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Turbulent flows are studied in an actual enclosed rotor-stator configuration with

a rotating hub and a stationary shroud. Besides its fundamental importance - the

disk boundary layer is one of the simplest platforms for investigating the underlying

structure of three-dimensional boundary layers - this cavity models more complex

configurations relevant to rotating machinery. Large Eddy Simulation (LES) is per-

formed using a Spectral Vanishing Viscosity (SVV) technique which is shown lead-

ing to stable discretizations without sacrificing the formal accuracy of the spectral

approximation. Numerical results and velocity measurements have been favorably

compared for a large range of rotational Reynolds numbers 105 ≤ Re = Ωb2/ν ≤ 106

in an annular cavity of curvature parameter Rm = (b+a)/(b−a) = 1.8 and of aspect

ratio G = (b − a)/h = 5, where a and b are respectively the inner and outer radii of

the rotating disk and h is the interdisk spacing.

In the detailed picture of the flow structure that emerges, the turbulence is mainly

confined in the boundary layers including in the Stewartson layer along the external

cylinder. For Reynolds numbers Re ≥ 105, the stator boundary layer is turbu-

lent over most of the cavity. On the other hand, the rotor layer becomes progres-
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sively turbulent from the outer radial locations although the rotating hub is shown

to destabilize the inner part of the boundary layers. The isosurface maps of the

Q-criterion reveal that the three-dimensional spiral arms observed in the unstable

laminar regime evolve to more axisymmetric structures when turbulence occurs. At

Re = 106, the flow is fully turbulent and the anisotropy invariant map highlights

turbulence structuring, which can be either a “cigar-shaped” structuring aligned on

the tangential direction or a “pancake-shaped” structuring depending on the axial

location. The reduction of the structural parameter a1 (the ratio of the magnitude

of the shear stress vector to twice the turbulence kinetic energy) under the typical

limit 0.15, as well as the misalignment between the shear stress vector and the mean

velocity gradient vector, highlight the three-dimensional nature of both rotor and

stator boundary layers with a degree of three-dimensionality much higher than in

the idealized system studied by Lygren and Andersson [1, 21, 22].

Keywords: rotor-stator flow, large eddy simulation, spectral vanishing viscosity

technique, LDV.
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I. INTRODUCTION

Rotating disk flows have been the subject of a constant interest because of their rel-

evance to applications in rotating machinery systems as computer storage, axial thrust

bearings and turbine disk cooling. The rotor-stator problem has also proved to be a fruitful

means of studying turbulence properties with wall confinement and rotation as this specific

configuration is a relatively simple case where rotation brings significant modifications to

the turbulent field. Finally, rotating disk flows are also among the simplest flows where

the boundary layers are three-dimensional from their inception and they are therefore well

suited for studying the effects of mean-flow three-dimensionality on the turbulence and its

structure [14, 19, 21]. Until now, numerical studies have been dedicated to simpler flows:

single disk flows [44], axisymmetric flows using statistical approaches (Reynolds Averaged

Navier-Stokes) [27], idealized rotor-stator cavities [21], or enclosed rotor-stator cavities but

at much lower rotation rates using Direct Numerical Simulation (DNS) [28, 35]. The aim of

this study is to provide a detailed and accurate picture of the turbulent flow for understand-

ing the physics as well as for the assessment of turbulence models for rotating flow systems.

Rotor-stator flow structure is largely dependent on the combination of the rotation speed

Ω and the interdisk spacing h. Daily and Nece [7] carried out an exhaustive theoretical and

experimental study of sealed rotor-stator flows and pointed out the existence of four flow

regimes. These correspond respectively to two laminar regimes (I and II) and two turbulent

regimes (III and IV), each characterized by either merged (I and III) or separated (II and

IV) boundary layers. In the latter case, the two boundary layers are separated by a central

rotating core. These authors provided also an estimated value for the local Reynolds number

at which turbulence originates with separated boundary layers, Rer = Ωr2/ν = 1.5× 105 (r

is the radial location) for aspect ratios G ≤ 25. However, experiments have revealed that

transition to turbulence can appear at a lower value of Rer within the Bödewadt layer on

the stator, even though the flow remains laminar in the Ekman layer along the rotor.

Major experiments concerning this flow regime have been performed by Itoh et al. [11, 12]

in a closed cavity. They measured the mean flow and all the Reynolds stress components,

and brought out the existence of a relaminarized region towards the axis even at high ro-

tation rates. From detailed measurements, Itoh et al. [12] reported a turbulent regime

occurring earlier along the stator side at Rer ≃ 8. × 103, while along the rotor side, turbu-
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lent flow develops later for 3.6 × 105 < Rer < 6.4 × 105 for G = 12.5. This is in agreement

with the experiment of Cheah et al. [4] performed for rotational Reynolds numbers ranging

3 × 105 < Rer < 1.6 × 106 inside a rotor-stator system of aspect ratio G = 7.87. The rotor

side becomes turbulent for Rer = 4. × 105 while the stator is shown to be turbulent at

all Reynolds numbers considered. Cheah et al. [4] found differences in turbulence charac-

teristics between the rotor and the stator and that the turbulent flow field is also affected

by the radial location. These authors concluded to an influence of the radial convective

transport of turbulence on the flow field. Czarny et al. [6] displayed by flow visualiza-

tions the appearance of organized precessing vortex structures in a rotor-stator cavity of

aspect ratio G = 7.94. These three-dimensional patterns subsist at high Reynolds numbers

Re → 1.78×106 and might explain the failure to predict heat and mass transfers accurately

when only axisymmetric and steady approaches are used. More recently, Poncet et al. [27]

compared extensive pressure and velocity measurements with numerical predictions based

on an improved version of the Reynolds Stress Modeling (RSM) of Elena and Schiestel [8]

for an enclosed cavity with or without superimposed throughflow. In the case of an outward

throughflow, they characterized the transition between the Batchelor and Stewartson flow

structures in function of a modified Rossby number.

These flows are very challenging for numerical modeling particularly in turbulent regimes

relevant to industrial conditions. A characteristic feature of such flows is indeed the coexis-

tence of adjacent coupled flow regions involving laminar, transitional and turbulent regions

completely different in terms of the flow properties. Moreover, the turbulence is strongly

inhomogeneous and anisotropic because of finite cavity effects, flow curvature and rotational

effects. At present, computer performances only permit DNS of transitionally turbulent cav-

ity flows (Re ≈ 105) [27, 35]. In a simpler flow model, where the flow is restricted to an

angular section of the cavity and assumed homogeneous also in the radial direction (assum-

ing slow variation of the turbulence statistics in the radial direction far from the transition),

Lygren and Andersson [21] performed DNS at higher Reynolds number (Re = 4×105) using

a second-order finite-difference scheme. They provided a detailed set of data to analyze the

coherent structures near the two disks. Attempts to compute turbulent rotor-stator flows

using statistical approaches (Reynolds Averaged Navier-Stokes) had only partial success.

Indeed, the turbulence model must be able to solve the low-Reynolds number region not

only near the disks but also in the core of the flow. Moreover, the model has to predict pre-
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cisely the location of the transition from the laminar to the turbulent regime, even though

it is bounded by instabilities, and so cannot be completely represented by a steady flow

model. The second order closures could be a more appropriate level of closure to predict

such complex flows [17, 27] but even if they provide a correct distribution of laminar and

turbulent regions, the Reynolds stress behaviour is not fully satisfactory, particularly near

the rotating disk and in the core region.

Consequently, Large Eddy Simulation (LES) constitutes a valuable way to compute such

flows. Wu and Squires [44] have been the first to develop LES to predict the statistically

three-dimensional turbulent boundary layer (3DTBL) over a single rotating disk. They com-

pared three dynamical subgrid models to the experimental data of Littell and Eaton [19] for

Re = 6.5×105. Their results have offered new evidence to support the observations of Littell

and Eaton [19] that streamwise vortices with the same sign as the mean streamwise vorticity

are mostly responsible for strong sweep events, while streamwise vortices having opposite

sign to the mean streamwise vorticity promote strong ejections. Lygren and Andersson

[22] compared the results obtained from three LES models with their DNS calculation and

suggested that improved subgrid models have to be implemented to get closer agreement.

In their latter work, Andersson and Lygren [1] performed “wide-gap” and “narrow-gap”

simulations to investigate the degree of three-dimensionality in both Ekman and Bödewadt

layers for Re ≤ 1.6 × 106. Their results support the same conclusions as Littell and Eaton

[19] that the mean flow three-dimensionality affects the near wall vortices and their ability

to generate shear-stresses.

We report here a coupled numerical and experimental investigation of the turbulent flow

within an enclosed rotor-stator cavity. A spectral vanishing viscosity has been used to per-

form Large Eddy Simulation by modifying Navier-Stokes equations in order to obtain a

new system of equations which is more amenable to approximate while retaining all the

most energetic features of the unperturbed problem. The main motivation of our study is

to analyze turbulence properties when complex effects from rotation and confinement may

influence the near-wall structures caused by the mean three-dimensionality. As confinement

effects are fully taken into account, this work represents a further step compared to existing

LES works dealing with turbulent rotating flows.

First experimental set-up and numerical modeling are described in Sections II and III.

Comparisons between the LES calculations and the LDV measurements are made at mid-
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radius in Section IV for the mean and turbulent fields at different Reynolds numbers ranging

105 ≤ Re = Ωb2/ν ≤ 106. Section V is devoted to the analyze of finite cavity effects at

different radial locations and at Re = 106. A detailed investigation of the boundary layers

along the disks and the external cylinder is then proposed in section VI. Flow structures

are identified in Section VII. Finally some conclusions and closing remarks are provided in

section VIII.

II. THE EXPERIMENTAL SET-UP

The cavity sketched in Figure 1 is composed of a smooth stationary disk (the stator) and

a smooth rotating disk (the rotor) delimited by an inner rotating cylinder (the hub) and an

outer stationary casing (the shroud). The rotor and the central hub attached to it rotate

at the same uniform angular velocity Ω. The mean flow is governed by three main control

parameters: the aspect ratio of the cavity G, the curvature parameter Rm and the rotational

Reynolds number Re based on the outer radius b of the rotating disk defined as follows:

G =
b − a

h
= 5 Rm =

b + a

b − a
= 1.8 105 ≤ Re =

Ωb2

ν
≤ 106

where ν is the kinematic viscosity of water, a = 40 mm and b = 140 mm the inner and

outer radii of the rotating disk, h = 20 mm the interdisk spacing and Ω the rotation rate

of the rotating disk. The values of the geometrical parameters have been chosen in order to

be relevant with industrial devices such as real stage of turbopump, and to satisfy technical

constraints of the experimental device as well as computational effort to reach statistically

converged stages. A variable speed numerical controller drives the angular velocity Ω with

an accuracy better than 1%. In the experimental set-up, two small clearances exist: the

first one δ1 = 0.85 mm between the rotor and the shroud (δ1/b = 0.0061) and the second

one δ2 = 0.1 mm between the hub and the stator (δ2/h = 0.005) because of mechanical

constraints. During one experiment, the temperature is almost constant: 20 ± 0.5◦C.

The measurements are performed using a two component laser Doppler velocimeter

(LDV). The LDV technique is used to measure from above the stator the mean radial

V ∗

r = Vr/(Ωr) and tangential V ∗

θ = Vθ/(Ωr) velocity components and the associated

Reynolds stress tensor components R∗

rr = v′2
r /(Ωr)2, R∗

rθ = v′

rv
′

θ/(Ωr)2, R∗

θθ = v
′2
θ /(Ωr)2
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in a vertical plane (r, z). This method is based on the accurate measurement (error margin

of ±5% on the second order momentums) of the Doppler shift of laser light scattered by

small particles (Optimage PIV Seeding Powder, 30 µm) carried along with the fluid. Its

main qualities are its non intrusive nature and its robustness. The measurement is found to

be more difficult close to the rotating disk, because of strong reflections of the laser beams

and seeding problems. Note that the size of the probe volume in the axial direction (0.8 mm)

is not small compared to the interdisk spacing and to the boundary layer thicknesses. It has

been experimentally verified [25] that about 5000 validated data are necessary to obtain the

statistical convergence of the velocity fluctuations.

III. THE NUMERICAL MODELING

A spectral vanishing viscosity (SVV) method for LES has been developed for simulating

rotor-stator flows. It has the property to preserve the spectral accuracy of the approximation

developed in DNS [37] and keeps the fast time integration of the DNS because it is condensed

in pre-processing jobs. The reader is referred to the original paper of Karamanos and

Kardianakis [15] and in the collocation framework for cylindrical equations to the paper of

Séverac and Serre [38].

A. Governing equations

The motion is governed by the incompressible three-dimensional Navier-Stokes equations

written in the velocity-pressure formulation, together with the continuity equation and ap-

propriate boundary conditions. A cylindrical polar coordinate system (r,θ,z) is used. The

velocity components are denoted Vr, Vθ and Vz and p is the pressure. The velocity, space

and time scalings correspond to Ωb, h and Ω−1 respectively. In the meridional plane, the

space variables (r, z) ∈ [a, b] × [0, h] have been normalized into the square [−1, 1] × [−1, 1],

a prerequisite for the use of Chebyshev polynomials.
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B. Numerical method

The pseudospectral numerical method is based on a collocation-Chebyshev method in

the r and z non-homogeneous directions and a Galerkin-Fourier method in the azimuthal

periodic direction θ. Thus, each dependent variable f = (Vr, Vθ, Vz, p) is expanded into a

truncated trigonometric series:

fNMK(r, θ, z, t) =
N−1
∑

n=0

M−1
∑

m=0

K/2−1
∑

k=−K/2

f̂nmk(t)Tn(r)Tm(z)eikθ (1)

where Tn and Tm are Chebyshev polynomials of degrees n and m respectively. N , M define

the number of collocation points in the radial and axial directions, respectively and K is

the cutoff in the tangential direction. To ensure high accuracy of the solution within the

very thin wall layers, this approximation is applied at the Gauss-Lobatto collocation points,

where the differential equations are assumed to be satisfied exactly, defined as ri = cos( iπ
N

)

for i ∈ [0, N ] and zj = cos( jπ
M

) for j ∈ [0, M ] in the radial and axial directions. In the

azimuthal direction, an uniform distribution is considered: θk = 2kπ/K for k ∈ [0, K[.

The time scheme is semi-implicit and second order accurate. It is a combination of an

explicit treatment of the convective terms (Adams-Bashforth scheme) and of an implicit

treatment for the diffusive terms (second order backward Euler scheme). The solution

method is based on an efficient projection scheme to solve the coupling between velocity

and pressure (see details in [29]). This algorithm ensures a divergence-free velocity field

at each time step, maintains the order of accuracy of the time scheme for each dependent

variable and does not require the use of staggered grids. Finally, for each Fourier mode, a

full diagonalization technique is used and yields simple matrix products for the solution of

successive 2D uncoupled Helmholtz and Poisson equations at each time step.

The Spectral Vanishing Viscosity (SVV), first introduced by Tadmor [40] for stabilizing

the solution of the inviscid Bürgers equation, is incorporated into the cylindrical Navier-

Stokes equations. A viscosity kernel operator, only active for high wave numbers of the

numerical approximation, is incorporated in the Helmholtz equations of velocity prediction

[38]. Then, the diffusion and SVV terms are combined in order to obtain a new diffusion

operator that can be easily written in 1D:

ν∆SV V vN = ν∆vN + εN∂x(QN .
∂vN

∂x
) (2)
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where vN is the velocity vector approximation and QN is the kernel defined in the spectral

space as:

Q̂N(wn) =







0 0 ≤ wn ≤ wT

ǫN .e
−(

wN−wn

wT −wn
)2

wT < wn ≤ wN

(3)

where ǫN is the maximum of viscosity, wT is the mode after which the spectral viscosity is

applied and wN the highest mode calculated. Thus, the viscosity kernel is zero on the lower

frequencies. There is no direct way to extend the one dimensional definition of the SVV

operator to the three-dimensional case. Then, Séverac and Serre [38] proposed the following

definition which has been used here:

ν∆SV V vN = ν∆vN + ∇.(εNQN(∇vN)) (4)

where ∇vN is the Jacobian of the vectorial function vN , εNQN ≡ εi
NiQ

i
Ni with i = 1, 2, 3

(corresponding to the r, θ ,z, directions respectively), and where εi
Ni, Qi

Ni are the maximum

of viscosity and the 1D viscosity operator acting in direction i, respectively.

C. Computational details

The initial condition corresponds to a fluid at rest. No-slip boundary conditions are ap-

plied to all walls. There, Vr = Vz = 0 on all walls, whereas Vθ is fixed at zero on the stator

and the shroud and at the local disk velocity Ωr on the rotor and the hub. At the junctions

rotor-stator, the tangential velocity component has been regularized by using a boundary

function Vθ = e−(z−1)/µ, with µ = 0.006 an arbitrary shape parameter independent of the

grid size [36]. This function provides a reasonable representation of experimental conditions,

while retaining spectral accuracy. It corresponds indeed to the radial and axial gaps already

mentioned in Section II: δ1/b = 0.0036 and δ2/h = 0.005 respectively. In Taylor-Couette

flow problems, Tavener et al. [41] mentioned that the effects of a clearance δ between the

rotating disk and the stationary casing on the flow patterns away from the corners are neg-

ligible if δ remains sufficiently small: δ/b < 0.02, which is the case for both the experiment

and the numerical simulation.

As shown previously, the SVV operator is parametrized in each direction by (wT , ǫN).
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According to the theoretical results obtained by Tadmor [40], good values of such parame-

ters are wT ≈ O(
√

N) and ǫN ≈ O(1/N), where N is the degree of approximation in each

direction. These values have also provided a good compromise between stability and accu-

racy in former numerical studies [15, 24]. Let’s notice that SVV operator affects at most the

two-third of the spectrum on the highest frequencies (wT = 0) and consequently, that DNS

results are easily recovered for laminar flows, contrarily to some classical LES techniques

as for example with the well-known spectral eddy viscosity model of Kraichnan [16]. The

values of wT and ǫN used in the present LES are given in Table I.

Table I also presents grids and time steps used in the present study for the three Reynolds

numbers. At Re = 106, the calculations have been performed on the half cavity ([0, π]) only.

Indeed, due to the required resolution in the tangential direction, comparisons with ex-

perimental measurements have shown that this configuration offered the best arrangement

between accuracy and confinement regard.

At the highest Reynolds number Re = 106, accuracy in the description of both boundary

layers has been checked by calculating the wall normal coordinate z+ = z1vτ/ν, where z1 is

the size of the smallest cell in the axial direction and vτ is the total friction velocity defined

as vτ =

[

ν2(∂Vr

∂z
)2 +ν2(∂Vθ

∂z
)2

]1/4

. The universal value of the viscous sublayer thickness being

close to 5, if we want at least 5 collocation points to describe accurately this sublayer, z+

needs to be close to 1. Figure 2 presents the radial distribution of the axial wall coordinate

near the walls. Typically, z1/h is equal to 3.76×10−4. As vτ increases towards the periphery

of the cavity, z+ is an increasing function of the local radius. On both layers, z+ remains

below or around 1 apart close to the shroud on the rotor side where z+ tends to 1.4.

IV. MEAN FIELDS AND TURBULENCE STATISTICS

The mean and turbulent quantities are presented in this Section for three values of the

Reynolds number Re in the range [105 − 106]. The calculated quantities have been averaged

both in time (considering 26 disk revolutions for Re = 105 up to 48 disk revolutions for

Re = 106) and in the tangential direction. Some of the results are compared with velocity

measurements using a 2D LDV system. We define the dimensionless radial r∗ and axial z∗

coordinates as: r∗ = (r − a)/(b − a) and z∗ = z/h.
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A. Mean fields

The axial profiles of the mean radial V ∗

r and tangential V ∗

θ velocity components at mid-

radius (r∗ = 0.5) are shown for three Reynolds numbers in Figure 3. As the axial mean

velocity component is everywhere very small compared to the two other components, it will

not be discussed here. Whatever the Reynolds number considered in this study, the mean

flows (Figure 3) correspond to separated boundary layer flows, belonging to the regime IV

denoted by Daily and Nece [7]. The fluid near the rotating disk is driven away from the

rotation axis (V ∗

r > 0) due to centrifugal acceleration and this radial outflow along the rotor

is compensated by flow directed towards the inner cylinder (V ∗

r < 0) at the stator side. By

analogy with the single disk problem, the boundary layer close to the rotor is known as the

Ekman layer (although Ekman layer solutions are linear, one retains this terminology in the

nonlinear case) whereas the boundary layer close to the stator is called the Bödewadt layer.

These two boundary layers are separated by a nearly homogeneous core region, characterized

by a quasi zero radial velocity (V ∗

r ≃ 0) and by a constant tangential velocity V ∗

θ = K, where

K is called the entrainment coefficient. As in laminar regimes [35], there exists on average, a

main flow in the tangential direction coupled with a secondary flow in the meridional plane.

It is noteworthy that the entrainment coefficient K is consistently below 0.5 midway

between the disk which is the value obtained for the plane Couette flow. Its value at mid-

radius r∗ = 0.5 (Table II) increases with the Reynolds number from 0.35 for Re = 105 to

0.38 for Re = 106 in the calculations and from 0.35 to 0.41 in the experiments. These values

can be compared to the value K ≃ 0.35 measured by Cheah et al. [4] for Rer up to 2.6×105

and to the one K = 0.40 obtained by Andersson and Lygren [1] at Re = 6.4×105 (G = 0.1).

Nevertheless, they remain substantially smaller than the semi-empirical value K = 0.43 of

Poncet et al. [26] for highly turbulent enclosed rotor-stator flows at Re ≥ 106.

By comparing the Vr-profiles (Fig.3), the thickness of the Ekman boundary layer δE,

which is known to behave as
√

ν/Ω, decreases with Re by about a factor two between

Re = 105 and Re = 106 (Table II). This is characteristic of a rotating boundary layer

which becomes turbulent. By conservation of mass, as there is no radial flow in the core, the

Bödewadt boundary layer thickness δB behaves like the Ekman one. All the main results are

summed up in Table II. The Bödewadt layer is almost two times thicker than the Ekman

layer, which is itself about 10 times thicker than the thickness of the boundary layer over a



12

free rotating disk δ/h =
√

ν/Ωh2.

It is encouraging to observe from Figure 3 that the agreement between the numerical

results and the velocity measurements is very satisfactory for the mean field. The both

boundary layers along the rotor and the stator are well described by the LES, which captures

the main features of rotor-stator flows. The largest differences with the LDV measurements

are observed for Re = 106. The calculations underestimate the measures of the K coefficient

of about 7%, as previously observed by Andersson and Lygren [1] in a “wide-gap” cavity.

The radial velocity component maxima on the rotor side is overestimated of about 14% at

mid-radius. It appears from these remarks that LES calculations at Re = 106 are certainly

too dissipative at this location. A better agreement has been obtained at other radial

locations as it is shown in the next Section. Some discrepancies on the velocity maxima

can be also attributed to the size (in the axial direction) of the LDV probe volume, which

becomes not negligible compared to the boundary layer thicknesses when Reynolds number

increases. This leads indeed to averaged values in space only.

Additional characteristics of the mean flows are provided by a polar plot of the tangential

and radial velocity components in the whole gap between the disks at r∗ = 0.5 (Figure

4). Whatever the Reynolds number considered, the polar profile is located between the

similarity solution of Von Kármán [43] and the DNS calculations of Lygren and Andersson

[21] performed at Re = 4×105. By increasing the Reynolds number, the LES polar plot goes

away from the laminar solution. Whatever the value of Re, the polar plot corresponding to

the stator boundary layer (Vr < 0) largely differs from the laminar flow, that confirms the

turbulence feature of this boundary layer. Let’s notice that at Re = 4× 105 the LES profile

almost matches the DNS profile. On the contrary, on the rotor side (Vr > 0), the polar

plot is globally closer to the Von Kármán profile even if it goes away when Re increases.

Such behavior suggests a transition to a turbulent regime from about Re = 4 × 105 that

corresponds to a local Reynolds number at mid-radius of about Re
1/2
r = 407. This is

in agreement with the experimental and theoretical results of Lingwood [18]. The large

difference observed with the profile of Lygren and Andersson [21] is then surprising and

cannot be only explained by finite cavity effects.

Figures 5a to 5c show respectively the axial variations of V +
r , V +

θ and |V +| = (V +2
r +

V +2
θ )1/2 in wall coordinate z+ (z+ is the relative distance to the nearest disk) for Re = 106 and

r∗ = 0.5. These are respectively the two streamwise mean velocity components relative to
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the disk speed and the magnitude of the corresponding velocity vector. We have numerically

verified that the axial velocity component V +
z is fairly close to zero along the disks. The

velocities have been normalized by the tangential friction velocity vτθ
= (ν∂Vθ/∂z)1/2 to

enable direct comparisons with the work of Lygren and Andersson [21]. The magnitude

of the velocity vector (Fig.5c) follows rather closely the law of the wall as obtained by

Lygren and Andersson [21] in an open rotor-stator cavity. The profiles along both disks

are compared to the profile of a turbulent boundary layer on a flat plate obtained by Rotta

[30]. The linear region |V +| = z+ of the velocity profile, called the viscous sublayer, expands

to z+ = 10 near the rotor, whereas it is more reduced along the stator (about to z+ = 5).

Lygren and Andersson [21] obtained a linear profile up to z+ ≃ 7 on both disks. Further from

the walls, we recover the “log-region” V + = a + b × log10(z
+) with two coefficients a and b,

which differ from the values (a = 5, b = 5.62) obtained by Lygren and Andersson [21] along

the rotor. Note that for Couette-Poiseuille turbulent flows, the law of the wall is very close

to: V + = 1.0857log10(z
+) + 5.5 as shown by Nakabayshi etal. [23]. The fundamental study

of Bradshaw [2] has revealed that rotation substantially affects turbulence by introducing

an extra linear term, depending on the Monin-Obukhov coefficient, in the logarithmic law

of the wall. By comparison with the turbulent boundary layer on a flat plate [30], Figure

5c clearly shows that no buffer region, which is usually the region enclosed between the

sublayer and the log-region, is obtained in the present because of rotation. Another effect

of rotation is the reduction of the log-region extent. To enable direct comparisons with the

results of Lygren and Andersson in their open cavity, the profiles of V +
r and V +

θ are also

presented in Figures 5a and 5b respectively. The same remarks arise from the variations of

V +
θ compared to the ones of |V +|. By considering the profiles of V +

r (Fig.5a), the locations

of the maximum crossflow are in close agreement with the values obtained by Lygren and

Andersson [21] at Reynolds number Re = 4 × 105 although as expected, the location of the

peaks here is further out from the wall as the Reynolds number is larger. Near the rotor,

the maximum crossflow is reached at z+ = 16 (z+ = 15 in [21]) while near the stator the

maximum is located further from the disk at z+ = 25 (z+ = 22 in [21]). Thus, for this radial

location r∗ = 0.5, the location of the peak in the crossflow is not modified by finite cavity

effects.
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B. Turbulent statistics

All six Reynolds stress tensor components have been calculated. The axial distributions

of the two main normal components are shown together with available experimental mea-

surements at mid-radius on Figure 6. The normal component R∗

zz as well as the three shear

components being found more than one order smaller than the previous ones are presented

all together in Figure 7 at Re = 106 only.

For the three considered Reynolds numbers, the turbulence is mainly concentrated in the

boundary layers. Apart from the R∗

zz component, the other five components reach indeed

their maxima in the boundary layers and decrease to a value one order below (6 × 10−3Ωr)

in the core (Fig.7). On the contrary, in their open cavity, Lygren and Andersson [21] re-

ported that, except from the tangential components of the Reynolds stress tensor, the other

components reach a maximum at the edge of the boundary layers. On Figure 6, the turbu-

lence statistics confirm that whatever the Reynolds number the Bödewadt layer is turbulent

at mid-radius while the Ekman layer gets turbulent at about Re = 4.105 but with a tur-

bulence intensity larger than on the stator. The turbulence intensities (scaled on the local

speed of the rotor) remain almost constant in turbulent boundary layers when increasing the

Reynolds number. That means that the turbulence intensity is intrinsic to the geometrical

characteristics of the cavity and not to the energy injected into the system. Whatever the

Reynolds number, LES results and experimental measurements fit quite well even in the core

region, where the turbulence intensity is weak. Let’s notice that it is generally not the case

with RANS modeling for which the predictions in this low-Reynolds number flow region far

from the disks are not satisfactory [27]. The locations of the peaks near the walls are also

well predicted by the LES. When increasing the Reynolds number, these maxima go closer

to the disks. At Re = 106, the tangential and radial turbulence intensities have maxima at

the same location z∗ = 0.9904 near the stationary disk and at different locations near the

rotating disk: z∗ = 0.0138 for the R∗

rr component and z∗ = 0.0096 for the R∗

θθ component.

The maximum error occurs in the prediction of the peak values. The singular behavior

observed at Re = 105 on the rotor side can be explained by the inherent difficulties of the

LDV system previously mentioned in Section II. At Re = 106, the turbulence intensities are

rather the same in both boundary layers by considering the experimental data, whereas the

LES leads to a regime where the Ekman layer is slightly more turbulent than the Bödewadt
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layer by looking at the R∗

rr-profile. This feature has been formerly reported by Lygren and

Andersson [21] when they compared their DNS results with the experiments of Itoh [13].

They attributed this discrepancy to the increased mixing between the boundary layers due

to the presence of the shroud in the experiments of Itoh. The present results show that the

presence of the shroud cannot explain this discrepancy, as LES and experiment used the

same cavity model.

The general trend is that LES results overestimate the turbulence intensity in the tan-

gential direction R∗

θθ while they underestimate it in the crossflow direction R∗

rr, particularly

in the stator boundary layer. On Figure 6 and at Re = 106, the numerical results predict

a R∗

θθ component almost twice larger than the R∗

rr component, whereas the experimental

measurements give components of about the same order. That suggests that the turbulence

anisotropy is stronger in LES than in experiments. There is no clear reason that explains

such behavior if not the anisotropy of the grid computation, which is globally coarser in

the radial direction than in two other ones. This reason was previously advocated by Scotti

et al. [33] to explain some discrepancies between LES and experiments in wall-bounded

flows. The grid is indeed non homogeneous and tighter close to the walls. For example, at

mid-radius, the grid spacing is 0.052h, 0.033h and 0.019h in the radial, tangential and axial

directions respectively. This phenomenon could certainly be reduced with grid refinement in

the radial and tangential directions. As a consequence, the predicted Reynolds stress tensor

is more anisotropic than the measured one.

If we consider the shear components of the Reynolds stress tensor at Re = 106 (Fig.7),

we clearly see that the peaks of R∗

rθ are the largest in both boundary layers compared to the

two other shear components. It is a major difference with two-dimensional boundary layer

flows where this component is usually neglected. One major difference between the idealized

flow considered by Lygren and Andersson [21] and the present study is that the R∗

rz and R∗

θz

components are negligible in the present LES, whereas these authors obtained magnitudes

of these two components quite comparable to the R∗

rθ component. Moreover, the R∗

rθ shear

component is negative on both disks in the open cavity of [21], whereas the shear is found

here to be positive on the rotor with a magnitude higher than on the stator side.

In order to show the turbulent flow regions in the meridional plane, the isolines of the

turbulence kinetic energy k∗ = k/(Ωb)2 are presented in Figure 8 at three Reynolds num-

bers. The maximum value of the turbulence kinetic energy evolves from k∗

max = 4.7 × 10−3



16

to k∗

max = 9 × 10−3 for increasing values of the Reynolds number, and its location moves

from the stator boundary layer to the edge of the rotor layer. At Re = 105, the turbu-

lence is mainly confined in the boundary layers along the stator and the shroud. A small

turbulent region is also observed at the impingement on the rotor of the flow coming from

the stator and accelerated along the rotating hub. The maximum of k∗ is obtained at the

junction between the stator and the shroud where the flow coming from the rotor impinges

the stator. By increasing the Reynolds number up to Re = 4 × 105, the Ekman layer gets

turbulent from about mid-radius to r∗ = 1 corresponding to the largest values of the local

Reynolds number. The maximum of k∗ has moved to the bottom of the shroud and the hub

is also now turublent. At Re = 106, the map is relatively similar to the previous one at

Re = 4× 105. The maximum is nevertheless two times larger and has slightly moved on the

left hand side along the rotor boundary layer.

V. FINITE CAVITY EFFECTS

Due to the presence of an inner and an outer cylinders at r∗ = 0 and r∗ = 1 respectively,

the flow is radially confined. Then, finite cavity effects on the mean field and turbulence

statistics have been explored at Re = 106.

Axial profiles of the mean radial V ∗

r and tangential V ∗

θ velocity components at four ra-

dial locations are shown on Figure 9. The same agreement observed at mid-radius (Fig.3)

between experimental measurements and LES results is observed for the three over radial

locations. In a flow region of radial extension 0.3 ≤ r∗ ≤ 0.7, a self-similar behavior is ob-

served and the boundary layers remain separated (regime IV [7]). Close to the outer shroud

(r∗ = 0.9), the Bödewadt layer thickens and the flow in the core is clearly influenced by the

boundary conditions. This effect on the flow in the core is besides larger on the LES results

than on the experimental data. According to the mass flow conservation, the entrainment

coefficient K increases with the radius from 0.35 at r∗ = 0.3 to 0.38 at r∗ = 0.9 whereas the

maxima of |V ∗

r | decrease in both layers.

As the consequence, the flow along the disks is no longer parallel contrary to the flows

in infinite cavities [21]. The radial evolutions of the thicknesses of both boundary layers

are shown on Figure 10, together with the predictions of the RSM of Poncet [25] for the

same Reynolds number Re ≃ 106 but in a cavity of aspect ratio about five times larger
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(G = 23.6, Rm = 1.36). Except in the endwall regions, both numerical results give quali-

tatively a good agreement. On the rotor side, the boundary layer thickness increases with

the radius whereas on the stator side the flow remains almost parallel outside the endwall

regions (0.1 ≤ r∗ ≤ 0.7). In that zone, the averaged value of δB/h is 1.5 larger than the

averaged value of the Ekman layer thickness: δB/h ≃ 1.5δE/h = 0.061. This result is close

to the one obtained by Daily and Nece [7] for turbulent flows with separated boundary

layers: δB ≃ 1.7δE. Let’s notice that this behavior seems different of the one observed in

the laminar regime. Indeed, Gauthier et al. [9] reported a decreasing of δB for increasing

radial locations, as δB = δ(6.9 − 5.3r∗), and an almost constant Ekman layer thickness

δE = 2.2δ far from the endwalls. The discrepancies between the LES and the RSM close to

the cylinders is firstly attributed to the much larger value of G considered by Poncet [25]

that considerably diminishes the effects of the endwall layers. The difficulty of the RSM to

take into account large recirculation zones as well as the two-dimensional hypothesis can be

also evoked.

In the shroud boundary-layer, an intense shear is produced by the differential rotation

between the core of the flow in solid body rotation (K ≃ 0.4Ω) and the outer stationary

cylinder. By analogy with the classical Taylor-Couette problem of the flow between differ-

entially rotating cylinders or spheres, this internal shear layer is called the Stewartson layer

[39]. The present cavity can be indeed considered as a rotor-stator Taylor-Couette system

of very large aspect ratio with the flow confined between an inner rotating cylinder and

an outer stationary cylinder. Figure 11 presents the axial variation of the Stewartson layer

thickness δs for Re = 106. The LES results can be scaled by a linear fit δs/b = 17×z∗−0.076

showing that the Stewartson layer is non homogeneous in the axial direction contrary to the

classical Taylor-Couette problem. After the impingement of the outward radial flow along

the rotor, the axial flow slows down along the shroud and as a consequence δS increases. At

the edge of the rotor, the Ekman layer turns into the axial flow of the Stewartson layer in

a region of which both the radial and axial dimensions are O(Re−1/2) [42]. In the present

case, the connection between the two boundary layers occurs when both dimensions are

1.62 × Re−1/2, which corresponds to δs/b = 0.0115 on Figure 11 and to δE/h = 0.081 on

Figure 10. Along the stator, the thickening of the Stewartson layer is also closely linked to

the thickening of the Bödewadt layer at the periphery of the cavity.

Finite cavity effects also influence the turbulence statistics as shown on Figure 12. What-
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ever the radial location, the turbulence remains mainly confined in the boundary layers,

whereas the inviscid core remains laminar. The turbulence intensities slightly increase to-

wards the periphery of the cavity as expected by the increase of the local Reynolds number.

At r∗ = 0.3 (Rer = 2 × 105), the boundary layers are already turbulent with comparable

turbulence intensities. At the periphery of the cavity r∗ = 0.9 (Rer = 8.62 × 105), the Ek-

man layer becomes more turbulent than the Bödewadt layer. Note that, whatever the radial

location, the R∗

θθ component remains almost twice larger than the R∗

rr component along the

disks. The agreement between the LES and the velocity measurements remains still satisfac-

tory over the radius. Nevertheless, as already observed when varying the Reynolds number

in section IV, the general trend of the LES is to underestimate the turbulence level in the

crossflow direction and to overestimate it in the tangential direction in the whole cavity.

To investigate the effects on the flow structures arising from the three-dimensionality of

the mean flow, anisotropy invariant maps are shown at four different radial locations and

Re = 106 (Figure 13). The second A2 and third A3 invariants of the anisotropy tensor aij

of the second moments of the fluctuations are defined as:

A2 = aijaji, A3 = aijajkaki (5)

where aij = Rij/k − 2
3
δij [20], (δij the Kronecker symbol). Thus, the anisotropy invariant

maps do not provide spatial informations on the flow structures but crucial informations

on the structure properties and especially on their velocity fluctuations. Let’s notice that,

whatever the radial location, the LES results respect the realizability diagram of Lumley

[20] as they remain within the region delimited by the three solid lines. Very close to

the disks, the turbulence tends to follow the two-component behavior (A3 = A2 − 8/9)

as the wall normal fluctuations are damped more effectively than fluctuations parallel to

the disks. Whatever the radial location, the turbulence is fairly close to the isotropic case

(A2 = A3 = 0) in the core of the flow. The domination of the R∗

θθ component (Fig.7) as well

as the positive sign of the third invariant A3 of the anisotropy tensor in the Bödewadt layer

suggest a “cigar-shaped” structuring of turbulence in the tangential direction. This kind of

structuring is well known in dominantly rotating turbulence [3]. At the edge of the Ekman

layer (z∗ ≃ 0.05), for 0.3 ≤ r∗ ≤ 0.7, the third invariant gets negative and close to the

two-dimensional isotropic turbulence limit (−2/9,2/3). In that region, the levels of the two

normal components R∗

θθ and R∗

rr are quite comparable as it can be seen on Figure 7. This
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is an indicator of “pancake” structuring contained in planes perpendicular to the rotation

axis. One interesting feature is that closer to the shroud (r∗ = 0.9) where high turbulence

level prevails, these vortex disappear, which is certainly due to the confinement.

VI. THREE-DIMENSIONAL BOUNDARY LAYERS

The flow between rotating disks is one of the simplest case where the boundary layers

are three-dimensional from their inception. In a classical way, a three-dimensional turbulent

boundary layer (3DTBL) is a boundary layer where:

(i) the direction of the mean velocity vector is non-constant with respect to the distance

from the wall,

(ii) the direction of the Reynolds shear stress vector in planes parallel with the wall is not

aligned with the mean velocity gradient vector,

(iii) the value of the Townsend structural parameter a1 = τ/2k, defined as the ratio of the

shear stress vector magnitude τ = (v′

θv
′

z

2
+ v′

rv
′

z

2
)1/2 to twice the turbulence kinetic

energy k is lower than the typical limit for two-dimensional turbulent boundary layers

(2DTBL): a1 = 0.15.

The 3DTBL behaviors of the rotor and stator boundary layers are here investigated

at Re = 106. Figure 14 shows the axial variations of the mean velocity angle γm =

arctan(Vr/Vθ) in the two boundary layers at r∗ = 0.3. On the rotor side, the angle in-

creases from zero at the rotating disk to 16.5◦ at z+ = 25, then slightly decreases to about

−0.5◦ outside the Ekman layer. On the stator side, the angle monotonically decreases from

zero to −34◦. Let’s notice that the same behaviors have been obtained for 0.3 ≤ r∗ ≤ 0.9.

This checks the condition (i) given above for a large radial extent domain 0.3 ≤ r∗ ≤ 09.

The misalignment between the direction of the Reynolds shear stress vector in planes

parallel with the wall and the mean velocity gradient vector (condition (ii)) is observed in

the present LES on both disks. In Figure 14, the axial variations of two characteristic an-

gles, the mean gradient velocity angle γg = arctan
(

∂Vr/∂z
∂Vθ/∂z

)

and the turbulent shear stress

angle γτ = arctan(v′

rv
′

z/v
′

θv
′

z) are shown. The lag between γτ and γg is large towards the

boundary layers with a maximum value about 94◦ on the rotor at r∗ = 0.3 to be compared
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with the value 18◦ reported by Lygren and Andersson [21] in infinite disk system. Note that

this lag increases up to 151◦ at r∗ = 0.9 (not presented here). In their numerical study of

non-stationary 3DTBL, Coleman et al. [5] obtained large values of the lag especially near

the wall and inferred it from the slow growth of the spanwise component of the shear stress.

These authors observed also the change of the sign of the gradient angle γg. Such large

values of this lag make the assumption of eddy-viscosity isotropy to fail for the prediction

of such flows.

Compared to a two-dimensional turbulent boundary layer (2DTBL) as the one found in

a Couette flow, one characteristic of a 3DTBL is the relative reduction of the magnitude of

the shear-stress vector in planes parallel with the disks with the turbulence kinetic energy

k. This measure is done using the Townsend structural parameter a1 = τ/2k. Typically

a1 = 0.15 for a wide range of 2DTBLs. The variations of a1 have been reported in Figure 15

at four radial locations in both the Ekman and Bödewadt layers, whose thicknesses depend

on the local radius. Whatever the considered locations, the maximum and minimum peak

values of a1 are 0.062 and 0.038, respectively. They are reached on the stator side and are

significantly reduced below the limiting value 0.15 for a 2DTBL (condtion (iii) verified).

This behavior is similar to this reported by Itoh et al. [12] and Littell and Eaton [19] from

their measurements and suggests the three-dimensional turbulent nature of the flow along

the rotor and stator walls. Let’s notice that the range of values of a1 is the same on both

layers. This reduction of a1 indicates also that the shear stress in this type of flow is less

efficient in extracting turbulence energy from the mean field. Note that a1 > 0.15 is obtained

only very locally on the inner and outer cylinders. These values are much smaller than those

found by Andersson and Lygren [1] in the open cavity, suggesting that finite cavity effects

increase the three-dimensionality of the mean flow.

VII. FLOW STRUCTURES

The flow structures in the disks boundary layers evolve from spiral arms to annuli when

one increases the rotation rate of the disk. The transition to turbulence for separated

boundary layer flows has been widely addressed experimentally [25, 32] and numerically

[35]. During the transition process in the laminar regime, the flow structures evolve from

circular to spiral rolls.
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Some flow visualizations have been firstly performed from above the stator for two

Reynolds numbers Re = 4.1× 104 and Re = 105 using a CCD video camera. The cavity has

been filled up with water and seeded with reflective particles of kalliroscope (30×6×0.07µm).

For Re = 4.1 × 104 (Fig.16a), the flow structure is already complex but it is still organized

by large structures showing spiral patterns with defects. For Re = 105, the Bödewadt layer

is now clearly turbulent (Fig.16b). The flow structures are much thinner and more aligned

on the tangential direction.

To identify numerically these coherent vortices, the Q-criterion of Hunt et al. [10] is

used. It defines a vortex as a spatial region where the Euclidean norm of the vortic-

ity tensor Ω = 1
2
[∇v − (∇v)T ] dominates that of the rate strain S = 1

2
[∇v + (∇v)T ]:

Q = 1
2
[|Ω|2 − |S|2] > 0. Figure 17 presents the isosurface of the Q-criterion in both bound-

ary layers and for the three Reynolds numbers under consideration. At Re = 105, only the

stator boundary layer (Fig.17b) is turbulent with increasing intensities towards the periph-

ery. On the rotor side, turbulent flow regions are only confined close to the junctions with

the hub and the shroud where the flow strongly impacts the wall. The inner rotating hub

is found to have a strong destabilizing effect, accelerating the flow and strengthening the

vortices coming from the Bödewadt layer to the Ekman layer. It is contrary to the configu-

ration where the hub is stationary [34]. For Re = 4 × 105, the flow along the stator is fully

turbulent as expected, while the rotor layer is now transitional turbulent. About 19 spiral

arms forming a positive angle ǫ ≃ 16◦ with the tangential direction (as they roll up in the

rotation sense) appear in the Ekman layer for 0.14 ≤ r∗ ≤ 0.61 (Fig.17c) where the flow is

laminar unstable (89 ≤ Re
1/2
r ≤ 386 < 500). These structures are characteristic of the Type

I instability (crossflow instability), which plays an important role in the transition process

to turbulence. These results are consistent with previous results (see the review of Saric et

al. [31]). Close to the outer radius, the structures are thinner and more axisymmetric, which

is characteristic of a turbulent flow. At Re = 106 (Fig.17e,f), the flow gets fully turbulent

in both boundary layers. Along the stator, as expected, turbulence intensities increase for

increasing values of the local Reynolds number and the coherent vortical structures, which

are aligned with the tangential direction, get thinner. Let’s notice that, for all considered

Reynolds numbers, any three-dimensional vortical structures were observed here in the core

of the flow, contrary to the recent experimental observations of Czarny et al. [6].
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VIII. CONCLUSION

Turbulent flows in an enclosed rotor-stator cavity have been investigated up to Re = 106

both numerically using high-order LES and experimentally using LDV measurements. As

far as the authors are aware, efficient LES of fully turbulent flow in an enclosed rotor-stator

cavity have not been performed before. The disks are enclosed by an inner hub attached to

the rotor and an outer shroud attached to stator involving finite cavity effects that were not

taken into account in former LES results of Lygren and Andersson [1, 21, 22].

The LES has been performed here using a spectral vanishing viscosity method providing

solutions that converge to solutions of Navier-Stokes equations when the cutoff goes to in-

finity, and preserving the spectral accuracy of smooth solutions. Such flows are difficult to

compute when using spectrally accurate numerical schemes, that results directly from the

fact that spectral approximations are much less diffusive than low order ones.

Numerical results and experimental measurements have been presented for three Reynolds

numbers, Re = 105, Re = 4 × 105 and Re = 106 in order to show the increasing complex-

ity in modeling these flows when rotation is increased. The boundary layers are separated

with a turbulent Ekman layer on the rotor from Re = 4 × 105 and a Bödewadt layer on

the stator already turbulent at Re = 105. On both layers, finite cavity effects have been

shown at Re = 106 with a radial dependence of the main features of the turbulent flow.

The turbulence intensities slightly increase going towards the periphery. In the flow regions

where the turbulence level is the weakest, the Q-criterion reveals spiral arm patterns related

to the crossflow instability. In the fully turbulent flow regions, the structures become much

thinner and aligned on the tangential direction.

At Re = 106, the anisotropy invariant map reveals some features related to “cigar-shaped

vortex” aligned on the tangential direction on the rotor side and related to “pancake-shaped

vortex” on the stator side. The reduction of the Townsend structural parameter a1 under

the typical limit 0.15, as well as the strong misalignment between the shear stress vector and

the mean velocity gradient vector, highlight the three-dimensional nature of both boundary

layers with a degree of three-dimensionality much higher than in the idealized system stud-

ied by Lygren and Andersson [1, 21].

The LES results compare very favorably with the LDV measurements that is very en-

couraging for this numerical approach to deal with complex flows. Improvements in the
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future should come from a coupling of the SVV procedure to the flow dynamics in order

to optimize the dissipation of the model. The viscosity kernel parameters could be selected

adaptively by relating them to the dynamics of the flow, i.e. the strain field.
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Re wT (r,θ,z) ǫN grid δt

105 3N/4, N/2,
√

N 1/(2N), 1/(2N), 1/(2N) 81, 150, 49 10−4

4 × 105 0.8
√

N,
√

N,
√

N 1/(2N), 1/(2N), 1/(2N) 121, 181, 65 10−4

106 2
√

N, 5
√

N, 4
√

N 1/N, 1/N, 1/N 151, 241, 81 10−5

Table I: Computational parameters.
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Reynolds number K δE/h δB/h δ/h

105 0.35 0.104 0.222 0.022

4 × 105 0.36 0.071 0.147 0.011

106 0.38 0.055 0.084 0.007

Table II: Influence of the Reynolds number on the entrainment coefficient K and on the thicknesses

of the boundary layers for r∗ = 0.5 (LES).
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• Fig.1: Schematic representation of the cavity with relevant notation.

• Fig.2: Radial evolution of the wall normal axial coordinate z+ near the rotor and the

stator sides for Re = 106 (half cavity).

• Fig.3: Axial profiles of the mean radial V ∗

r and tangential V ∗

θ velocity components at

r∗ = 0.5 for three Reynolds numbers. Comparison between (−) the LES results and

(◦) the LDV data.

• Fig.4: Polar plot of the velocity distribution in the whole gap between the disks at

r∗ = 0.5 for three Reynolds numbers. Comparison between (−) the LES results, (◦)
the LDV data, (−.) the laminar Von Kármán [43] solution and (−−) the DNS results

of Lygren and Andersson [21].

• Fig.5: Mean (a) radial V +
r and (b) tangential V +

θ velocity components in wall units

near the rotor (solid lines) and the stator (dashed lines) normalized with the tangential

friction velocity for Re = 106 at r∗ = 0.5. (c) Magnitude of the corresponding velocity

vector |V +| near the rotor (solid lines) and the stator (dashed lines) compared to the

turbulent boundary layer over a flat plate (dash-dot line) by Rotta [30].

• Fig.6: Axial profiles of the radial R∗

rr and tangential R∗

θθ Reynolds stress tensor com-

ponents at r∗ = 0.5 for three Reynolds numbers. The square roots of the Reynolds

stresses have been normalized by the local speed of the disk. Comparison between (−)

the LES results and (◦) the LDV data.

• Fig.7: Axial variations of the Reynolds stress tensor components for r∗ = 0.5 and

Re = 106.

• Fig.8: Isolines of the turbulence kinetic energy k∗ = k/(Ωb)2 at: (a) Re = 105,

k∗ ≤ 4.6× 10−3, (b) Re = 4× 105, k∗ ≤ 7× 10−3, (c) Re = 106, k∗ ≤ 6× 10−3 (LES).

• Fig.9: Axial profiles of the mean radial V ∗

r and tangential V ∗

θ velocity components for

Re = 106 at four radial locations. Comparison between (−) the LES results and (◦)
the LDV data.

• Fig.10: Radial distributions of the boundary layer thicknesses: (a) Ekman boundary

layer thickness δE/h, (b) Bödewadt boundary layer thickness δB/h. Comparisons
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between (−) the present LES (Re = 106, G = 5) and (−−) the predictions of the

Reynolds Stress Model of Poncet [25] (Re = 1.04 × 106, G = 23.6).

• Fig.11: Axial distribution of the Stewartson boundary layer thickness δS/b along the

external cylinder for Re = 106. Comparison between (×) the LES results and (−) a

linear interpolation.

• Fig.12: Axial profiles of the radial R∗

rr and tangential R∗

θθ Reynolds stress tensor

components for Re = 106 at four radial locations. Comparison between (−) the LES

results and (◦) the LDV data.

• Fig.13: Anisotropy invariant map for Re = 106 at four radial locations. Dashed lines:

LES, solid lines: realizability diagram of Lumley [20].

• Fig.14: Axial evolutions of the mean velocity angle γm, the mean gradient angle γg

and the shear stress angle γτ for Re = 106 at r∗ = 0.3: (a) along the rotor side, (b)

along the stator side.

• Fig.15: Townsend structural parameter a1 = τ/(2k) on both disks for Re = 106.

• Fig.16: Flow visualizations from above the stator for (a) Re = 4.1×104, (b) Re = 105.

• Fig.17: Isosurface plot (top view) of the Q-criterion in the rotor boundary layer (a,c,e)

and in the stator boundary layer (b,d,f) for Re = 105 (a,b), Re = 4 × 105 (c,d) and

Re = 106 (e,f). Note that the disk rotates counterclockwise.
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Figure 1: Séverac et al., Phys. Fluids.
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Figure 4: Séverac et al., Phys. Fluids.
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Figure 12: Séverac et al., Phys. Fluids.



43

0 0.5 1
0

0.5

1

1.5

2

A
3

A
2

r*=0.3

0 0.5 1
0

0.5

1

1.5

2

A
3

A
2

r*=0.5

0 0.5 1
0

0.5

1

1.5

2

A
3

A
2

r*=0.7

0 0.5 1
0

0.5

1

1.5

2

A
3

A
2

r*=0.9
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Figure 15: Séverac et al., Phys. Fluids.
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Figure 16: Séverac et al., Phys. Fluids.
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