . . ,6 �50�
xr ��
j=0

��1�6j+r�



	yr =��
j=0

2

J��2�6j+r�
2 , r = 1, . . . ,6 �51�

	zr =��
j=0

2

J��3�6j+r�
2 , r = 1, . . . ,6 �52�

Finally, �k can be employed as a sensitivity index of the posi-
tion of the end-effector to the kth design parameter responsible for
the position error. Likewise, 	r can be employed as a sensitivity
index of the orientation of the end-effector to the rth design pa-
rameter responsible for the orientation error. It is noteworthy that
these sensitivity indices depend on the location of the end-
effector.

3.2.2 Results of the Differential Vector Method. The sensitiv-
ity indices defined by Eqs. �47� and �48� are used to evaluate the
sensitivity of the position and orientation of the end-effector to
variations in design parameters, particularly to variations in the
parallelograms.

Figures 21�a� and 21�b� depict the sensitivity of the position of
the end-effector along the diagonal Q1Q2 of Cu, to dimensional
variations and angular variations, respectively. According to Fig.
21�a�, the position of the end-effector is very sensitive to varia-
tions in the lengths of the parallelograms, �Li, and to the position
errors of points Ai, Bi, and Ci along axis xi of Ri, i.e., �eix. Con-
versely, the influence of �li and �mi, the parallelism errors of the
parallelograms, is low and even negligible in the kinematic iso-
tropic configuration. According to Fig. 21�b�, the orientation er-
rors of the prismatic joints depicted by ��Aiy and ��Aiz are the
most influential angular errors on the position of the end-effector.
Besides, the position of the end-effector is not sensitive to angular

Fig. 21 Sensitivity of the position of t
sional variations and „b… to angular va

Fig. 22 Sensitivity of the orientation

dimensional variations and „b… to angula
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variations in the isotropic configuration.
Figures 22�a� and 22�b� depict the sensitivity of the orientation

of the end effector, along Q1Q2, to dimensional and angular varia-
tions. According to Fig. 22�a�, �li and �mi are the only dimen-
sional variations, which are responsible for the orientation error of
the end-effector. However, the influence of the parallelism error of
the small sides of the parallelograms, depicted by �li, is more
important than the one of the parallelism error of their long sides,
depicted by �mi.

According to Figs. 21 and 22, the sensitivity of the position and
the orientation of the end-effector is generally null in the kine-
matic isotropic configuration �p=0�, and is a maximum when the
manipulator is close to a kinematic singular configuration, i.e.,
P�Q2. Indeed, only two kinds of design parameters variations
are responsible for the variations in the position of the end-
effector in the isotropic configuration: �Li and �eix. Likewise, two
kinds of variations are responsible for the variations in its orien-
tation in this configuration: �li, the parallelism error of the small
sides of the parallelograms, ��Aiy and ��iy. Moreover, the sensi-
tivities of the pose �position and orientation� of the end-effector to
these variations are a minimum in this configuration, except for
�li. On the contrary, Q2 configuration, i.e., P�Q2, is the most
sensitive configuration of the manipulator to variations in its de-
sign parameters. Indeed, as depicted by Figs. 21 and 22, variations
in the pose of the end-effector depend on all the design parameters
variations and are a maximum in this configuration.

Moreover, Figs. 21 and 22 can be used to compute the varia-
tions in the position and the orientation of the end-effector with
knowledge of the amount of variations in design parameters. For
instance, let us assume that the parallelism error of the small sides
of the parallelograms ��li�, is equal to 10 �m. According to Fig.

end-effector along Q1Q2: „a… to dimen-
tions

f the end-effector along Q1Q2: „a… to
he
ria
o

r variations



22�a�, the position error of the end-effector will be equal about to
3 �m in Q1 configuration �P�Q1�. Likewise, according to Fig.
21�b�, if the orientation error of the direction of the ith prismatic
joint round axis yi of Ri is equal to 1 deg, i.e., ��Aiy =1 deg, the
position error of the end-effector will be equal about to 4.8 mm in
Q2 configuration.

Let us assume now that the length and angular tolerances are
equal to 0.05 mm and 0.03 deg, respectively. Figure 23�a� shows
the maximum position error of the end-effector when it follows
diagonal Q1Q2 of cube Cu. Likewise, Fig. 23�b� shows the maxi-
mum orientation error of the end effector along Q1Q2. On both
sides, the error is a minimum when the manipulator is in its kine-
matic isotropic configuration and is a maximum in Q2 configura-
tion. Besides, the maximum position and orientation errors of the
end-effector are equal to 0.7 mm and 0.4 deg, respectively. These
values correspond to the worst case scenario, which is unlikely.

Fig. 23 Maximum position „a… and o
along Q1Q2

Fig. 24 Repartition of the position err
end-effector in Q1 configuration

Fig. 25 Repartition of the position err

end-effector in the isotropic configuratio
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In order to take into account realistic machining tolerances, let
us assume that the distribution of length and angular variations is
normal.

Figures 24�a� and 24�b� illustrate the repartition of the position
and the orientation errors of the end-effector in Q1 configuration,
respectively.

Figures 25�a� and 25�b� illustrate the repartition of the position
and the orientation errors of the end-effector in the kinematic
isotropic configuration, respectively.

Figures 26�a� and 26�b� illustrate the repartition of the position
and the orientation errors of the end-effector in Q2 configuration,
respectively.

In Figures 24�a�, 25�a�, and 26�a� ��b�, resp.�, the horizontal
axis depicts the Euclidean norm of the position �orientation, resp.�
error of the end-effector and the vertical axis depicts the corre-
sponding probability density function. To plot these figures, we

ntation „b… errors of the end-effector

„a… and the orientation error „b… of the

„a… and the orientation error „b… of the
rie
or
or

n



computed the position and orientation errors of the end-effector
corresponding to more than 3000 sets of geometric variations fol-
lowing a normal distribution. For example, we can deduce from
these calculations the probabilities to get a position error lower
than 0.3 mm and an orientation error lower than 0.25 deg in Q1,
the isotropic, and Q2 configurations.

According to Table 1, the probability to get a position error
lower than 0.3 mm is higher in the kinematic isotropic configura-
tion than in Q1 and Q2 configurations. However, the probability to
get an orientation error lower than 0.25 deg is the same in Q1 and
the isotropic configurations, but is lower in Q2 configuration.

4 Conclusions
In this paper, two complementary methods were introduced to

analyze the sensitivity of a three-degree-of-freedom translational
parallel kinematic machine with orthogonal linear joints: the Or-
thoglide. Although these methods were applied to a particular
PKM, they can be readily applied to three-DOF Delta-Linear
PKM such as ones with their linear joints parallel instead of or-
thogonal. Indeed, the input-output equations can be set in a very
similar way since all Delta-linear PKM have identical leg kine-
matics, the only difference being in the closure equations �14�.

On the one hand, a linkage kinematic analysis method was
proposed to have a rough idea of the influence of the length varia-
tions of the manipulator on the location of its end-effector. On the
other hand, a differential vector method was developed to study
the influence of the length and angular variations in the parts of
the manipulator on the position and orientation of its end-effector.
This method has the advantage of taking into account the varia-
tions in the parallelograms.

According to the first method, variations in design parameters
of the same type from one leg to another have the same effect on
the end-effector. Besides, the position of the end-effector is very
sensitive to variations in the lengths of parallelograms and pris-
matic joints. The second method shows that the parallelism errors
of the bars of parallelograms are little influential on the position of
the end-effector. Nevertheless, the orientation of the end-effector
of the manipulator is more sensitive to the parallelism errors of

Fig. 26 Repartition of the position err
end-effector in Q2 configuration

Table 1 Probabilities to get a position error lower than 0.3 mm
and an orientation error lower than 0.25 deg in Q1, the isotro-
pic, and Q2 configurations

Configuration

Q1 Isotropic Q2

Prob���p�2�0.3 mm� 0.8468 0.9683 0.7276
Prob����0.25 deg� 0.9691 0.9690 0.9453
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the small sides of the parallelograms than to the ones of their long
sides. Furthermore, it turns out that the sensitivity of the pose of
the end-effector of the manipulator to geometric variations is a
minimum in its kinematic isotropic configuration. On the contrary,
this sensitivity approaches its maximum close to the kinematic
singular configurations of the manipulator.

Therefore, these results should help the designer of the Or-
thoglide to synthesize its dimensional tolerances. Likewise, these
methods can be applied to other Delta-Linear PKM with an aim of
tolerance synthesis. Finally, the next steps in our research work
are to compare the sensitivity of Delta-Linear PKM to variations
in their geometric parameters, and to study the relation between
the sensitivity and the stiffness of such manipulators.
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Nomenclature
Rb�O ,x ,y ,z� 
 reference coordinate frame cen-

tered at O, the intersection be-
tween the directions of the three
actuated prismatic joints

RP�P ,X ,Y ,Z� 
 coordinate frame attached to the
end-effector

Ri�Ai ,xi ,yi ,zi� 
 coordinate frame attached to the
ith prismatic joint, i=1,2 ,3

p= �px py pz�T 
 vector of the Cartesian coordi-
nates of the end-effector, ex-
pressed in Rb

�p= ��px �py �pz�T 
 position error of the end-effector,
expressed in Rb

��= ���x ��y ��z�T 
 orientation error of the end-
effector, expressed in Rb

�i 
 displacement of the ith prismatic
joint

��i 
 displacement error of the ith pris-
matic joint

Li 
 theoretical length of the ith
parallelogram

Ai ,Bi ,Ci 
 depicted in Fig. 1
ai 
 distance between points O and Ai
ri 
 distance between points P and Ci

b1y ,b1z 
 position errors of point B1 along y
and z axes, respectively

b2x ,b2z 
 position errors of point B2 along x
and z axes, respectively

b3x ,b3y 
 position errors of point B3 along x

„a… and the orientation error „b… of the
or
and y axes, respectively



h1 
 b1y
k1 
 b1z
h2 
 b2x
k2 
 b2x
h3 
 b3x
k3 
 b3y
di 
 nominal width of the ith

parallelogram
�Li 
 variation in the length of the ith

parallelogram
�Lij 
 variation in the length of link

BijCij, j=1,2 �see Fig. 2�
�bi 
 variation in the length of link

Bi1Bi2
�ci 
 variation in the length of link

Ci1Ci2
�li 
 parallelism error of links Bi1Bi2

and Ci1Ci2
�mi 
 parallelism error of links Bi1Ci1

and Bi2Ci2
wi 
 direction of links Bi1Ci1 and

Bi2Ci2
�wi 
 variation in the direction of links

Bi1Ci1 and Bi2Ci2
�ei 
 sum of the position errors of

points Ai ,Bi ,Ci
��Ai= ���Aix ��Aiy ��Aiz�T 
 angular variation in the direction

of the ith prismatic joint
��Bi= ���Bix ��Biy ��Biz�T


 angular variation between Bi1Bi2
and the direction of the ith pris-
matic joint

��Ci= ���Cix ��Ciy ��Ciz�T 
 angular variation between the
end-effector and Ci1Ci2

��i= ���ix ��iy ��iz�T 
 sum of the orientation errors of
the ith parallelogram with respect
to the ith prismatic joint and the

end-effector

11
DOF 
 degree of freedom
PKM 
 parallel kinematic machine
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