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Abstract

We consider the density estimation problem from i.i.d. biased observations. We

investigate the performances of an adaptive wavelet block thresholding estimator

via the minimax approach under the L
p risk with p ≥ 1 over Besov balls. We prove

that it achieves near optimal rates of convergence.
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1 MOTIVATIONS

The classic density estimation problem can be formulated as follows. Let
X1, ..., Xn be an i.i.d. sample from a distribution with density function f .
The objective is to estimate the density function f based on the sample. Vari-
ous estimation techniques have been proposed in the statistical literature. The
most popular of them are presented in the books of Devroye and Györfi [8],
Silverman [17], Efromovich [9], Härdle et al. [11] and Tsybakov [19].

In this paper, we consider the problem of estimating f without observe directly
the sample X1, ..., Xn. We record i.i.d. observations Z1, ..., Zn from a biased
distribution with the following density function

g(x) = µ−1w(x)f(x),
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where w denotes a positive function and µ is the real number defined by
µ =

∫

w(y)f(y)dy. Here, w is known. The density function f and the real
number µ are unknown. The objective is to estimate the density function f
from the observations Z1, ..., Zn. In what follows, it is always assumed that,
without loss of generality, the functions f and w are defined on the unit
interval [0, 1]. Moreover, we suppose that there exist two constants w1 and w2

such that, for any x ∈ [0, 1],

0 < w1 ≤ w(x) ≤ w2 <∞.

The concept of biased data has several applications in various domains. Among
them, there are the biology, see Buckland et al. [2], the industry, see Cox [7],
and the economy, see Heckman [12]. See also the review by Patil and Rao [14]
who study several practical examples of biased distributions.

The density estimation problem for biased data has been considered in several
papers. Among them, let us briefly present some recent results established
by Efromovich [10] and Brunel et al. [1]. In the article of Efromovich [9],
the Efromovich-Pinsker adaptive estimator based on a blockwise shrinkage
algorithm is developed. It achieves the exact minimax rate of convergence
under the L

2 risk over a Sobolev class, Bs
2,2. In the article of Brunel et al.

[1], a penalized projection density estimator is proposed. It achieves the exact
minimax rate of convergence under the L

2 risk over a particular Besov class,
Bs

2,∞. The main differences between these two estimators are discussed in
Remark 3.2 of Brunel et al. [1].

In the present paper, we adopt the minimax point of view under the L
p risk

with p ≥ 1, not only for p = 2, and we consider the Besov classes, Bs
π,r, with

no particular restriction on the parameters π and r. We estimate the unknown
density function f by using an adaptive wavelet block thresholding estimator
suitably adapted to our minimax framework. It can be viewed as a L

p version
of the BlockShrink algorithm initially developed by Cai [3] for the L

2 risk and
the regression model with equispaced deterministic sample. We prove that the
considered estimator achieves optimal or near optimal rates of convergence
according to the values of the parameters s, π, r of the Besov classes, and the
parameter p of the L

p risk. This result follows from a general theorem proved
by Chesneau [4] and some technical probability inequalities. Thus, the main
difficulties of this work are the proofs of a moment inequality and a specific
concentration inequality. Finally, let us mention that, if we restrict our study
to the L

2 risk and the Sobolev class Bs
2,2 or the Besov class Bs

2,∞, then our
estimator has similar asymptotic minimax performances to the Efromovich-
Pinsker adaptive estimator and the penalized projection density estimator.

The paper is organized as follows. In Section 2, we present wavelets and Besov
balls. The considered adaptive wavelet block thresholding estimator is defined
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in Section 3. Section 4 is devoted to the main result. The proofs are postponed
in Section 5.

2 WAVELETS AND BESOV BALLS

We consider an orthonormal wavelet basis generated by dilation and transla-
tion of a compactly supported ”father” wavelet φ and a compactly supported
”mother” wavelet ψ. For the purposes of this paper, we use the periodized
wavelet bases on the unit interval. For any x ∈ [0, 1], any integer j and any
k ∈ {0, . . . , 2j − 1}, let

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k)

be the elements of the wavelet basis and

φper
j,k (x) =

∑

l∈Z

φj,k(x− l), ψper
j,k (x) =

∑

l∈Z

ψj,k(x− l),

there periodized version. There exists an integer τ such that the collection ζ
defined by ζ = {φper

τ,k , k = 0, ..., 2τ − 1; ψper
j,k , j = τ, ...,∞, k = 0, ..., 2j − 1}

constitutes an orthonormal basis of L
2([0, 1]). In what follows, the superscript

”per” will be suppressed from the notations for convenience. For any integer
l ≥ τ , a function f ∈ L

2([0, 1]) can be expanded into a wavelet series as

f(x) =
2l−1
∑

k=0

αl,kφl,k(x) +
∞
∑

j=l

2j−1
∑

k=0

βj,kψj,k(x), x ∈ [0, 1],

where αj,k =
∫ 1
0 f(t)φj,k(t)dt and βj,k =

∫ 1
0 f(t)ψj,k(t)dt. For further details

about wavelet bases on the unit interval, we refer to Cohen et al. [6].

Now, let us define the Besov balls. Let M ∈ (0,∞), s ∈ (0,∞), π ∈ [1,∞] and
r ∈ [1,∞]. Let us set βτ−1,k = ατ,k. We say that a function f belongs to the
Besov balls Bs

π,r(M) if and only if there exists a constant M∗ > 0 such that
the associated wavelet coefficients satisfy







∞
∑

j=τ−1





2j(s+1/2−1/π)





2j−1
∑

k=0

|βj,k|
π





1/π






r





1/r

≤M∗.

For a particular choice of parameters s, π and r, these sets contain the Hölder
and Sobolev balls. See Meyer [13].

3



3 ESTIMATOR

Now, let us describe the main estimator of the study. As mentioned in Sec-
tion 1, it can be viewed as L

p version of the BlockShrink estimator initially
developed by Cai [3] for the L

2 risk for the regression model with equispaced
deterministic sample. The considered L

p version has been introduced by Pi-
card and Tribouley [16] for general statistical problems in the context of the
adaptive confidence interval for pointwise curve estimation.

Let p ∈ [1,∞) and d ∈ (0,∞). Let j1 and j2 be the integers defined by

j1 = ⌊((p ∨ 2)/2) log2(log n)⌋ and j2 = ⌊log2(n/ lnn)⌋.

Here, p ∨ 2 = max(p, 2) and the quantity ⌊a⌋ denotes the whole number part
of a.

For any j ∈ {j1, ..., j2}, let us set L = ⌊(log n)(p∨2)/2⌋ andAj = {1, ..., ⌊2jL−1⌋}.
For any K ∈ Aj , we consider the set

Uj,K = {k ∈ {0, ..., 2j − 1}; (K − 1)L ≤ k ≤ KL− 1}.

We define the (Lp version of the) BlockShrink estimator by

f̂n(x) =
2j1−1
∑

k=0

α̂j1,kφj1,k(x)+
j2
∑

j=j1

∑

K∈Aj

∑

k∈Uj,K

β̂j,k1{b̂j,K≥dn−1/2}ψj,k(x), x ∈ [0, 1],

(3.1)
where b̂j,K = (L−1∑

k∈Uj,K
|β̂j,k|

p)1/p,

α̂j1,k = µ̂n−1
n
∑

i=1

w−1(Zi)φj1,k(Zi), β̂j,k = µ̂n−1
n
∑

i=1

w−1(Zi)ψj,k(Zi), (3.2)

with

µ̂ =

(

n−1
n
∑

i=1

w−1(Zi)

)−1

.

Let us mention that f̂n does not require any a priori knowledge on f (and, a
fortiori, µ) in his construction. It is adaptive.

The sets Aj and Uj,K are chosen such that ∪K∈Aj
Uj,K = {0, ..., 2j − 1}, Uj,K ∩

Uj,K ′ = ∅ for any K 6= K ′ with K, K ′ ∈ Aj, and |Uj,K| = L = ⌊(log n)(p∨2)/2⌋.

The estimators α̂j1,k and β̂j,k are wavelet versions of those proposed by Brunel
et al. [1].

In fact, the penalized projection density estimator developed by Brunel et al.
[1] can be constructed from a wide variety of bases (trigonometric, polynomial,
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wavelets ...). However, the choice of the basis has no influence on the minimax
performances of this estimator. In our study, due to the complexity of our
minimax approach, we really use the multiresolution nature of the wavelet
bases to obtain the desired result.

Lemma 3.1 below determines an upper bound for
∣

∣

∣β̂j,k − βj,k

∣

∣

∣.

Lemma 3.1 Let us consider the biased density model described in the second
paragraph of Section 1. Suppose that there exists a known constant f2 such
that, for any x ∈ [0, 1],

f(x) ≤ f2.

We recall that there exist two constants w1 and w2 such that, for any x ∈ [0, 1],
we have 0 < w1 ≤ w(x) ≤ w2 < ∞. Then, for any j ∈ {j1, ..., j2} and any
k ∈ {0, ..., 2j − 1}, the estimator β̂j,k defined by (3.2) satisfies

∣

∣

∣β̂j,k − βj,k

∣

∣

∣≤ (w2w
−1
1 + 2)

∣

∣

∣

∣

∣

µn−1
n
∑

i=1

w−1(Zi)ψj,k(Zi) − βj,k

∣

∣

∣

∣

∣

+w2 |βj,k|

∣

∣

∣

∣

∣

n−1
n
∑

i=1

w−1(Zi) − µ−1

∣

∣

∣

∣

∣

. (3.3)

The inequality (3.3) holds for φj,k instead of ψj,k and, a fortiori, α̂j,k instead

of β̂j,k and αj,k instead of βj,k.

In addition to the inequality (3.3), the estimators (β̂j,k)j,k defined by (3.2)
satisfy several specific probability inequalities. Two of them will be at the
heart of the proof of the main result. Further details are given in Section 4
below.

4 MAIN RESULT

Theorem 4.1 below determines the rates of convergence achieved by the (Lp

version of the) BlockShrink estimator under the L
p risk over Besov balls.

Theorem 4.1 Let us consider the biased density model described in the second
paragraph of Section 1. Suppose that there exists a known constant f2 such that,
for any x ∈ [0, 1],

f(x) ≤ f2.

We recall that there exist two constants w1 and w2 such that, for any x ∈
[0, 1], we have 0 < w1 ≤ w(x) ≤ w2 < ∞. Let p ∈ [1,∞[. Let us consider
the BlockShrink estimator f̂n defined by (3.1) with a large enough threshold
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constant d. Then there exists a constant C > 0 such that, for any π ∈ [1,∞],
r ∈ [1,∞], s ∈ (1/π,∞) and n large enough, we have

sup
f∈Bs

π,r(M)
E

(∫ 1

0

∣

∣

∣f̂n(x) − f(x)
∣

∣

∣

p
dx
)

≤ Cϕn,

where ϕn is defined by

ϕn =







n−α1p(log n)α1p1{p>π} , when ǫ > 0,

(n−1 logn)α2p(log n)(p−π/r)+1{ǫ=0} , when ǫ ≤ 0,

with α1 = s/(2s + 1), α2 = (s − 1/π + 1/p)/(2(s − 1/π) + 1) and ǫ = πs +
2−1(π − p).

Now, let us discuss the optimality of the rates ϕn described in Theorem 4.1
above. Using standard lower bound techniques, we can prove that there exists
a constant c > 0 such that

inf
f̃

sup
f∈Bs

π,r(M)
E

(∫ 1

0

∣

∣

∣f̃(x) − f(x)
∣

∣

∣

p
dx
)

≥ cϕ∗
n,

where inf f̃ denotes the infimum over all the possible estimators f̃ of f and ϕ∗
n

is defined by

ϕ∗
n =







n−α1p, when ǫ > 0,

(n−1 logn)α2p when ǫ ≤ 0,

with α1 = s/(2s + 1), α2 = (s − 1/π + 1/p)/(2(s − 1/π) + 1) and ǫ = πs +
2−1(π − p). Thanks to the assumptions of boundedness made on w, the proof
is similar to the proof of the lower bound for the standard density estimation
problem (i.e., when we observe the i.i.d. sample X1, ..., Xn from a distribution
with unknown density function f). Further details can be found in the book
of Härdle et al. [11] (Section 10.4).

Thus, the rates of convergence presented in Theorem 4.1 above are minimax
except in the cases {p > π} ∩ {ǫ > 0} and ǫ = 0 where there is an ex-
tra logarithmic term. Moreover, they are better than those achieved by the
conventional term-by-term thresholding estimators (hard, soft,...). The main
difference is for the case {π ≥ p} where there is no extra logarithmic term.

As mentioned in Section 1, if we adopt the same minimax framework than
Efromovich [10] and Brunel et al. [1], i.e. p = 2 and π = r = 2 or π = 2,
r = ∞, then our estimator has similar asymptotic minimax performances to
the Efromovich-Pinsker adaptive estimator developed by Efromovich [10] and
the penalized projection density estimator proposed by Brunel et al. [1].

Notice that, for the classic case w(x) = 1 (and, a fortiori, µ̂ = µ = 1) and
p = 2, Theorem 4.1 has been established by Chicken and Cai [5].
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Thanks to Theorem 4.2 of Chesneau [4], the proof of Theorem 4.1 is an imme-
diate consequence of Propositions 1 and 2 below. These propositions show that
the estimators (β̂j,k)j,k defined by (3.2) satisfy a standard moment inequality
and a specific concentration inequality.

Proposition 1 Let p ≥ 2. Suppose that the assumptions of Theorem 4.1 are
satisfied. Then there exists a constant C > 0 such that, for any j ∈ {j1, ..., j2},
any k ∈ {0, ..., 2j − 1} and n large enough, the estimator β̂j,k defined by (3.2)
satisfies the following moment inequality

E

(

∣

∣

∣β̂j,k − βj,k

∣

∣

∣

2p
)

≤ Cn−p. (4.1)

The inequality (4.1) holds for α̂j,k instead of β̂j,k and αj,k instead of βj,k.

The proof of Proposition 1 uses Lemma 3.1 and some moment inequalities as
the Rosenthal inequality (see Petrov [15]).

Proposition 2 Let p ≥ 2. Suppose that the assumptions of Theorem 4.1 are
satisfied. Then there exists a constant d∗ > 0 such that, for any j ∈ {j1, ..., j2},
any K ∈ Aj and n large enough, the estimators (β̂j,k)k∈Uj,K

defined by (3.2)
satisfy the following concentration inequality

P











∑

k∈Uj,K

∣

∣

∣β̂j,k − βj,k

∣

∣

∣

p





1/p

≥ d∗2
−1n−1/2(logn)1/2





 ≤ n−p.

The proof of Proposition 2 uses Lemma 3.1 and some concentration inequal-
ities as the Talagrand inequality (see Talagrand [18]) and the Hoeffding in-
equality (see Petrov [15]).

In Propositions 1 and 2 above, we have only considered the case p ≥ 2.
Because if the moment inequality and the concentration inequality are sat-
isfied with p ≥ 2, then they are satisfied for p ∈ [1, 2]. This is a conse-
quence of the Hölder inequality for the moment inequality. For the concen-
tration inequality, this is a consequence of the following inequality of the lp
norm: for any sequence (ai)i∈N∗ , any m ∈ N

∗ and any p ∈ [1, 2], we have

(m−1∑m
i=1 |ai|

p)
1/p

≤ (m−1∑m
i=1(ai)

2)
1/2

.

Now, let us discuss the choice of the thresholding constant d. From a theoreti-
cal point of view, it is difficult to determine the exact minimum value of d such
that f̂n achieves the rates of convergence exhibited in Theorem 4.1. In fact,
Theorem 4.1 holds for d ≥ d∗ where d∗ refers to the constant of Proposition 2
above.
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5 PROOFS

In this section, (Ci)i=1,...,12 denote positive constants. They take different val-
ues in each proof. They are independent of f , µ and n.

PROOF OF LEMMA 3.1. For any j ∈ {j1, ..., j2} and any k ∈ {0, ..., 2j − 1},
we have the following decomposition

β̂j,k − βj,k = µ̂n−1
n
∑

i=1

w−1(Zi)ψj,k(Zi) − βj,k

=(µ̂− µ)

(

n−1
n
∑

i=1

w−1(Zi)ψj,k(Zi)

)

+

(

µn−1
n
∑

i=1

w−1(Zi)ψj,k(Zi) − βj,k

)

.

It follows from the triangular inequality that

∣

∣

∣β̂j,k − βj,k

∣

∣

∣ ≤ Rj,k +

∣

∣

∣

∣

∣

µn−1
n
∑

i=1

w−1(Zi)ψj,k(Zi) − βj,k

∣

∣

∣

∣

∣

, (5.1)

where

Rj,k = |µ̂− µ|

∣

∣

∣

∣

∣

n−1
n
∑

i=1

w−1(Zi)ψj,k(Zi)

∣

∣

∣

∣

∣

. (5.2)

Now, let us investigate the upper bound for Rj,k.

The upper bound for |µ̂−µ|. Since w(x) ≤ w2 for any x ∈ [0, 1], the triangular
inequality yields

|µ̂− µ| ≤ µ̂+ µ =

(

n−1
n
∑

i=1

w−1(Zi)

)−1

+ µ ≤ w2 + µ. (5.3)

Moreover,

|µ̂− µ|=

∣

∣

∣

∣

∣

∣

(

n−1
n
∑

i=1

w−1(Zi)

)−1

− µ

∣

∣

∣

∣

∣

∣

=µ

(

n−1
n
∑

i=1

w−1(Zi)

)−1 ∣
∣

∣

∣

∣

n−1
n
∑

i=1

w−1(Zi) − µ−1

∣

∣

∣

∣

∣

≤µw2

∣

∣

∣

∣

∣

n−1
n
∑

i=1

w−1(Zi) − µ−1

∣

∣

∣

∣

∣

. (5.4)

It follows from (5.3) and (5.4) that

|µ̂− µ| ≤ min

(

w2 + µ, µw2

∣

∣

∣

∣

∣

n−1
n
∑

i=1

w−1(Zi) − µ−1

∣

∣

∣

∣

∣

)

. (5.5)
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The upper bound for |n−1∑n
i=1w

−1(Zi)ψj,k(Zi)|. By the triangular inequality
we have

∣

∣

∣

∣

∣

n−1
n
∑

i=1

w−1(Zi)ψj,k(Zi)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n−1
n
∑

i=1

(

w−1(Zi)ψj,k(Zi) − µ−1βj,k + µ−1βj,k

)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

n−1
n
∑

i=1

(

w−1(Zi)ψj,k(Zi) − µ−1βj,k

)

∣

∣

∣

∣

∣

+ µ−1 |βj,k| .

(5.6)

It follows from (5.2), (5.5) and (5.6) that

Rj,k ≤min

(

w2 + µ, µw2

∣

∣

∣

∣

∣

n−1
n
∑

i=1

w−1(Zi) − µ−1

∣

∣

∣

∣

∣

)

×

(∣

∣

∣

∣

∣

n−1
n
∑

i=1

(

w−1(Zi)ψj,k(Zi) − µ−1βj,k

)

∣

∣

∣

∣

∣

+ µ−1 |βj,k|

)

≤ (w2 + µ)

∣

∣

∣

∣

∣

n−1
n
∑

i=1

(

w−1(Zi)ψj,k(Zi) − µ−1βj,k

)

∣

∣

∣

∣

∣

+w2 |βj,k|

∣

∣

∣

∣

∣

n−1
n
∑

i=1

w−1(Zi) − µ−1

∣

∣

∣

∣

∣

. (5.7)

Putting the inequality (5.1) and (5.7) together, we obtain

|β̂j,k − βj,k| ≤ (w2µ
−1 + 2)

∣

∣

∣

∣

∣

µn−1
n
∑

i=1

w−1(Zi)ψj,k(Zi) − βj,k

∣

∣

∣

∣

∣

+w2 |βj,k|

∣

∣

∣

∣

∣

n−1
n
∑

i=1

w−1(Zi) − µ−1

∣

∣

∣

∣

∣

.

Since w1 ≤ w(x) for any x ∈ [0, 1], we have µ =
∫ 1
0 f(y)w(y)dy ≥ w1

∫ 1
0 f(y)dy =

w1. Therefore

|β̂j,k − βj,k| ≤ (w2w
−1
1 + 2)

∣

∣

∣

∣

∣

µn−1
n
∑

i=1

w−1(Zi)ψj,k(Zi) − βj,k

∣

∣

∣

∣

∣

+w2 |βj,k|

∣

∣

∣

∣

∣

n−1
n
∑

i=1

w−1(Zi) − µ−1

∣

∣

∣

∣

∣

.

Lemma 3.1 is proved.

PROOF OF PROPOSITION 1. Let p ≥ 2. Using Lemma 3.1 and the elemen-
tary inequality

(|x+ y|)a ≤ 2a−1(|x|a + |y|a), x, y ∈ R, a ≥ 1, (5.8)
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for any j ∈ {j1, ..., j2} and any k ∈ {0, ..., 2j − 1}, we obtain

E

(

|β̂j,k − βj,k|
2p
)

≤ cj,k (sj,k + tj,k) ,

where cj,k = 2p−1
(

max
(

w2w
−1
1 + 2, w2|βj,k|

))2p
,

sj,k = E





∣

∣

∣

∣

∣

µn−1
n
∑

i=1

w−1(Zi)ψj,k(Zi) − βj,k

∣

∣

∣

∣

∣

2p




and

tj,k = E





∣

∣

∣

∣

∣

n−1
n
∑

i=1

w−1(Zi) − µ−1

∣

∣

∣

∣

∣

2p


 .

Let us investigate the upper bounds for cj,k, Sj,k and Tj,k, in turn.

The upper bound for cj,k. Using the inequality f(x) ≤ f2 for any x ∈ [0, 1],
and the Cauchy-Schwarz inequality, we obtain

|βj,k| ≤
∫ 1

0
|f(x)||ψj,k(x)|dx ≤ f2

∫ 1

0
|ψj,k(x)|dx

≤ f2

(∫ 1

0
(ψj,k(x))

2 dx
)1/2

= f2. (5.9)

It follows that

cj,k ≤ 2p−1
(

max
(

w2w
−1
1 + 2, w2f2

))2p
. (5.10)

The obtained upper bound does not depend on n, f , and the parameters j
and k.

The upper bound for sj,k. For any i ∈ {1, ..., n}, let us setDi = µw−1(Zi)ψj,k(Zi)−
βj,k. Clearly, D1, ..., Dn are i.i.d. random variables such that

E(D1)= E

(

µw−1(Z1)ψj,k(Z1)
)

− βj,k

=
∫ 1

0
µw−1(x)ψj,k(x)

(

f(x)w(x)µ−1
)

dx− βj,k = 0.

Now, in order to apply the Rosenthal inequality (see Petrov [15]), let us in-
vestigate the upper bound for the moments of |D1|. Using the elementary
inequality (5.8) and the fact that |βj,k| ≤ f2 (see (5.9)), for any a ≥ 2, we have

E(|D1|
a)≤ 2a−1

(

E

(∣

∣

∣µw−1(Z1)ψj,k(Z1)
∣

∣

∣

a)

+ |βj,k|
a
)

≤ 2a−1
(

E

(∣

∣

∣µw−1(Z1)ψj,k(Z1)
∣

∣

∣

a)

+ fa
2

)

. (5.11)
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Using the inequalities w1 ≤ w(x) for any x ∈ [0, 1], µ ≤ w2, |βj,k| ≤ f2 (see
(5.9)) and |ψj,k(Zi)| ≤ supx∈[0,1] |ψj,k(x)| ≤ 2j/2 supx∈[0,1] |ψ(x)|, it comes

E

(∣

∣

∣µw−1(Z1)ψj,k(Z1)
∣

∣

∣

a)

≤wa−1
2 w

−(a−1)
1 2j(a−2)/2

(

sup
x∈[0,1]

|ψ(x)|

)a−2

E

(

µw−1(Z1) (ψj,k(Z1))
2
)

(5.12)

Since f(x) ≤ f2 for any x ∈ [0, 1], we have

E

(

µw−1(Z1) (ψj,k(Z1))
2
)

=
∫ 1

0
µw−1(x)(ψj,k(x))

2
(

µ−1w(x)f(x)
)

dx

=
∫ 1

0
(ψj,k(x))

2f(x)dx

≤ f2

∫ 1

0
(ψj,k(x))

2dx = f2. (5.13)

By putting the inequalities (5.12) and (5.13) together and using the definition
of the integer j2, for any j ∈ {j1, ..., j2}, we have

E

(∣

∣

∣µw−1(Z1)ψj,k(Z1)
∣

∣

∣

a)

≤wa−1
2 w

−(a−1)
1

(

sup
x∈[0,1]

|ψ(x)|

)a−2

f22
j2(a−2)/2

≤C1n
a/2−1.

This, with the inequality (5.11), yields the existence of a constant C2 such
that

E(|D1|
a) ≤ 2a−1

(

C1n
a/2−1 + fa

2

)

≤ C2n
a/2−1. (5.14)

The Rosenthal inequality and the inequality (5.14) taken with the values a =
2p and a = 2 imply

sj,k = E





∣

∣

∣

∣

∣

n−1
n
∑

i=1

Di

∣

∣

∣

∣

∣

2p


 ≤ C3

(

n1−2p
E

(

|D1|
2p
)

+ n−p
(

E

(

(D1)
2
))p)

≤C4

(

n1−2pnp−1 + n−p
)

≤ C5n
−p. (5.15)

The upper bound for tj,k. For any i ∈ {1, ..., n}, let us set Gi = w−1(Zi)−µ−1.
Clearly, G1, ..., Gn are i.i.d. such that
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E(G1)= E

(

w−1(Z1)
)

− µ−1 =
∫ 1

0
w−1(x)

(

f(x)w(x)µ−1
)

dx− µ−1

=µ−1
∫ 1

0
f(x)dx− µ−1 = 0.

Now, in order to apply the Rosenthal inequality (see Petrov [15]), let us in-
vestigate the upper bound for the moments of |G1|. Using the elementary
inequality (5.8), the inequalities w1 ≤ w(x) for any x ∈ [0, 1] and µ−1 ≤ w−1

1 ,
for any a ≥ 2, we have

E(|G1|
a) ≤ 2a−1

(

E

((

w−1(Z1)
)a)

+ µ−a
)

≤ 2aw−a
1 . (5.16)

The Rosenthal inequality and the inequality (5.16) taken with the values a =
2p and a = 2 imply

tj,k = E





∣

∣

∣

∣

∣

n−1
n
∑

i=1

Gi

∣

∣

∣

∣

∣

2p


≤C6

(

n1−2p
E

(

|G1|
2p
)

+ n−p
(

E

(

(G1)
2
))p)

≤C7n
−p. (5.17)

Combining the upper bounds (5.10), (5.15) and (5.17), we prove the existence
of a constant C8 such that

E

(

|β̂j,k − βj,k|
2p
)

≤ C8n
−p.

This proved Proposition 1.

PROOF OF PROPOSITION 2. Let p ≥ 2. Using Lemma 3.1 and the Minkowski
inequality for the lp norm, for any j ∈ {j1, ..., j2} and any K ∈ Aj , we have





∑

k∈Uj,K

|β̂j,k − βj,k|
p





1/p

≤ (w2w
−1
1 + 2)





∑

k∈Uj,K

∣

∣

∣

∣

∣

µn−1
n
∑

i=1

w−1(Zi)ψj,k(Zi) − βj,k

∣

∣

∣

∣

∣

p




1/p

+w2

∣

∣

∣

∣

∣

n−1
n
∑

i=1

w−1(Zi) − µ−1

∣

∣

∣

∣

∣





∑

k∈Uj,K

|βj,k|
p





1/p

.

Using an elementary inequality of the lp norm with the fact that p ≥ 2,
the orthonormality of the wavelet basis and the fact that f(x) ≤ f2 for any
x ∈ [0, 1], we have
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



∑

k∈Uj,K

|βj,k|
p





1/p

≤





2j−1
∑

k=0

|βj,k|
2





1/2

≤
(∫ 1

0
(f(x))2 dx

)1/2

≤ f2.

It follows from these inequalities that, for any λ > 0, we have

P











∑

k∈Uj,K

|β̂j,k − βj,k|
p





1/p

≥ λn−1/2(logn)1/2





 ≤ Fj,K +Qj,K, (5.18)

where

Fj,K = P

(

(w2w
−1
1 + 2)





∑

k∈Uj,K

∣

∣

∣

∣

∣

µn−1
n
∑

i=1

w−1(Zi)ψj,k(Zi) − βj,k

∣

∣

∣

∣

∣

p




1/p

≥

2−1λn−1/2(logn)1/2
)

and

Qj,K = P

(

w2f2

∣

∣

∣

∣

∣

n−1
n
∑

i=1

w−1(Zi) − µ−1

∣

∣

∣

∣

∣

≥ 2−1λn−1/2(log n)1/2

)

.

Now, let us analyze the upper bounds for Fj,K and Qj,K , in turn.

The upper bound for Fj,K. First of all, let us present the Talagrand inequality
in Lemma 5.1 below.

Lemma 5.1 (Talagrand [18]) Let V1, ..., Vn be i.i.d. random variables and
ǫ1, ..., ǫn be independent Rademacher variables, also independent of V1, ..., Vn.
Let F be a class of functions uniformly bounded by T . Let rn : F → R be the
operator defined by

rn(h) = n−1
n
∑

i=1

h(Vi) − E(h(V1)).

Suppose that

sup
h∈F

V (h(V1)) ≤ v and E

(

sup
h∈F

n
∑

i=1

ǫih(Vi)

)

≤ nH.

Then, there exist two absolute constants C∗
1 > 0 and C∗

2 > 0 such that, for
any t > 0, we have

P

(

sup
h∈F

rn(h) ≥ t+ C∗
2H

)

≤ exp
(

−nC∗
1

(

t2v−1 ∧ tT−1
))

.

13



In order to apply the Talagrand inequality, let us consider the set Cq defined
by

Cq =
{

a = (aj,k) ∈ Z
∗;

∑

k∈Uj,K

|aj,k|
q ≤ 1

}

and the functions class F defined by

F =
{

h; h(x) = µw−1(x)
∑

k∈Uj,K

aj,kψj,k(x), a ∈ Cq

}

.

By an argument of duality, we have





∑

k∈Uj,K

∣

∣

∣

∣

∣

µn−1
n
∑

i=1

w−1(Zi)ψj,k(Zi) − βj,k

∣

∣

∣

∣

∣

p




1/p

= sup
a∈Cq

∑

k∈Uj,K

aj,k

(

µn−1
n
∑

i=1

w−1(Zi)ψj,k(Zi) − βj,k

)

= sup
h∈F

rn(h),

where rn denotes the function defined in Lemma 5.1. Now, let us evaluate the
parameters T , H and v of the Talagrand inequality.

The value of T . Let h be a function in F . Using the inequalities w1 ≤ w(x) for
any x ∈ [0, 1], µ ≤ w2 and the fact that ψ is compactly supported, we obtain

|h(x)| ≤ µw−1(x)
∑

k∈Uj,K

|ψj,k(x)| ≤ w2w
−1
1

2j−1
∑

k=0

|ψj,k(x)| ≤ C22
j/2,

where C2 denotes a constant depending on w1, w2, supx∈[0,1] |ψ(x)| and the
length of the support of ψ.

Hence T = C22
j/2.

The value of H. Let ǫ1, ..., ǫn be independent Rademacher variables indepen-
dent of Z = (Z1, ..., Zn).

The Hölder inequality for the lp norm, the Hölder inequality and the definition
of Cq imply
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E



sup
a∈Cq

n
∑

i=1

∑

k∈Uj,K

aj,kǫiµw
−1(Zi)ψj,k(Zi)





≤ sup
a∈Cq





∑

k∈Uj,K

|aj,k|
q





1/q

E











∑

k∈Uj,K

∣

∣

∣

∣

∣

n
∑

i=1

ǫiµw
−1(Zi)ψj,k(Zi)

∣

∣

∣

∣

∣

p




1/p






≤





∑

k∈Uj,K

E

(∣

∣

∣

∣

∣

n
∑

i=1

ǫiµw
−1(Zi)ψj,k(Zi)

∣

∣

∣

∣

∣

p)




1/p

. (5.19)

Since ǫ1, ..., ǫn are independent Rademacher variables, also independent of Z =
(Z1, ..., Zn), the Khintchine inequality implies the existence of a constant C3

such that

E

(∣

∣

∣

∣

∣

n
∑

i=1

ǫiµw
−1(Zi)ψj,k(Zi)

∣

∣

∣

∣

∣

p)

= E

(

E

(∣

∣

∣

∣

∣

n
∑

i=1

ǫiµw
−1(Zi)ψj,k(Zi)

∣

∣

∣

∣

∣

p ∣

∣

∣

∣

Z

))

≤C3E



E





∣

∣

∣

∣

∣

n
∑

i=1

µ2w−2(Zi) (ψj,k(Zi))
2

∣

∣

∣

∣

∣

p/2 ∣

∣

∣

∣

Z







 = C3M, (5.20)

where

M = E





∣

∣

∣

∣

∣

n
∑

i=1

µ2w−2(Zi) (ψj,k(Zi))
2

∣

∣

∣

∣

∣

p/2


 .

Now, for any i ∈ {1, ..., n}, let us set Ni = µ2w−2(Zi) (ψj,k(Zi))
2. Clearly, the

variables N1, ..., Nn are i.i.d. . The triangular inequality and an elementary
inequality of convexity give

M ≤ E





(∣

∣

∣

∣

∣

n
∑

i=1

(Ni − E(N1))

∣

∣

∣

∣

∣

+ n|E(N1)|

)p/2


 ≤ 2p/2−1(M1 +M2),

where

M1 = E





∣

∣

∣

∣

∣

n
∑

i=1

(Ni − E(N1))

∣

∣

∣

∣

∣

p/2


 and M2 = np/2 (E(N1))
p/2 .

Let us analyze the upper bounds for M1 and M2, in turn.

The upper bound for M1. The Rosenthal inequality applied to the i.i.d. centered
random variables N1 −E(N1), ..., Nn −E(Nn) and the Hölder inequality imply
the existence of two constants C4 and C5 such that
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M1 ≤C4

(

nE(|N1 − E(N1)|
p/2) +

(

nE(|N1 − E(N1)|
2)
)p/4

)

≤C5

(

nE(|N1|
p/2) +

(

nE(|N1|
2)
)p/4

)

.

Using the inequalities w1 ≤ w(x), f(x) ≤ f2 and |ψj,k(x)| ≤ 2j/2 supx∈[0,1] |ψ(x)|
for any x ∈ [0, 1], µ ≤ w2, and the definition of the integer j2, for any a ≥ 1
and any j ∈ {j1, ..., j2}, we have

E(|N1|
a) =

∫ 1

0
µ2aw−2a(x) (ψj,k(x))

2a
(

µ−1f(x)w(x)
)

dx

=
∫ 1

0
µ2a−1w−2a+1(x) (ψj,k(x))

2a f(x)dx

≤w2a−1
2 w−2a+1

1 f2

(

sup
x∈[0,1]

|ψ(x)|

)2a−2

2j(a−1)
∫ 1

0
(ψj,k(x))

2 dx

≤w2a−1
2 w−2a+1

1 f2

(

sup
x∈[0,1]

|ψ(x)|

)2a−2

2j2(a−1) ≤ C6n
a−1.

Therefore, if we consider the previous inequality with the values a = p/2 and
a = 2, we obtain M1 ≤ C7n

p/2.

The upper bound for M2. Since E(N1) ≤ C6, we have M2 ≤ C6n
p/2.

Combining the obtained upper bounds for M1 and M2, we have

M ≤ 2p−1(M1 +M2) ≤ C8n
p/2. (5.21)

Putting (5.19), (5.20) and (5.21) together, we obtain

E



sup
a∈Cq

n
∑

i=1

∑

k∈Uj,K

aj,kǫiµw
−1(Zi)ψj,k(Zi)



≤C
1/p
3





∑

k∈Uj,K

M





1/p

≤C9n
1/2L1/p.

Hence H = C9n
−1/2L1/p.

The value of v. Using the inequalities w1 ≤ w(x) and f(x) ≤ f2 for any
x ∈ [0, 1], µ ≤ w2, the fact that the wavelet basis is orthonormal, an inequality
of lp norm combined with the inequality q = 1+(p−1)−1 ≤ 2 and the definition
of Cq, we have
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sup
h∈F

V (h(X1))

≤ sup
a∈Cq

E





µ2w−2(Z1)





∑

k∈Uj,K

aj,kψj,k(Z1)





2






= sup
a∈Cq







∫ 1

0
µ2w−2(x)





∑

k∈Uj,K

aj,kψj,k(x)





2
(

µ−1f(x)w(x)
)

dx







≤w2w
−1
1 f2 sup

a∈Cq







∫ 1

0





∑

k∈Uj,K

aj,kψj,k(x)





2

dx







=w2w
−1
1 f2 sup

a∈Cq





∑

k∈Uj,K

(aj,k)
2



 ≤ w2w
−1
1 f2 sup

a∈Cq





∑

k∈Uj,K

(aj,k)
q





2/q

≤w2w
−1
1 f2.

Hence v = w2w
−1
1 f2.

Now, let us notice that, for any j ∈ {j1, ..., j2}, we have n2j ≤ n2j2 ≤
2n2(log n)−1. Therefore, if we chose t = 4−1λ∗n−1/2(logn)1/2 with λ∗ = λ(w2w

−1
1 +

2)−1 , then we have

(

t2v−1 ∧ tT−1
)

≥ C10

(

λ2(n−1log n) ∧ λn−1/22−j/2(logn)1/2
)

≥ C11λ
2n−1log n.

Since (log n)1/2 ≤ L1/p < 21/p(logn)1/2, we have H < C92
1/pn−1/2(logn)1/2.

Therefore, for λ large enough and t = 4−1λ∗n−1/2(log n)1/2 with λ∗ = λ(w2w
−1
1 +

2)−1, the Talagrand inequality described in Lemma 5.1 yields

Fj,K

= P











∑

k∈Uj,K

∣

∣

∣

∣

∣

µn−1
n
∑

i=1

w−1(Zi)ψj,k(Zi) − βj,k

∣

∣

∣

∣

∣

p




1/p

≥ 2−1λ∗n−1/2(log n)1/2







≤P

(





∑

k∈Uj,K

∣

∣

∣

∣

∣

µn−1
n
∑

i=1

w−1(Zi)ψj,k(Zi) − βj,k

∣

∣

∣

∣

∣

p




1/p

≥ 4−1λ∗n−1/2(log n)1/2 +

C∗
2C92

1/pn−1/2(logn)1/2
)

≤P

(

sup
h∈F

rn(h) ≥ t+ C∗
2H

)

≤ exp
(

−nC∗
1

(

t2v−1 ∧ tT−1
))

≤ exp
(

−nC∗
1C11λ

2(log n/n)
)

≤ 2−1n−p. (5.22)

We obtain the desired upper bound for Fj,K.

The upper bound for Qj,K. Let us set Wi = w−1(Zi)−µ−1. Clearly, W1, ...,Wn
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are i.i.d. with

E (W1)= E

(

w−1(Z1)
)

− µ−1 =
∫ 1

0
w−1(x)

(

µ−1f(x)w(x)
)

dx− µ

=µ−1
∫ 1

0
f(x)dx− µ = 0.

Moreover, since w1 ≤ w(x) for any x ∈ [0, 1] and w1 ≤ µ, the triangular
inequality yields, for any i ∈ {1, ..., n},

|Wi| ≤ w−1(Zi) + µ−1 ≤ 2w−1
1 .

The Bernstein inequality (see Petrov [15]) gives us, for any l > 0,

P

(∣

∣

∣

∣

∣

n−1
n
∑

i=1

Wi

∣

∣

∣

∣

∣

≥ l

)

≤ 2 exp
(

−nl2
(

2(4w−2
1 + 3−1lw−1

1 )
)−1

)

.

If we apply this inequality with l = l∗ = 2−1w−1
2 f−1

2 λn−1/2(log n)1/2, we prove
the existence of a constant C12 such that, for λ large enough,

Qj,K = P

(∣

∣

∣

∣

∣

n−1
n
∑

i=1

Wi

∣

∣

∣

∣

∣

≥ l∗

)

≤ 2 exp
(

−C12λ
2(log n)

)

≤ 2−1n−p. (5.23)

We have the desired upper bound for Qj,K .

It follows from the inequalities (5.18), (5.22) and (5.23) that

P











∑

k∈Uj,K

|β̂j,k − βj,k|
p





1/p

≥ λn−1/2(logn)1/2





 ≤ Fj,K +Qj,K ≤ n−p.

Therefore, there exists a constant d∗ > 0 such that

P











∑

k∈Uj,K

|β̂j,k − βj,k|
p





1/p

≥ 2−1d∗n
−1/2(logn)1/2





 ≤ n−p.

This proved Proposition 2.
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