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Abstract

We consider the density estimation problem from i.i.d. biased observations. We
investigate the performances of an adaptive wavelet block thresholding estimator
via the minimax approach under the IL? risk with p > 1 over Besov balls. We prove
that it achieves near optimal rates of convergence.
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1 MOTIVATIONS

The classic density estimation problem can be formulated as follows. Let
Xq,..,X, be an ii.d. sample from a distribution with density function f.
The objective is to estimate the density function f based on the sample. Vari-
ous estimation techniques have been proposed in the statistical literature. The
most popular of them are presented in the books of Devroye and Gyorfi [8],
Silverman [17], Efromovich [9], Hardle et al. [11] and Tsybakov [19].

In this paper, we consider the problem of estimating f without observe directly

the sample X1, ..., X,,. We record i.i.d. observations Zi, ..., Z, from a biased
distribution with the following density function

g(z) = p~'w(z) f(z),
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where w denotes a positive function and p is the real number defined by
uw = fw(y)f(y)dy. Here, w is known. The density function f and the real
number g are unknown. The objective is to estimate the density function f
from the observations 7, ..., Z,. In what follows, it is always assumed that,
without loss of generality, the functions f and w are defined on the unit
interval [0, 1]. Moreover, we suppose that there exist two constants w; and w,
such that, for any x € [0, 1],

0<w <w(x) <ws < 0.

The concept of biased data has several applications in various domains. Among
them, there are the biology, see Buckland et al. [2], the industry, see Cox [7],
and the economy, see Heckman [12]. See also the review by Patil and Rao [14]
who study several practical examples of biased distributions.

The density estimation problem for biased data has been considered in several
papers. Among them, let us briefly present some recent results established
by Efromovich [10] and Brunel et al. [1]. In the article of Efromovich [9],
the Efromovich-Pinsker adaptive estimator based on a blockwise shrinkage
algorithm is developed. It achieves the exact minimax rate of convergence
under the IL? risk over a Sobolev class, Bj,. In the article of Brunel et al.
[1], a penalized projection density estimator is proposed. It achieves the exact
minimax rate of convergence under the L2 risk over a particular Besov class,
Bj - The main differences between these two estimators are discussed in
Remark 3.2 of Brunel et al. [1].

In the present paper, we adopt the minimax point of view under the IL” risk
with p > 1, not only for p = 2, and we consider the Besov classes, B; ,., with
no particular restriction on the parameters m and r. We estimate the unknown
density function f by using an adaptive wavelet block thresholding estimator
suitably adapted to our minimax framework. It can be viewed as a ILP version
of the BlockShrink algorithm initially developed by Cai [3] for the L% risk and
the regression model with equispaced deterministic sample. We prove that the
considered estimator achieves optimal or near optimal rates of convergence
according to the values of the parameters s, m, r of the Besov classes, and the
parameter p of the IL? risk. This result follows from a general theorem proved
by Chesneau [4] and some technical probability inequalities. Thus, the main
difficulties of this work are the proofs of a moment inequality and a specific
concentration inequality. Finally, let us mention that, if we restrict our study
to the IL? risk and the Sobolev class B3, or the Besov class B3, then our
estimator has similar asymptotic minimax performances to the Efromovich-
Pinsker adaptive estimator and the penalized projection density estimator.

The paper is organized as follows. In Section 2, we present wavelets and Besov
balls. The considered adaptive wavelet block thresholding estimator is defined



in Section 3. Section 4 is devoted to the main result. The proofs are postponed
in Section 5.

2 WAVELETS AND BESOV BALLS

We consider an orthonormal wavelet basis generated by dilation and transla-
tion of a compactly supported ”father” wavelet ¢ and a compactly supported
"mother” wavelet 1. For the purposes of this paper, we use the periodized
wavelet bases on the unit interval. For any = € [0, 1], any integer j and any
ke{0,...,27 — 1}, let

Gin(x) = 22p(20 — k), Yin(x) = 2% (Px — k)

be the elements of the wavelet basis and

per Z¢jkx_l per lejkﬂf—l

lez lezZ

there periodized version. There exists an integer 7 such that the collection (
defined by ¢ = {¢7%, k=0,...,2" = 1; ¥, j=7,.,00, k=0,..,2 -1}
constitutes an orthonormal basis of L?([0, 1]). In what follows, the superscript
"per” will be suppressed from the notations for convenience. For any integer
[ > 7, a function f € L2([0, 1]) can be expanded into a wavelet series as

2l—1 oo 27—-1
Zazkcbzk )+ D> Bisbin(z), =z €[0,1],
j=l k=0

where aj;, = [y f(t)p;x(t)dt and B;y = [y f(£);x(t)dt. For further details
about wavelet bases on the unit interval, we refer to Cohen et al. [6].

Now, let us define the Besov balls. Let M € (0,00), s € (0,00), 7 € [1, 00] and

€ [1,00]. Let us set 8,1 = a, . We say that a function f belongs to the
Besov balls By (M) if and only if there exists a constant M* > 0 such that
the associated wavelet coefficients satisfy

r\ 1/7

o0 271 L
Z 97 j(s+1/2—1/m) (Z |ﬂjk|7r) SM*

j=1—1

For a particular choice of parameters s, 7 and r, these sets contain the Holder
and Sobolev balls. See Meyer [13].



3 ESTIMATOR

Now, let us describe the main estimator of the study. As mentioned in Sec-
tion 1, it can be viewed as P version of the BlockShrink estimator initially
developed by Cai [3] for the IL? risk for the regression model with equispaced
deterministic sample. The considered IL” version has been introduced by Pi-
card and Tribouley [16] for general statistical problems in the context of the
adaptive confidence interval for pointwise curve estimation.

Let p € [1,00) and d € (0,00). Let j; and j, be the integers defined by

71 = [((pV2)/2)logy(logn)] and j; = [logy(n/Inn)].

Here, p V 2 = max(p, 2) and the quantity |a| denotes the whole number part
of a.

Forany j € {j1,...,ja}, let usset L = [ (logn)®¥?/2] and A; = {1,..., [27L71]}.
For any K € A;, we consider the set

Urx=1{ke{0,..,22 —1}; (K —1)L<k< KL-—1}.
We define the (I version of the) BlockShrink estimator by

271 -1

Z &y, k¢]1k +Z Z Z /ngl{b K >dn— 1/2}¢]k( r), x€l0,1],

Jj=j1 K€A; keUj i

A A (3.1)
where bj x = (L' YCyer, o 105477,
djl,k) = :[Ln_l Z w_l(Zi)¢j1,k(Zi)> Bj,k = ,&n_l Zw_l(Zi),@bj,k(Zi)a (32)
i=1 i=1

with .
,[AL = (n_lzw_l(Z,-)> .
Let us mention that fn does not require any a priori knowledge on f (and, a

fortiori, ) in his construction. It is adaptive.

The sets A; and Uj i are chosen such that Uxea,Uj x = {0,...,2" =1}, U; x N
Ujrr =0 for any K # K' with K, K’ € A;, and |U; x| = L = | (logn)®V?/2].

The estimators &;, , and Bj,k are wavelet versions of those proposed by Brunel
et al. [1].

In fact, the penalized projection density estimator developed by Brunel et al.
[1] can be constructed from a wide variety of bases (trigonometric, polynomial,



wavelets ...). However, the choice of the basis has no influence on the minimax
performances of this estimator. In our study, due to the complexity of our
minimax approach, we really use the multiresolution nature of the wavelet
bases to obtain the desired result.

Lemma 3.1 below determines an upper bound for ’B]k - ﬁj,k‘.

Lemma 3.1 Let us consider the biased density model described in the second
paragraph of Section 1. Suppose that there exists a known constant fo such
that, for any x € [0, 1],

f(z) < fo
We recall that there ezist two constants wy and wy such that, for any x € [0, 1],

we have 0 < wy < w(z) < wy < oo. Then, for any j € {j1,...,j2} and any
k €0,...,27 — 1}, the estimator [, defined by (3.2) satisfies

n

pn?t Z w_l(Zi)@bj,k(Zi) — Bjk

i=1

/éj,k — ﬁj,k’ < (wowy ' +2)

n

n ' w N Z) - .

i=1

+ w2 | Bj il (3.3)

The inequality (3.3) holds for ¢, instead of 1, ; and, a fortiori, &, instead
of B, and «; instead of 3.

In addition to the inequality (3.3), the estimators (3;4);, defined by (3.2)
satisfy several specific probability inequalities. Two of them will be at the
heart of the proof of the main result. Further details are given in Section 4
below.

4 MAIN RESULT

Theorem 4.1 below determines the rates of convergence achieved by the (IL?
version of the) BlockShrink estimator under the L risk over Besov balls.

Theorem 4.1 Let us consider the biased density model described in the second
paragraph of Section 1. Suppose that there exists a known constant fy such that,
for any x € [0, 1],

f(z) < fo
We recall that there exist two constants wy and we such that, for any x €
0,1], we have 0 < wy < w(x) < wy < 00. Let p € [1,00[. Let us consider
the BlockShrink estimator f, defined by (3.1) with a large enough threshold



constant d. Then there ezists a constant C > 0 such that, for any © € [1, 00|,
re€[l,00], s € (1/m,00) and n large enough, we have

1
sup [E (/
feBs (M) 0

where p,, is defined by

A

fulw) = f@) dx) < Cep,

| nmP(log n)*1PHemy when € > 0,
o (n~'logn)?2?(logn)P~™/M+Ne=0}  when € <0,

with ap = s/(2s+ 1), ag = (s = 1/m+1/p)/(2(s — 1/m) + 1) and € = ws +
27 (r —p).

Now, let us discuss the optimality of the rates ¢, described in Theorem 4.1
above. Using standard lower bound techniques, we can prove that there exists
a constant ¢ > 0 such that

inf  sup E(/Ol’f(z)—f(z)’pdx)zcgoz,

I feB; (M)

where inf ; denotes the infimum over all the possible estimators fof f and o
is defined by
P K when € >0,
P (n"'logn)®?? when € <0,

with a; = s/(2s+1), as = (s —1/7+1/p)/(2(s — 1/m) + 1) and € = 7s +
271(7m — p). Thanks to the assumptions of boundedness made on w, the proof
is similar to the proof of the lower bound for the standard density estimation
problem (i.e., when we observe the i.i.d. sample X7, ..., X, from a distribution
with unknown density function f). Further details can be found in the book

of Hardle et al. [11] (Section 10.4).

Thus, the rates of convergence presented in Theorem 4.1 above are minimax
except in the cases {p > 7w} N {e > 0} and ¢ = 0 where there is an ex-
tra logarithmic term. Moreover, they are better than those achieved by the
conventional term-by-term thresholding estimators (hard, soft,...). The main
difference is for the case {m > p} where there is no extra logarithmic term.

As mentioned in Section 1, if we adopt the same minimax framework than
Efromovich [10] and Brunel et al. [1],ie. p =2 and 7 = r =2 or 7 = 2,
r = o0, then our estimator has similar asymptotic minimax performances to
the Efromovich-Pinsker adaptive estimator developed by Efromovich [10] and
the penalized projection density estimator proposed by Brunel et al. [1].

Notice that, for the classic case w(x) = 1 (and, a fortiori, = p = 1) and
p = 2, Theorem 4.1 has been established by Chicken and Cai [5].



Thanks to Theorem 4.2 of Chesneau [4], the proof of Theorem 4.1 is an imme-
diate consequence of Propositions 1 and 2 below. These propositions show that
the estimators (0;4);x defined by (3.2) satisfy a standard moment inequality
and a specific concentration inequality.

Proposition 1 Let p > 2. Suppose that the assumptions of Theorem 4.1 are
satisfied. Then there exists a constant C > 0 such that, for any j € {j1, ..., j2},
any k € {0,...,27 — 1} and n large enough, the estimator ﬁj,k defined by (3.2)
satisfies the following moment inequality

E (y@k - ﬁjvk]2p> <Con. (4.1)

The inequality (4.1) holds for é;, instead of 3, and a, instead of (3, .

The proof of Proposition 1 uses Lemma 3.1 and some moment inequalities as
the Rosenthal inequality (see Petrov [15]).

Proposition 2 Let p > 2. Suppose that the assumptions of Theorem 4.1 are
satisfied. Then there exists a constant d, > 0 such that, for any j € {j1, ..., j2},
any K € A; and n large enough, the estimators (BAJ-,k)keryK defined by (3.2)
satisfy the following concentration inequality

1/p
P ( Z }/é]k - ﬁj,k’p) > d.27 ' Y2 (logn) 2 | <n7P.

kGUj,K

The proof of Proposition 2 uses Lemma 3.1 and some concentration inequal-
ities as the Talagrand inequality (see Talagrand [18]) and the Hoeffding in-
equality (see Petrov [15]).

In Propositions 1 and 2 above, we have only considered the case p > 2.
Because if the moment inequality and the concentration inequality are sat-
isfied with p > 2, then they are satisfied for p € [1,2]. This is a conse-
quence of the Holder inequality for the moment inequality. For the concen-
tration inequality, this is a consequence of the following inequality of the [,
norm: for any sequence (a;)ien+, any m € N* and any p € [1,2], we have
(™! Sy o) < (m7 T (a0)) .

Now, let us discuss the choice of the thresholding constant d. From a theoreti-
cal point of view, it is difficult to determine the exact minimum value of d such
that fn achieves the rates of convergence exhibited in Theorem 4.1. In fact,
Theorem 4.1 holds for d > d, where d, refers to the constant of Proposition 2
above.



5 PROOFS

In this section, (C};);=1,.. 12 denote positive constants. They take different val-
ues in each proof. They are independent of f, u and n.

PROOF OF LEMMA 3.1. For any j € {ji1,...,J2} and any k € {0,...,29 — 1},
we have the following decomposition

ﬁj,k — B = pn~ > w N (Z)in(Zi) — Bk

i=1

= (i — ) (n‘l Zn:w_l(zi)%,k(zi)> + (“n_l Zn:w (ZVinZ) = B k) '

i=1 i=1

It follows from the triangular inequality that

Bk = Bix| < Rjx+ , (5.1)

unlzw Zi)Yik(Zi) = Bk

where
- Z w(Zi) Y e(Zi)] -

Now, let us investigate the upper bound for R; .

(5.2)

Rjp = |fp—

The upper bound for |t — u|. Since w(z) < wsq for any = € [0, 1], the triangular
inequality yields

1
L U SUSICO) VSR (8

Moreover,

< puws |

It follows from (5.3) and (5.4) that

|t — p| < min <w2 + p, pws|n



The upper bound for [n=* S0 w1 (Z;); 1(Z;)|. By the triangular inequality
we have

n

n S w20 Z)| = [0S (w2 a(Z) — i B+ i B

i=1 i=1
<Y (W (Zwa(Ze) — 17 Bik) |+ 1 1Bl
i=1
(5.6)
It follows from (5.2), (5.5) and (5.6) that
R; ) <min (wz + p, pwe |0t w N Z) — p! ) x
i=1
( nty (w_l(Zi)wj,k(Zi) - /flﬂj,k) +put |5j,k\>
i=1
(wa + ) |n 12( Zi)bir(Zi) = 1 Bi)
1=1
+wa Bkl IR wT( -1 (5.7)
i=1

Putting the inequality (5.1) and (5.7) together, we obtain

‘ﬁj,k — Bkl < (wop ™" +2)

,un_l Z w_l(Zi)%‘,k(Zi) — Bjk
i=1

+wa | B; k|

n ' w N Z) - .
i=1

Since w; < w(z) for any € [0, 1], we have u = [ f(y)w(y)dy > w [ f(y)dy =
wy. Therefore

1B — Bikl < (wowi™ +2)

pun Zn: w_l(Zi)@Dj,k(Zi) — Bjk
i=1

+ wa | B ]

n Dy w N Z) =t
i=1
Lemma 3.1 is proved.

PROOF OF PROPOSITION 1. Let p > 2. Using Lemma 3.1 and the elemen-
tary inequality

(Jz+yh* <27 (2" +1yl"), 2yeR, ax1, (5.8)



for any j € {ji, ..., jo} and any k € {0,...,27 — 1}, we obtain
E (|/Bj,k - ﬁj,k|2p) < ¢k (Sik + 1),

where ¢; 1, = or—1 (max (wgwfl + 2, w2‘5j,k|))2p

sjr=1E ( pun” S w N Z)ik(Z:) — Big
=1

n 2p
tix=E (n_l SwNZ) —pt ) :
i=1

Let us investigate the upper bounds for ¢, S; and T}, in turn.

)

and

The upper bound for c;. Using the inequality f(z) < f; for any = € [0, 1],
and the Cauchy-Schwarz inequality, we obtain

8100 < [ 1F@ss(@)ld < 1y [ Wyalolds
<h ([ Guoyas) = p (5.9)

It follows that
Cig < or~1 (max (wgwfl +2, wzfz))Zp- (5.10)

The obtained upper bound does not depend on n, f, and the parameters j
and k.

The upper bound for s; . Forany i € {1,...,n}, let usset D; = pw ™ (Z;); 1(Z;)—
Bj k. Clearly, Dy, ..., D,, are i.i.d. random Varlables such that

E(D,)=E ( _I(Zl)wj k(Zl)) — Bjk
_/ pro @)y (x) (F(@)w(@)pt) do — Bii = 0.

Now, in order to apply the Rosenthal inequality (see Petrov [15]), let us in-
vestigate the upper bound for the moments of |D;|. Using the elementary
inequality (5.8) and the fact that |5, x| < fa (see (5.9)), for any a > 2, we have

E(|Di|") <270 (E (|pw= (Z0)56(Z0)]) + 18;4]7)
D)+ £5). (5.11)




Using the inequalities wy < w(x) for any x € [0,1], p < we, Bk < f2 (see
(5.9)) and [;5(Z)] < 5uDoeio 1542 < 272 by [ ()], it comes

E (‘Mw‘l(Zﬂwj,k(Zl) a)

a—2
< gy @ Vi) ( sup |w<x>l) E (™ (24) (5(21))°)

z€[0,1]

(5.12)

Since f(x) < fy for any x € [0, 1], we have

1

E (™ (20) (034(20))°) = | ™ @) (W (2))? (5 w0 () f () ) deo
= [ Wrl@)?f(w)da
< fo [ iste)de = fo (5.13)

By putting the inequalities (5.12) and (5.13) together and using the definition
of the integer j,, for any j € {ji, ..., ja}, we have

a—2
B (™ @0vn() < ug Y (s ui)]) e

z€0,1]
< Clna/2—1 )

This, with the inequality (5.11), yields the existence of a constant Cy such
that

E(|Dy|") <271 (Cn®/2 7t 4 f5) < Con®/1, (5.14)

The Rosenthal inequality and the inequality (5.14) taken with the values a =
2p and a = 2 imply

sjk=E (n_l iDi ) <y <n1_2”E <|D1|2p) +n7? (E ((Dl)z))p)

<Cy (n' P~ £ 0?) < Con (5.15)

The upper bound for t; . For any i € {1,...,n}, let us set G; = w™(Z;) — p~'.
Clearly, G, ..., G, are i.i.d. such that

11



1
B(G)=E (w(2) ~ u' = [ w7 @) (Fulep ) de - p!
1
Zu‘l/ flz)dr — =t = 0.
0
Now, in order to apply the Rosenthal inequality (see Petrov [15]), let us in-
vestigate the upper bound for the moments of |G;|. Using the elementary

inequality (5.8), the inequalities w; < w(z) for any x € [0,1] and p~' < wi,
for any a > 2, we have

E(|G|") < 27 (E ((w™(Z))") + 1) < 2°wi™. (5.16)

The Rosenthal inequality and the inequality (5.16) taken with the values a =
2p and a = 2 imply

Combining the upper bounds (5.10), (5.15) and (5.17), we prove the existence
of a constant Cg such that

n
TL_l Z G,
i=1

N <anlrm (@) s @ (60))

<CynP. (5.17)

E (‘@gk — 5j,k|2p) < Cgn™P.

This proved Proposition 1.

PROOF OF PROPOSITION 2. Let p > 2. Using Lemma 3.1 and the Minkowski
inequality for the [, norm, for any j € {ji,...,j2} and any K € A;, we have

1/p
( Z |ng - ﬂj,k‘p)

k‘EijK

n

,un_l Z w_l(Zi)%‘,k(Zi) — Bjk

i=1

1/p
(Z \ﬂj,k|p) :

kEUj,K

p) 1/p

Using an elementary inequality of the [, norm with the fact that p > 2,
the orthonormality of the wavelet basis and the fact that f(x) < fy for any
x € [0, 1], we have

§(w2w1_1+2)< >

kEUj,K

n

nt > wNZ) —

i=1

-+ Woy

12



Up /oy 1/2 X s
( > |5j,k|p) < (1; |ﬂj,k|2) < (/0 (f(x))2d~”6> / < fo.

kEUJ‘,K

It follows from these inequalities that, for any A > 0, we have

1/p
P (( 3 |G — ﬁj7k|p) > An~%(log n)1/2) < Fixg+Qjkx, (518)

k‘EijK

where

n

pn” Y w N (Z)ik(Zi) — Bk

1=1

P\ /P
e

Fj,K:P((wgwfl + 2) ( Z

k‘EijK

271\ "2 (log n)1/2>

and

Qjx =P <w2f2

n—l Zw_l(Zi) _ ,U_l
i=1

> 271 An"Y2(log n)1/2> :

Now, let us analyze the upper bounds for Fj x and @, x, in turn.

The upper bound for F} k. First of all, let us present the Talagrand inequality
in Lemma 5.1 below.

Lemma 5.1 (Talagrand [18]) Let Vi,...,V, be i.i.d. random variables and
€1, ..., €n be independent Rademacher variables, also independent of Vi, ..., V,,.
Let F be a class of functions uniformly bounded by T'. Let r, : F — R be the
operator defined by

ralh) =07t S H(VD) ~ E(H(VE).
Suppose that

supV (h(V1)) <v and E <supz eih(Vi)> < nH.
heF heF ;—1

Then, there exist two absolute constants C7 > 0 and C5 > 0 such that, for
any t > 0, we have

P (sup ro(h) >t + C;H) < exp (—nC’ik (tzv_l A tT_l)) :
heF

13



In order to apply the Talagrand inequality, let us consider the set C, defined
by

Cq = {a = (@) €Z% Y ajal? < 1}

keU; k
and the functions class F defined by

F = {h; hz) = pw=(x) > aubin(@), a€ Cq}'

kEUj,K

By an argument of duality, we have

pn= Y w N (Z)ik(Zi) — Bk

i=1

P\ /P
(kEUj K )

=sup Y a]k(,un Zw Y Z)je(Zi) — ﬁj,k)zsuprn(h)>

aECq kJEU K heF

where r,, denotes the function defined in Lemma 5.1. Now, let us evaluate the
parameters 7', H and v of the Talagrand inequality.

The value of T'. Let h be a function in F. Using the inequalities w; < w(z) for
any x € [0, 1], u < wq and the fact that ¢ is compactly supported, we obtain

271

h(@)] < (@) D [u(@)| < wawy? Z ()] < G277,

kEUJ‘,K

where Cy denotes a constant depending on wi, wa, sup,coq [¢(z)| and the
length of the support of .

Hence T = C527/2.

The value of H. Let €1, ..., €, be independent Rademacher variables indepen-
dent of Z = (Z1, ..., Zy).

The Holder inequality for the [, norm, the Holder inequality and the definition
of C, imply

14



E(supzn: > aj,keiuw_l(Zi)wj,k(Zi))

a‘ecq =1 k‘EijK

l/q p\ /P
<sup Z |la; k|? Z
a€Cq \ keU; keU; i
m o\ /P
g( Z E( )) ) (5.19)
kEUj,K

Since €y, ..., €, are independent Rademacher variables, also independent of Z =
(Z1, ..., Zy), the Khintchine inequality implies the existence of a constant Cj

such that
(Zﬁﬂw Zi)in(Z )”) = ( <Zezuw Zi)in(Zs) Z))
" z)) — M, (5.20)

<OE (E (
p/2)
2

where

Now, for any i € {1,...,n}, let us set N; = pi>w=2(Z;) (v, x(Z:))*. Clearly, the
variables Ny, ..., N, are i.i.d. . The triangular inequality and an elementary
inequality of convexity give

e

where
M, =E (

Let us analyze the upper bounds for M; and M, in turn.

Z eipw ™ (Z;)x(Z;)

=1

%k( )

p

n

>t A(Z) (il Z))

i=1

> i Z) (4 2)

n p/2
> (N; —E(Ny)) |+n|E(N1)|> ) < 2P27Y (M, + M),
i=1

n

S (N — E(V,))

i=1

p/2
) and My = nP/? (E(N,))/?

The upper bound for M;. The Rosenthal inequality applied to the i.i.d. centered
random variables Ny —E(Ny), ..., N, —[E(N,,) and the Holder inequality imply
the existence of two constants C'; and Cj such that
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M, < Cy (nE(|N1 — E(N)["?) + (nE(|Ny — E(N1)|2))p/4>

<G (nE(NP?) + (nE(N)")

Using the inequalities w; < w(x), f(z) < fo and |1 1 (x)| < 27/2 SUD,¢[0,1] | ()|
for any x € [0, 1], < wy, and the definition of the integer j,, for any a > 1
and any j € {ji, ..., jo}, we have

BN %) = [ (o) (@) (57 F@w (o) de
= [ ) () S
<ugtup= iy (s Wl 20 [ ) do

z€[0,1]

2a—2
<w§a lw—2a+1f2 < sup ‘w( )‘) 2j2(a—1) < Cﬁna—l

z€[0,1]

Therefore, if we consider the previous inequality with the values a = p/2 and
a = 2, we obtain M; < Cyn¥/?.

The upper bound for Ms. Since E(N;) < Cg, we have My < Cgn?/?,

Combining the obtained upper bounds for M; and M,, we have
M < 27"Y( M,y + My) < CgnP/?, (5.21)

Putting (5.19), (5.20) and (5.21) together, we obtain

1/p
(Supz Z aj, KEPW )¢j k( ) <Cl/p ( Z M)

a€Cq j=1 kelU; i keU; k
< anl/le/p.

Hence H = Cyn~ 2L/,

The value of v. Using the inequalities wy < w(z) and f(z) < fo for any
x € [0, 1], u < wy, the fact that the wavelet basis is orthonormal, an inequality
of I, norm combined with the inequality ¢ = 1+ (p—1)~! < 2 and the definition
of C4, we have
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sup V (h(X71))

heF
2
<supE [ pPw™(Z1) | Y ajpin(Zh)
acCq keU; i
L 2
—sup | [ ptw @) (3 apstna(e) | (0 f@)ula)) do
aeCq | /0 keU; k
1 2
<wyw; ! fo sup / Y. autin(r) | de
a€Cy 0 keU; k
2/q
=wowy fasup | Y. () | Swswitfosup [ D (aj)?
a€Cq \keU; i a€Cq \ kel x
<wowy ! fo.

Hence v = wgwl_lfg.
Now, let us notice that, for any j € {ji,...,J2}, we have n2/ < n272 <

2n2(logn)~". Therefore, if we chose t = 47 *n~1/2(log n)"/2 with \* = \(wowi '+
2)~! | then we have

(tzv_l A tT_l) > Cho ()\Q(n_llog n) A An~2272(log n)l/z) > C A?n " Hogn.
Since (logn)/2 < LY < 21/7(logn)"?, we have H < Cy24/Pn=/2(logn)"/?.

Therefore, for A large enough and t = 4~ ' A*n="2(log n)"/? with \* = A (wyw; '+
2)71 the Talagrand inequality described in Lemma 5.1 yields

Fi k

([,
SP(( >

k)EUj,K

n

,un_l Z w_l(Zi)wj,k(Zi) — Bjk

=1

p\ 1/p
) > 2—1>\*n—1/2(10gn)1/2

p\ /P
) > 47\ n"Y2 (logn) Y2 +

n

,un_l Z w_l(Zi)wj,k(Zi) — Bjk

i=1

C3C2YPn~1 2 (log n)1/2>

<P (sup ro(h) >t + C;H) < exp (—nC’ik (tzv_l A tT_l))
heF
<exp (—anC’ll)\2(log n/n)) <27n7?, (5.22)
We obtain the desired upper bound for F k.

The upper bound for Q; x. Let us set W; = w='(Z;) — p~!. Clearly, Wr, ..., W,
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are 1.1.d. with

& (W)= (w (7)) ~ 5 = [ w7 @) (5 f)ule) de
=p 01 flx)de —p=0.

Moreover, since wy < w(x) for any = € [0,1] and w; < p, the triangular
inequality yields, for any ¢ € {1,...,n},

(Wil <w™(Z) +p~" < 2w

The Bernstein inequality (see Petrov [15]) gives us, for any [ > 0,
P < n_l Z WZ

i=1
If we apply this inequality with [ = [, = 27wy ' f3 ' An~"/?(log n)
the existence of a constant C' such that, for A\ large enough,

n_l Z WZ

i=1

> l) < 2exp <—n12 (2(4w1_2 + 3_1lw1_1))_1> :

12 we prove

Qj K :P<

> z*> < 2exp (—CiN(logn)) <27'n 7P (5.23)

We have the desired upper bound for Q; k.

It follows from the inequalities (5.18), (5.22) and (5.23) that

k‘EijK

1/p
P ( > 1Bk ﬁj,k|p) > An~2(logn)'? | < Fjx+ Qui <P

Therefore, there exists a constant d* > 0 such that
1/p
Pl > 1Biw—Bul”|  =27'din *(logn)? | <n7?.
kGUjYK

This proved Proposition 2.
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