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What is a solution of a system of polynomial differential equations ? This paper provides an original presentation of well-known theorems, with a computer scientist flavor, relying on an improved normal form algorithm.

Introduction

According to the reference book [START_REF] Fels | Differential Algebra[END_REF] on differential algebra by Ritt, a solution (or a zero) of a polynomial differential system Σ in n differential indeterminates, m derivations, with coefficients in some differential field of characteristic zero (say, the field Q of the rational numbers for simplicity), is not a n-tuple of functions depending on m variables but a n-tuple of quantities living in some differential field extension of the base field of Σ which annihilates the system. One refers to such a solution as an abstract solution in this paper. This viewpoint is actually the analogue of the classical viewpoint for usual (non differential) polynomial systems: a solution of a polynomial system in n indeterminates and coefficients in Q is a n-tuple of values taken in some finite field extension of Q or, more simply, in the field C of the complex numbers since every finite field extension of Q can be embedded in C. Indeed, Ritt wrote in his preface that his presentation of differential algebra was deeply influenced by the works of Emmy Noether in the 1920's. However, the theory is much less intuitive in differential than in non differential algebra. In particular, the universal differential field extensions which would play, in the differential setting, the role of the field C, are much less familiar than C for the majority of scientists. See [START_REF] Robert | Differential Algebra and Algebraic Groups[END_REF]chap. III] or [11, sect. 1.5]. In his founding book, Ritt does not neglect the point of view of Analysis and which are assumed to commute pairwise. This paper is mostly concerned by a differential polynomial ring R in n differential indeterminates u 1 , . . . , u n with coefficients in a commutative differential field K of characteristic zero, say K = Q. Letting U = {u 1 , . . . , u n }, one denotes R = K{U }, following Ritt and Kolchin. The u i can be thought of as the unknown functions of the differential equations but, at this stage, they are plain symbols. The set of derivations generates a commutative monoid w.r.t. the composition operation.

It is denoted:

Θ = {δ a1 1 • • • δ am m | a 1 , .
. . , a m ∈ N} where N stands for the set of the nonnegative integers. The elements of Θ are the derivation operators. If θ = δ a1 1 • • • δ am m is a derivation operator then ord θ = a 1 + • • • + a m denotes its order. The monoid Θ acts on U , giving the infinite set ΘU of the derivatives. One indices derivations with letters e.g. δ x , δ y and one denotes derivatives using subscripts e.g. u xy denotes δ x δ y u.

An important construction in the rings theory is that of ideals for it permits to build factor rings of a ring R and, when R = K[X] is a polynomial ring over a field K, to build field extensions of K. One defines differential ideals in the differential rings theory for a similar purpose. By definition, a differential ideal A of a differential ring R is an ideal of R which is stable under the action of derivations: a ∈ A ⇒ δa ∈ A for all a ∈ R and derivation δ. Since the concept of factor ring is central in this paper, let us briefly introduce it, for casual readers, starting by analogy with the ring Z of the integer numbers. If n is a nonzero integer, Z/nZ denotes the set of the n residue classes of the equivalence relation modulo the ideal nZ of Z. The set Z/nZ is endowed with a ring structure by letting (the "bar" stands for "residue class")

a + b = a + b, a × b = a × b.
This definition makes sense for the class of a+b (resp. a×b) only depends on the classes, not on the chosen representatives. If A is an ideal of a ring R, one defines the factor ring R/A exactly the same way. Now, if A is a differential ideal of a differential ring R, the factor ring R/A can be endowed with derivations (indeed, as many derivations as R has), thereby becoming a differential ring, by letting δa = δa. Again, the definition makes sense because the ideal is differential: the class of δa only depends on the class of a, not on a [18, chap. I, §2].

If A is a finite subset of R, one denotes (A) the smallest ideal containing A w.r.

t. the inclusion relation and [A] the smallest differential ideal containing A.

If A is an ideal, then √ A, which is called the radical of A, is the set of all the ring elements a power of which lies in A [41, chap. III, §7]. The radical of a (differential) ideal is a (differential) ideal [32, chap. I, §9]. A radical (perfect in the Ritt-Kolchin terminology) ideal is an ideal equal to its radical. If S = {s 1 , . . . , s t } is a finite subset of R \ K then 3 Two inference rules and a theorem Throughout this paper, Σ denotes a finite subset of the polynomial differential ring R = K{U } endowed with m abstract derivations δ 1 , . . . , δ m . Naively, a solution of Σ is a n-tuple of "values" which, when substituted in the equations of Σ, annihilate them. We are concerned by the type of algebraic structure G in which these values can lie. The differential elimination methods cited in the introduction rely on two inference rules and one theorem. The inference rules are, for all differential polynomials p, q ∈ R:

A : S ∞ = {p ∈ R | ∃ a 1 , . . . , a t ∈ N, s a1 1 • • • s at t p ∈ A}
1. p = 0 ⇒ θp = 0 where θp denotes a derivative of p of any order,

2. p q = 0 ⇒ [p = 0 or q = 0].
The key theorem is a Nullstellensatz. See [32, Theorem 1 (Nullstellensatz) Every radical differential ideal of R is an intersection of prime differential ideals.

To enlighten the consequences of the inference rules, let us take for first example an ordinary polynomial differential system made of a unique equation, a famous example [32, chap. II, example 1] of Ritt:

u 2 x -4 u = 0.
The first inference rule implies that one does not change the solutions of this system by augmenting it with the infinite set of the derivatives of the equation:

u 2 x -4 u = 0, 2 ux uxx -4 ux = 0, 2 ux uxxx -2 u 2 xx -4 uxx = 0, . . . (1) 
Observe that the second equation factors:

2 u x u xx -4 u x = 2 u x (u xx -2).
The second rule implies that any solution of the system annihilates either the first or the second factor. Thus the system is equivalent to the disjunction:

u 2 x -4 u = 0, u x = 0 or u 2 x -4 u = 0, u xx -2 = 0
If one solves these systems by means of Analysis, one actually gets two solutions of the initial equation: the zero function u(x) = 0 and the family of parabolas u(x) = (x+c) 2 where c is some constant. With the wording of Analysis, the first rule implies that one needs to look for solutions in terms of smooth functions (over some open set which would need to be precised). This is a restriction: consider the function f (x) of one real variable, which is zero over R -and equal to x 2 over R + . It is only differentiable once at x = 0. If one looks for solutions over some open set containing zero, this solution is lost. Our second example is given by the "differential" equation u v = 0 of the differential polynomial ring Q{u, v} endowed with the derivation δ x = ∂/∂x. Applying the second inference rule, one sees that it is equivalent to:

u = 0 or v = 0.
Now, consider the function f (x) of one real variable, which is zero over R -and equal to e -1

x 2 over R + and the function g(x) the graph of which is symmetrical to that of f (x) w.r.t. the ordinates axis. These two functions are smooth but non analytic over any open set containing zero. Over any such open set, the pair (f (x), g(x)), which is a solution of the initial equation, does not annihilate any of the two systems produced after the splitting cases process: it is lost.

Summary 1

• The algebraic structures G in which one seeks solutions for Σ must be Kalgebras, differential (one needs to be able to differentiate their elements infinitely many times) and integral domains.

• Whatever the differential polynomial p ∈ [Σ] the systems Σ and Σ ∪ {p} have the same set of solutions.

Abstract solutions

Theorem and definition 1 Define an abstract solution of Σ as a pair:

1. a differential field extension G of K, . One needs to show that Σ admits an abstract solution which does not annihilate p. Theorem 1 implies that there exists a prime differential ideal p which contains Σ but not p. The ring R/p is a domain since p is prime. It is differential since p is differential. Take for G the ring of fractions of the residue class ring R/p and for u 1 , . . . , u n the images of the differential indeterminates by the natural ring homomorphism R → G. Evaluating a differential polynomial at u 1 , . . . , u n amounts to taking its image by φ. The elements of Σ are mapped to zero. The polynomial p is mapped to some nonzero element of G.

Abstract solutions are very satisfactory from an algebraic point of view but, in practice, one would like to interpret the abstract derivations as derivations w.r.t. independent variables (δ i = ∂/∂x i ) and one would like solutions to be n-tuples of "functions" of m variables u j (x 1 , . . . , x m ). This is done in section 7 but first, one introduces characteristic sets, normal forms and purely algebraic solutions of differential ideals.

Characteristic sets and normal forms

Definition 1 A ranking is a total ordering over ΘU which satisfies the two following axioms:

1. v ≤ θv for every v ∈ ΘU and θ ∈ Θ, 2. v < w ⇒ θv < θw for every v, w ∈ ΘU and θ ∈ Θ.

See [18, chap. I, sect. 8]. Rankings such that ord θ < ord φ ⇒ θu < φv for every θ, φ ∈ Θ and u, v ∈ U are called orderly. Rankings such that θu < φu ⇒ θv < φv for every θ, φ ∈ Θ and u, v ∈ U are called Riquier. These two special types of rankings will be especially useful in section 8.

Fix a ranking. Consider some differential polynomial p / ∈ K. The highest derivative v w.r.t. the ranking such that deg(p, v) > 0 is called the leading derivative of p. It is denoted ld p. The leading coefficient of p w.r.t. v is called the initial of p. The differential polynomial ∂p/∂v is called the separant of p. If C is a finite subset of R \ K then I C denotes its set of initials, S C denotes its set of separants and

H C = I C ∪ S C .
A differential polynomial q is said to be partially reduced w.r.t. p if it does not depend on any proper derivative of the leading derivative v of p. It is said to be reduced w.r.t. p if it is partially reduced w.r.t. p and deg(q, v) < deg(p, v). A set of differential polynomials of R \ K is said to be autoreduced if its elements are pairwise reduced. Autoreduced sets are necessarily finite [18, chap. I, sect. 9]. To each autoreduced set C, one may associate the set L = ld C of the leading derivatives of C and the set N = ΘU \ ΘL of the derivatives which are not derivatives of any element of L (the derivatives "under the stairs" defined by C).

Example. The following system

C v xx -u x , v y - u x u y 4 , u 2 x -4 u, u 2 y -2 u
is autoreduced w.r.t. the Riquier orderly ranking:

u < v < u y < u x < v y < v x < u yy < u xy < u xx < v yy < • • •
The set of leading derivatives is L = {v xx , v y , u x , u y }. The set of the derivatives which are not derivatives of any element of

L is N = ΘU \ ΘL = {u, v, v x }.
It turns out to be finite here.

Ritt's reduction algorithm is a generalization for differential polynomials of the classical pseudoremainder algorithm (prem) defined in [17, vol. 2, page 407]. Ritt's algorithm is presented in [18, chap. I, sect. 9]. Given a differential polynomial p and an autoreduced set C, it permits to compute a set of exponents a 1 , . . . , a t ∈ N and a differential polynomial p ′ partially reduced w.r. Every radical differential ideal can be decomposed as a finite intersection of differential ideals A i defined by characteristic sets C i . Algorithms performing this task are described in [START_REF] Boulier | Computing representations for radicals of finitely generated differential ideals[END_REF][START_REF] Li | Coherent, regular and simple systems in zero decompositions of partial differential systems[END_REF][START_REF] Hubert | Factorization free decomposition algorithms in differential algebra[END_REF]. The characteristic sets produced by these algorithms hold an extra property:

A i = [C i ] : H ∞ Ci .
They are called characterizable in [START_REF] Hubert | Factorization free decomposition algorithms in differential algebra[END_REF]. The next lemma is well-known. 

Lemma 1 If C is a characteristic set of a differential ideal A of R then every element of A is reduced to zero by C. If moreover A = [C] : H ∞ C then
Proof Denote C = {c 1 , . . . , c t }. Assume ld c 1 < • • • < ld c t . For each 1 ≤ k < t, denote C k = {c 1 , . . . ,
H ∞ C are equal. The set C is a characteristic set, in the non differential sense, of (C) : I ∞ C since it is a characteristic set of [C] : H ∞ C and (C) : I ∞ C ⊂ [C] : H ∞ C . According to [1, Theorem 6.1], C is thus a regular chain [9, Definition 3.1] whence the initial i k of c k is regular modulo the ideal (C k-1 ) : I ∞ C k-1 for each 2 ≤ k ≤ t. By [9, Corollary 3.2], in the ring K(N )[L], the initial i k of c k is thus invertible modulo the ideal (C k-1 ):I ∞ C k-1 , for each 2 ≤ k ≤ t. Let us now place ourselves in K(N )[L]. The initial of c 1 lies in K(N ) and is invertible. Thus (C 1 ) = (C 1 ):I ∞ C1 . Assume that, for some 1 < k ≤ t one has (C k-1 ) = (C k-1 ) : I ∞ C k-1 . Then i k is invertible modulo (C k-1 ) and (C k ) : I ∞ C k = (C k ).
Putting the above argument in an inductive proof, the lemma is proven.

Definition 3 Let C be an autoreduced set, L = ld C and N = ΘU \ ΘL. Let h be an initial or a separant of some element of C. If h ∈ K then a pseudoinverse pair of h is defined as (1/h, 1) else it is defined as any pair (p, q) of nonzero differential polynomials such that p ∈ K[N ∪L], q ∈ K[N ] and h p ≡ q mod (C).

Proposition 1 Take the same notations as in definition 3 and assume more-

over that C is a characteristic set of [C] : H ∞ C .
Then every initial or separant h of C admits a pseudoinverse pair.

Proof One only needs to consider the case

h / ∈ K. Since h ∈ H C , it is regular modulo (C) : H ∞ C in the ring K[N ∪ L]. By [9, Theorem 1.1 and Corollary 1.15], it is thus invertible modulo (C) : H ∞ C in the ring K(N )[L]. In this ring, (C) = (C):H ∞
C by Lemma 2 whence there exists a polynomial r such that r h-1 ∈ (C). Multiplying by some suitable nonzero polynomial q ∈ K[N ] in order to clear denominators and denoting p = r q, one gets a relation p h-q ∈ (C) in K[N ∪L] hence a pseudoinverse pair (p, q) of h.

Proposition 1 is essentially algorithmic since pseudoinverse pairs can be computed by means of the function algebraic inverse given in [START_REF] Boulier | Well known theorems on triangular systems and the D 5 principle[END_REF] which is based on [START_REF] Moreno | Polynomial gcd computations over towers of algebraic extensions[END_REF]. The restriction comes from the fact that this function may fail to compute the inverse of h though h is invertible for it needs to check the regularity of polynomials different from h. If such a failure occurs, the characteristic set C can be split as two smaller characteristic sets and the whole process restarted over these ones, following the "D 5 principle".

Example (continued). The separant of u 2

x -4 u is 2 u x . A pseudoinverse pair of 2 u x is (u x , 8 u). The function algebraic inverse of [START_REF] Boulier | Well known theorems on triangular systems and the D 5 principle[END_REF] would obtain it by computing a Bézout identity between 2 u x and u 2

x -4 u in the ring

Q(u)[u x ].
Proposition 2 The function NF given in Figure 1 returns a rational fraction f /g satisfying the following properties:

1. f is reduced w.r.t. C, 2. g ∈ K[N ]
and all its irreducible factors divide the second component of the pseudoinverse pair of some initial or separant of C,

3. g is regular modulo A, 4. g p ≡ f mod A, 5. for all p, p ′ ∈ R, one has p ≡ p ′ mod A iff NF(p, C) = NF(p ′ , C), 6. for all p ∈ R, one has p ∈ A iff NF(p, C) = 0. function NF(p, C) Assumptions p is a differential polynomial of R C = {c 1 , . . . , c t } is a characteristic set of A = [C] : H ∞ C
One assumes that pseudoinverse pairs of the initials and separants of the elements of C can be computed (see the remark following Proposition 1). begin denote s 1 , . . . , s t the separants of the elements of C denote (p i , q i ) a pseudoinverse pair of s i (1 ≤ i ≤ t) using Ritt's reduction algorithm, compute a 1 , . . . , a t ∈ N and

r t+1 ∈ K[N ∪ L] such that s a1 1 • • • s at t p ≡ r t+1 mod A f t+1 := p a1 1 • • • p at t r t+1 g t+1 := q a1 1 • • • q at t denote v i = ld c i (1 ≤ i ≤ t) and assume v t > • • • > v 1 for ℓ from t to 1 by -1 do r ℓ := prem(f ℓ+1 , c ℓ , v ℓ ) denote (p ℓ , q ℓ ) a pseudoinverse pair of the initial i ℓ of c ℓ let a ℓ ∈ N be such that ı a ℓ ℓ f ℓ+1 ≡ r ℓ mod (c ℓ ) f ℓ := p a ℓ
ℓ r ℓ g ℓ := q a ℓ ℓ g ℓ+1 od return f 1 /g 1 One may make the rational fraction irreducible by computing the gcd of f 1 and g 1 as multivariate polynomials over the field K end 

(f ℓ , v k ) < deg(c k , v k ) for each t ≥ k ≥ ℓ.
Putting the above argument in an inductive proof, one sees that f = f 1 is partially reduced w.r.t. C and deg(f

1 , v k ) < deg(c k , v k ) for each t ≥ k ≥ 1 i.e. that f is reduced w.r.t. C.
Item [START_REF] Boulier | The BLAD libraries[END_REF]. All polynomials g i are power products of the second components of the pseudoinverse pairs of the initials and separants of C. They belong to K[N ] by Proposition 1. The final simplification of the rational fraction f 1 /g 1 may remove some factors of g 1 . Item (3). One assumes that there exists some g ∈ R such that g g ∈ A. One proves that g ∈ A. The polynomial g may be chosen partially reduced w.r.t. C (if not, replace it by its partial remainder w.r.t. C). The polynomial g g is reduced to zero by C (Lemma 1). Since it is partially reduced w.r.t. C, the reduction process is purely algebraic hence g g ∈ (C) : I ∞ C . By the equidimensionality argument of Lazard's lemma [9, Theorem 1.6], the associated prime ideals of (C) :

I ∞ C do not meet K[N ] \ {0}
(the fact that N may be infinite does not raise any theoretical problem since one may restrict N to the derivatives which actually occur in the polynomials). Thus g does not lie in any associated prime ideal of (C) : I ∞ C and, by [41, chap. IV, §6, Corollary 3], is regular modulo that ideal. Therefore g ∈ (C) : I ∞ C ⊂ A and the proof of item (3) is complete. Item (4). At the beginning of the function, s a1 1 • • • s at t p ≡ r t+1 mod A. Multiplying both sides of the congruence by p a1 1 • • • p at t and simplifying each s i p i by q i according to Proposition 1, one gets the relation g t+1 p ≡ f t+1 mod A. Let now t ≥ ℓ ≥ 1 be a loop index, consider the sequence of instructions of the loop body and assume that g ℓ+1 p ≡ f ℓ+1 mod A. Multiply both sides of this congruence by p a ℓ ℓ ı a ℓ ℓ . On the lefthand-side, replace each p ℓ i ℓ by q ℓ according to Proposition 1. On the righthand-side, replace ı a ℓ ℓ f ℓ+1 by r ℓ . Using the fact that c ℓ ∈ A one gets g ℓ p ≡ f ℓ mod A. Putting the above argument in an inductive proof, item (4) is proven. Item [START_REF] Boulier | Étude et implantation de quelques algorithmes en algèbre différentielle[END_REF]. Denote f /g = NF(p, C) and f ′ /g ′ = NF(p ′ , C). The implication from left to right. Assume p ≡ p ′ mod A. Then g g ′ p ≡ g g ′ p ′ mod A. By item (4) g ′ f -g f ′ ∈ A. Since g, g ′ ∈ K[N ] by item (2) and f, f ′ are reduced w.r.t. C by item (1), the difference g ′ f -g f ′ is reduced w.r.t. C hence equal to zero by the definition of characteristic sets. Thus f /g = f ′ /g ′ . The implication from right to left. Assume f /g = f ′ /g ′ . Then g ′ f = g f ′ hence, by item (4), g g ′ p ≡ g g ′ p ′ mod A. Since g and g ′ are regular modulo A by item (3), one has p ≡ p ′ mod A and item (5) is proven. Item (6) follows from item (5) and the fact that NF(0, C) = 0.

Example (continued).

Here are the normal forms of some elements of ΘU , computed with the help of the BLAD libraries over the example. See [START_REF] Boulier | The BLAD libraries[END_REF] and [3, chap. 6].

derivative normal form derivative normal form u u u xx 2 v v u xy u x u y /(2 u) u y u y u yy 1 u x u x v xx u x v y (1/4) u x u y v xy u y v x v x v yy (1/2) u x
6 Purely algebraic solutions of differential ideals Definition 4 Let A be a differential ideal of the polynomial differential ring R = K{U } and G 0 be a field extension of K. A map φ : ΘU → G 0 , which extends to a ring homomorphism K[ΘU ] → G 0 , is a purely algebraic solution of A if φ annihilates all the elements of A.

Informally speaking, a purely algebraic solution of a differential ideal A is obtained by viewing A as a nondifferential ideal of the ring K[ΘU ] and determining a solution of it. The difficulty, which comes from the fact that the set of unknowns is infinite, is overcome by means of the normal form algorithm.

Lemma 3 Let A be a differential ideal of the polynomial differential ring R = K{U } and G 0 be a field extension of K. Let C be a characteristic set of A and φ : ΘU → G 0 be a map, which extends to a ring homomorphism K[ΘU ] → G 0 . Let h be an initial or a separant of C and (p, q) be a pseudoinverse pair of h. Assume φ annihilates all the elements of C. Then φ(h) = 0 if and only if φ(q) = 0. If φ(h) = 0 for each initial or separant h of C then φ does not annihilate any denominator of NF(R, C).

Proof Since h p ≡ q mod (C), the first statement is clear. The second statement then follows from item (2) of Proposition 2. 1. for all v ∈ N ∪ L, assign to φ(v), values, taken in some field extension G 0 of K, which annihilate the elements of C but does not annihilate their initials and separants.

2. for all v ∈ ΘL \ L, assign then to φ(v) the value of NF(v, C).

Proof The map φ is well-defined. Since C is a characteristic set of [C] : 

H ∞ C , the ideal (C) : H ∞ C of the ring K[N ∪ L] is not

Formal power series solutions

This section is dedicated to the construction of formal power series solutions of systems of polynomial differential equations. It is the first half of the way leading to analytic solutions. Reference texts for this section are [START_REF] Seidenberg | Abstract differential algebra and the analytic case[END_REF][START_REF] Seidenberg | Abstract differential algebra and the analytic case II[END_REF]. See also [START_REF] Rust | Existence and Uniqueness Theorems for Formal Power Series Solutions of Analytic Differential Systems[END_REF][START_REF] Hubert | Computing Power Series Solutions of a Nonlinear PDE System[END_REF]. The m derivations δ 1 , . . . , δ m are interpreted as m partial derivations w.r.t.

m independent variables x 1 , . . . , x m . If θ = δ a1 1 • • • δ am m is a derivation operator, one denotes x θ = x a1 1 • • • x am m and θ! = a 1 ! • • • a m !.
One looks for formal power series solutions of A i.e. solutions of the form:

u j = c j,θ x θ θ! •
The coefficients c j,θ belong to some field extension G 0 of K which depends on the considered system Σ or, more simply, in the field C. First remark: the above formal power series is centered on the origin for simplicity but the arguments hold for formal power series centered on any element of R m . Second remark: the above setting covers also the case of differential systems with coefficients in the field Q(x 1 , . . . , x m ). Indeed, it is then sufficient to encode each independent variable x i as a new differential indeterminate z i and to append to the system under study, the equations δ j z i = 1 if i = j and 0 otherwise. One thus assumes w.o.l.o.g. that K is a field of constants.

Proposition 4 Let G 0 be a field extension of K and φ : ΘU → G 0 be a map, extending to a ring homomorphism K[ΘU ] → G 0 . Then φ is a purely algebraic solution of A if and only if the n-tuple u = (u 1 , . . . , u n ) is a formal power series solution of A where

u j = θ∈Θ φ(θu j ) x θ θ! , 1 ≤ j ≤ n.
Moreover, for each differential polynomial p ∈ R, if φ(p) = 0 then p(u) = 0.

Proof See [START_REF] Seidenberg | Abstract differential algebra and the analytic case[END_REF]Lemma]. If p ∈ R is a differential polynomial then p(u) = φ(θp) x θ /θ!. Therefore p(u) is zero if and only if φ(θp) is zero for all θ ∈ Θ. Thus φ is a purely algebraic solution of A if and only if u is a formal power series solution of A. The last part of the proposition is clear.

Example (continued). One illustrates the proposition over the example of section 5. The map φ should be understood as the evaluation over the expansion point of the series i.e. φ(w) = w(0, 0) for any derivative w. One assigns to u(0, 0) any nonzero value (since u is a denominator of NF(ΘU, C) and must not vanish). One assigns to v(0, 0) and v x (0, 0) any value. The values assigned to u x (0, 0) and u y (0, 0) must then be compatible with the equations of C (differential equations, which impose equalities between functions, must be satisfied for all values of x and y hence, in particular, for x = y = 0). The equations to be satisfied are:

u x (0, 0) 2 -4 u(0, 0) = 0, u y (0, 0) 2 -2 u(0, 0) = 0.
Let us thus choose three arbitrary constants c 0 , c 1 , c 2 ∈ R such that c 0 = 0 and

c 1 , c 2 ≥ 0 then let (u(0, 0), v(0, 0), v x (0, 0), u x (0, 0), u y (0, 0)) = (c 0 , c 1 , c 2 , 2 √ c 0 , √ 2 c 0 ).
The values assigned to all the other derivatives w are then uniquely determined for we have:

w(0, 0) = NF(w, C)(0, 0).
It turns out that all normal forms of derivatives are identically zero at some order hence that the formal power series solutions are polynomials:

u(x, y) = c 0 + 2 √ c 0 x + √ 2 c 0 y + x 2 + √ 2 x y + 1 2 y 2 , v(x, y) = c 1 + c 2 x + √ 2 c 0 2 y + √ c 0 x 2 + √ 2 c 0 x y + √ c 0 2 y 2 + 1 3 x 3 + √ 2 2 x 2 y + 1 2 x y 2 + √ 2 12 y 3 .
Theorem and definition 2 Define a formal power series solution of Σ as a pair:

1. a field extension G 0 of K,

2. a n-tuple (u 1 , . . . , u n ) ∈ G = G 0 [[x 1 , . . . , x m ]
] n which annihilates the elements of Σ.

Then a differential polynomial p ∈ R vanishes over all the formal power series solutions of Σ if and only if p ∈ [Σ]. In particular, Σ has no formal power series solution if and only if

1 ∈ [Σ].
Proof The implication from right to left is immediate using the arguments given in Summary 1. For the implication from left to right, consider some differential polynomial p / ∈ [Σ]. One needs to show that Σ admits a formal power series solution which does not annihilate p. Theorem 1 implies that there exists some prime differential ideal p which contains Σ but not p. This ideal admits characteristic sets w.r.t. any ranking. Let C be one of them. Since p is prime, p = [C] : H ∞ C [32, chap. II, §5] and one may apply Proposition 3. The map φ may be chosen so that φ(NF(p, C)) = 0 whence φ(p) = 0, taking e.g. G 0 to be the field of fractions of

K[N ∪ L]/(p ∩ K[N ∪ L])
. By Proposition 4, the map φ provides a formal power series solution of Σ which does not annihilate p.

Analytic solutions

Let us proceed on the second half of the way started in the former section and address the case of analytic solutions i.e. formal power series solutions which converge in some open set D. The proof of the Theorem and Definition 3 is split into Propositions 5 and 7.

Proposition 5 Assume that every prime differential ideal of R admits an analytic solution. Then, for each p ∈ R, if p / ∈ [Σ] then Σ admits an analytic solution which does not annihilate p.

Proof By Theorem 1, it is sufficient to show that, if p is a prime differential ideal and p / ∈ p then p admits an analytic solution which does not annihilate p. Consider the differential ideal [p, p u n+1 -1] where u n+1 is some new differential indeterminate. This ideal admits abstract solutions (as well as formal power series solutions) according to the hypotheses and one of the already proven differential theorems of zeros. It is thus different from the unit ideal and is contained in some prime differential ideal p ′ of R{u n+1 }. On the one hand, no solution of p ′ annihilates p. On the other hand, there is a bijection between the solutions of p ′ and the solutions of p which do not annihilate p. Since every prime differential ideal admits an analytic solution, p ′ admits an analytic solution, and p admits an analytic solution which does not annihilate p.

The fact that every prime differential ideal admits an analytic solution is proven in Proposition 7. This result is known since the work [START_REF] Riquier | Les systèmes d'équations aux dérivées partielles[END_REF] of Riquier. Riquier's theorem, which is a generalization of the Cauchy-Kovalevska theorem, is the basis of [32, chap. VIII] and of the Embedding Theorem [START_REF] Seidenberg | Abstract differential algebra and the analytic case[END_REF][START_REF] Seidenberg | Abstract differential algebra and the analytic case II[END_REF] of Seidenberg. Germa [START_REF] Péladan-Germa | Tests effectifs de Nullité dans des extensions d'anneaux différentiels[END_REF] clarified the relationship between characteristic sets and the hypotheses of Riquier's theorem. More recently, Lemaire [START_REF] Lemaire | Contribution à l'algorithmique en algèbre différentielle[END_REF] completely proved this latter anew, by using a more modern formalism and by distinctly separating the proof of the existence of formal power series solutions and the analyticity proof. The key result is Proposition 6 Let C be a characteristic set defining some prime differential ideal p, for some orderly Riquier ranking. Let L be the set of the leading derivatives of C and N = ΘU \ ΘL. Let (u 1 , . . . , u n ) be a formal power series solution of p, the coefficients c j,θ lying in the field of the complex numbers. Let (ũ 1 , . . . , ũn ) be the restriction to N of the solution i.e:

ũj = θ∈Θ cj,θ x θ θ! , 1 ≤ j ≤ n
defined by cj,θ = c j,θ if θu j ∈ N else zero. In the neighborhood of the origin, the series ũj are analytic if and only if the series u j are analytic.

Proof See [20, Théorème d'analyticité, page 50].

Proposition 7 Every prime differential ideal admits an analytic solution.

Proof Let p be some prime differential ideal. Let C be some characteristic set of p, for some orderly Riquier ranking. Let L be the set of the leading derivatives of C and N = ΘU \ ΘL. Among all the purely algebraic solutions of p, choose one such that only finitely many nonzero values are assigned to the elements of L ∪ N (there is no theoretical difficulty since there are only finitely many derivatives occuring in C). The restrictions to N of these formal power series are analytic since they are polynomials. to Proposition 6, the formal power series are analytic whence p admits an analytic solution.

Let us illustrate Proposition 6 over some famous linear example (historically, this is the very example used by Sophie Kovalevska to show the importance of expressing the most differentiated derivatives in terms of the other ones i.e. the importance of the orderly rankings): the heat equation

∂ 2 u ∂x 2 = ∂u ∂t •
This equation forms a characteristic set of the prime differential ideal that it generates, whatever the ranking. Over this example, the only thing which depends on the ranking is the leading derivative of the equation. If the ranking is orderly then the leading derivative is ∂ 2 u/∂x 2 else it is ∂u/∂t. The purely algebraic solution ∂ k+ℓ u ∂x k ∂t ℓ → (k + 2ℓ)! of the heat equation provides a formal power series solution

u(x, t) = (k + 2ℓ)! k! ℓ! x k t ℓ .
For x > 0 and t > 0, the series does not converge since it grows faster than the well-known divergent series: ℓ! t ℓ .

However, the restriction to

N = ∂ k u ∂x k | k ≥ 0
of the formal power series is indeed a convergent series:

u(x, 0) = x k = 1 1 -x •
The proposition (indeed, the Cauchy-Kovalevska theorem is sufficient here) tells us that this does not happen if the leading derivative is ∂ 2 u/∂x 2 . The following example, borrowed from [START_REF] Lemaire | An orderly linear PDE system with analytic initial conditions with a non analytic solution[END_REF], shows the importance of Riquier rankings:

∂ 2 u ∂x 2 = ∂ 2 u ∂x ∂t + ∂ 2 u ∂t 2 + v, ∂ 2 v ∂t 2 = ∂ 2 v ∂x ∂t + ∂ 2 v ∂x 2 + u.
One chooses the lefthand sides of the equations as leading derivatives. This is possible only if the chosen ranking is not Riquier. The ranking may however be orderly. The set N is formed of the derivatives of u differentiated at most once w.r.t. c and of the derivatives of v differentiated at most once w.r.t. t. One can form a formal power series solution (u, v) whose restriction to N is defined by

u(0, t) = ∂u ∂x (0, t) = e t , v(x, 0) = ∂v ∂t (x, 0) = e x .
It can be established that the formal power series u and v are not analytic in the neighborhood of the origin. However their restrictions to N are analytic. Proof By Propositions 5 and 7.

For functions of m complex variables, the following properties are equivalent: being differentiable once (i.e. being holomorphic), being smooth and being analytic. This is not the case for functions of m real variables (cf. the examples given at the beginning of this paper). It is worth noticing that the theorem of zeros also holds for smooth functions of m real variables. Indeed, if p ∈ [Σ] then every smooth solution of Σ is a solution of p (first, this is immediate if p lies in the differential ideal generated by Σ; second, if a power of a smooth function f is zero over some open set then f itself is zero over this set). Conversely, if p / ∈ [Σ] then Σ admits an analytic solution (hence a smooth solution) which does not annihilate p. It is the splitting cases mechanism implemented in the algorithms cited in the introduction which does not apply to smooth functions of m real variables. Last, observe that the theorem of zeros forces us to search analytic solutions with images in the field of the complex numbers but not necessarily analytic functions of m complex variables. As an example, consider the "differential" equation u 2 + 1 = 0. It admits for solutions the constant functions u(x) = ±i. These functions have images in C but the variable x may be real as well as complex.

On Denef and Lipshitz undecidability result

As shown in section 7, one can compute formal power series solutions of differential ideals defined by characteristic sets for all initial conditions (or purely algebraic solutions) which do not annihilate some finite set of polynomials. This restriction on admissible initial conditions is sometimes superfluous. Sometimes it is not, the following theorem shows, which is an almost immediate consequence of the undecidability result [START_REF] Denef | Power Series Solutions of Algebraic Differential Equations[END_REF]Theorem 4.11].

Theorem 2

The problem "given a characteristic set C and an expansion point α = (α 1 , . . . , α m ) ∈ Q m , determine if the differential ideal defined by C admits a formal power series solution centered on α" is undecidable for m ≥ 9.

Proof The proof starts exactly as in [START_REF] Denef | Power Series Solutions of Algebraic Differential Equations[END_REF]. Let P ∈ Z[a 1 , . . . , a m ] be a polynomial and u be a differential indeterminate. The next expression defines a linear partial differential equation 1 :

P x 1 ∂ ∂x 1 , . . . , x m ∂ ∂x m u = 0. (2) 
First remark: if one substitutes a formal power series Second remark: a1,...,am

x a1 1 • • • x am m = 1 1 -x 1 • • • 1 1 -x m .
Combining both remarks, one concludes that, the following partial differential equation

P x 1 ∂ ∂x 1 , . . . , x m ∂ ∂x m u = 1 1 -x 1 • • • 1 1 -x m
has a formal power series solution u (which, if it exists, is necessarily convergent) if and only if the coefficients c a1,...,am satisfy: c a1,...,am = 1 P (a 1 , . . . , a m ) 1 Let us develop an example for casual readers. Take P (a 1 , a 2 ) = 3 a 2 1 + 2 a 2 . Then

P " x 1 ∂ ∂x 1 , x 2 ∂ ∂x 2 « u = 3 x 1 ∂ ∂x 1 " x 1 ∂ ∂x 1 u « + 2 " x 2 ∂ ∂x 2 « u = 3 x 1 ∂ ∂x 1 (x 1 ux 1 ) + 2 x 2 ux 2 = 3 x 2 1 ux 1 x 1 + 3 x 1 ux 1 + 2 x 2 ux 2 .
whence P (a 1 , . . . , a m ) = 0 for all (a 1 , . . . , a m ) ∈ N m . According to a celebrated theorem [START_REF] Matijasevic | Enumerable sets are diophantine[END_REF] of Matijasevic, the problem of determining whether a polynomial in Z[a 1 , . . . , a m ] admits an integer solution is undecidable for m ≥ 9 (negative answer to Hilbert's tenth problem). These arguments immediately apply to polynomial differential systems whose coefficients do not depend on the independent variables x i (the setting of this paper). It is sufficient to encode each independent variable x i by a differential indeterminate z i and to consider the following differential system C, which is a characteristic set for any ranking u ≫ (z 1 , . . . , z m ) such that every derivative of u is greater than any derivative of any z i :

(1 -z 1 ) • • • (1 -z m ) P z 1 ∂ ∂x 1 , . . . , z m ∂ ∂x m u = 1 ∂ ∂x j z i = 1 if i = j else 0.
What is the relationship between this theorem and the construction of formal power series solutions detailed in section 7 ? Consider the characteristic set at the bottom of the above proof. All the monomials of the first equation of C admit one of the z i differential indeterminates as a factor. Therefore, the initial of the first equation of C has the form z r i (1 -z 1 ) • • • (1 -z m ) where r is a positive integer and 1 ≤ i ≤ m is an index. In order to compute a formal power series solution of C, centered at (α 1 , . . . , α m ) ∈ R m , one must take care to the fact that the values associated to the derivatives z 1 , . . . , z m necessarily are the numbers α 1 , . . . , α m . The formal power series defined in [START_REF] Denef | Power Series Solutions of Algebraic Differential Equations[END_REF] is centered at (α 1 , . . . , α m ) = (0, . . . , 0) however, these initial conditions annihilate the initial of the first equation of C. The construction of formal power series solutions, based on Proposition 3 avoid them. There is thus no contradiction between all these results.

Conclusion

Differential algebra can be generalized in order to handle non commuting derivations. A generalization of Hilbert's differential theorem of zeros holds in this setting in the context of abstract solutions as well as in the context of formal power series solutions. See [START_REF] Hubert | Differential algebra for derivations with nontrivial commutation rules[END_REF][START_REF] Lemaire | Non-commutative riquier theory in moving frames of differential operators[END_REF]. However, formulating formal power series solutions by means of some normal form algorithm still needs to be done. Observe also that, to our knowledge, no analogues of the analyticity theorem (our Proposition 6) whence of Hilbert's differential theorem of zeros for analytic solutions are proven in the setting of non commuting derivations. This task is left for the future.
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