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Abstract

This paper presents a method to reconstruct the 3D surface of a tooth given partial information

about its shape. A statistical model comprising a mean shape and a series of deformation modes is

obtained offline using a set of specimens. During reconstruction, rigid registration is performed to

align the mean shape with the target. The mean shape is then deformed to approximate the target

by minimizing the sum of squared distances between the two surfaces according to the deformation

modes. The method is shown to be efficient for the recovery of tooth shape given crown information.

I. I NTRODUCTION

THE application of visualization techniques to dentistry has experienced a rapid growth

and now includes educational displays, training for delicate procedures, treatment

simulations and even communication tools with patients. Presurgery simulation systems have

proven to be useful in the treatment of malocclusion [1], [2], identifying the optimal cutting

plane for an implant [3] and selecting an optimal operative method [4]. Visualization is an

important component in devices for computed-aided surgery [5]. Finally, computerized video

imaging techniques are now widely used by dentists to discuss the outcome of orthognathic

surgery with their patients [6].

Many dental and maxillofacial surgery applications such as endodontic procedures, treat-

ment of malocclusion problems, and treatment simulations require an accurate knowledge of
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the 3D shape of teeth and the positions of the tooth roots. For example, orthodontists can

reposition the teeth in cases of malocclusion (improper positioning of the teeth and jaws) by

using brackets. In this situation, knowing the exact location, orientation and 3D shape of the

teeth would assist the clinician in planning appropriate movements during treatment. Having

a good knowledge of the shape of a given tooth is also extremely helpful in creating implants.

Currently, the shape of a tooth in the mouth is represented in two dimensions in an X-ray

film. Since teeth are 3D structures with complex shapes, an accurate 3D representation of

tooth shape is vital in facilitating clinical treatment. Teeth are also commonly used in forensic

medicine for identification purposes [7]. They are the most durable parts of the body but,

often, only fragments are available and the missing part needs to be estimated.

Computer tomography (CT) is effective in obtaining 3D data for the applications mentioned

above. However, CT imaging of dental patients is usually not indicated, as this imaging

modality is radiologically invasive and of relatively low resolution. Consequently, rather than

working with CT data, orthodontists regularly employ plaster casts of the patient’s dentition,

also known as study models. These plaster models are used to prepare treatment plans and for

making accurate measurements. However, they only provide information about the crowns

of the teeth but none of the roots, which are hidden in the gum. A solution is to fit a tooth

virtually onto the dental cast to obtain an estimate of root position and orientation (Fig. 1).

To overcome the lack of original 3D data, alternative methods are necessary to obtain

tooth shape when the information is simply missing, or to avoid using radiologically invasive

methods that are not clinically justified. Different methods exist for reconstructing 3D shape

using 2D information [8]. Encisoet al. [9], for example, propose a 3D reconstruction based

on a patient’s 2D radiograph, producing a “best fit” patient-specific 3D geometric polygonal

mesh of a tooth using thin-plate splines. A significant limitation of this method is that it does

not take into account the possible shape variations of a given tooth and uses only 2D data.
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Other methods exploit sparse 3D data [10] to represent fine details.

The above approaches require a good knowledge of the global 3D shape of the object of

interest, which we do not possess. Given only partial 3D information (e.g., the tooth crown

or the tooth root), our objective is to obtain a good estimate of the entire tooth shape without

the use of X-ray or any other imaging modality. The technique developed by Fleuteet al. [11]

provides the basic idea for such a reconstruction but in its original form is not suitable for

high-resolution data. In our application, significant improvements in the accuracy and speed

of shape recovery are possible through the use of high-resolution models, better control on the

input volume, and a more efficient optimization method. High-resolution crown models may

be obtained, for example, by means of a laser scan of a dental study model and performing

a segmentation, as described by Kondoet al. [12]. Once a 3D crown model has been built,

we would still require a method to reconstruct the root in order to obtain a better knowledge

of tooth shape and orientation, which would consequently facilitate treatment and improve

the quality of the clinical outcome.

This paper is organized as follows. Section II presents the construction of a statistical shape

model whose variations describe the main ways in which a particular tooth can vary. Section

III is devoted to the registration problem and explains how the statistical model can be fitted

to the patient’s crown to provide a good estimate of the shape and size of the reconstructed

tooth. In Section IV, experimental results are presented to demonstrate the capabilities of this

approach. The paper ends with the conclusion in Section V.

II. CONSTRUCTION OF AGENERIC SURFACE MODEL

A. Data Collection

Twenty-two exemplars of the second upper right premolar were scanned with a SkyScan-

1076 micro-CT scanner at a resolution of 35µm to give reconstructed specimens with up to

72,000 points and 150,000 triangles. The contour of every tooth was manually extracted on
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each slice of the micro-CT and the resulting teeth subsampled to a new resolution of 105µm.

A generic tooth model was then matched to each 3D exemplar model (using the procedure

described by Szeliski and Lavallée [13]) to obtain a point-to-point correspondence between

the different specimens, resulting in a collection ofN = 22 3D training shapes of the same

tooth. This approach requires aligning manually each training tooth with a generic tooth

that is in the format of a 3D triangular mesh ofM points. Nonrigid registration [13] using

free-form deformation [14] and splines is performed hierarchically to deform the generic

tooth to match each training tooth. Each resulting example is finally represented by a vector

m = (x0, y0, z0, . . . , xM−1, yM−1, zM−1).

Fig. 2(a) shows the generic tooth model used for matching. One of the exemplar models

reconstructed from microtomography is seen in Fig. 2(b). Fig. 2(c) shows the result of the

nonrigid registration of the generic tooth model to this exemplar. The minimum, maximum

and root-mean-squared (RMS) Hausdorff distance (HD) between the 3D tooth model recon-

structed from microtomography and the model after matching was computed to evaluate the

performance of the point-to-point correspondence process. The results, in Table I, show that

the matching process leads globally to highly satisfactory results.

Table I: Hausdorff distance of the point-to-point correspondence matching process.
HD (mm) HD (% teeth height)

Max Mean RMS Max Mean RMS
Minimum 0.55 0.06 0.08 2.76 0.30 0.39
Maximum 2.61 0.26 0.39 13.00 1.33 2.03
Mean 1.07 0.12 0.18 5.48 0.61 0.91
Variance 0.2493 0.0032 0.0080 6.3548 0.0902 0.2188

B. Construction of a Point Distribution Model

A statistical shape model, the point distribution model (PDM) [15], computed from princi-

pal component analysis (PCA) can be used to describe the average shape and shape variations
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of a set of sample models. The mean shapem̄ is defined using:

m̄ =
1

N

N−1
∑

i=0

mi (1)

The modes of variation, representing the ways in which the points tend to move together,

can be found by computing the eigenvectorsei of the covariance matrixRac:

Rac =
1

N − 1

N−1
∑

i=0

(mi − m̄)(mi − m̄)T (2)

Given the high resolution of the 3D models, a direct estimation of the eigenvectors of

Rac is not feasible. Instead of working in the variable (tooth point) spaceIR3×M (dimension

3×M), the eigenvectors are defined in training-exemplar spaceIRN (dimensionN < 3×M).

Simple mathematical considerations [16] give us an immediate correspondence between the

eigenvectors and eigenvalues in these two spaces. The eigenvalues inIR3×M and IRN are

identical, and if(λα,uα) is a 2-tuple (an eigenvector and its associated eigenvalue) inIR3×M ,

then (λα,vα) is also a similar 2-tuple inIR3×N , where

vα =
1√
λα

Xuα (3)

and the rows of the matrixX correspond to the tooth points (N × 3M matrix).

The proportion of the total variance accounted for by each vector is equal to the cor-

responding eigenvalues. Consequently, the eigenvectorsei associated with the maximum

eigenvaluesλi correspond to the major deformation modes. Fig. 3(a) shows the eigenvalues

of the autocorrelation matrix and Fig. 3(b) the cumulative percentage of variability given

the number of components. Seven components can account for 95% of the variability, while

thirteen components explain more than 99% of the variability between the different samples.

Any shape belonging to the training set can be approximated as a sum of the mean model
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and a linear combination of the firstNpc modes, i.e.,

m = m̄ +

Npc−1
∑

i=0

ωiei (4)

whereωi are the weights associated with the eigenvectorsei. By constraining everyωi such

that−K1,iλi ≤ ωi ≤ K2,iλi (K1,i andK2,i constant values) we can limit the deviations from

the mean model.

Fig. 4 shows, respectively, the influence of the first and second modes of the decomposition.

In each figure, the tooth in the middle represents the mean shape. The tooth on the left shows

the new shape when the first (or second) mode is weighted by a coefficient−K1,iλi (i = 1

or 2), while the tooth on the right shows the new shape when the first (or second) mode is

weighted by a coefficient+K2,iλi. The first mode has a huge influence on the size of the

teeth and on the global shape of the root. The second has a much smaller influence on the

tooth height but a great impact on the width of the root. The other modes have different

influences that cannot always be simply described.

C. 3D Mesh Model

The mean model consists of an unorganized cloud of points. In order to obtain a mesh

boundary representation of the patient’s tooth after reconstruction, a 3D reconstruction is

performed using a marching cube algorithm [17] after extraction of the isosurface.

III. T OOTH RECONSTRUCTION

Once the statistical model has been defined, the patient’s tooth shape is computed from

the optimal rigid and elastic transformations of the mean model following Fleuteet al. [11].

We aim to match the patient’s crown or root with the corresponding region of our statistical

model by determining the contribution of the different modes of the statistical model. The
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crown (or root) shape variations with respect to the mean model are then used to infer the

root (or crown) shape.

A. Initial Registration

In order to expedite the reconstruction of the target tooth, an intermediate step can be

included between PCA (Section II-B) and the final deformation. The iterative closest point

(ICP) algorithm [18] can be used to perform determine the best possible alignment between

the two models. This step is implemented with manual rigid registration and, if necessary,

scaling. Although not mandatory, it can greatly decrease the running time of the reconstruction

procedure and improve the final result.

B. Nonrigid Deformation of the Statistical Model

The optimum parameter values can be computed through the minimization of a merit (or

energy) function to measure the goodness-of-fit. The merit function used here (5) is the

classical mean-squared distance between the crowns (or roots) of the two volumes:

E(p) =
Mc−1
∑

i=0

min(‖dj − mi‖2)1≤j≤K

with m = R

(

m̄ +

Npc−1
∑

l=0

ωlel

)

+ T

(5)

wherep is a vector representing the different parameters to adjust,Mc the number of crown

(or root) points of the PDM,K the number of points of the target tooth,d the vector

representing the target (dimension3×K), T a translation vector,R a rotation matrix,el the

principal components obtained in Section II-B, andNpc the number of principal components

selected.

We have to estimate the six components that define the rigid-body transformation between

the two volumes (three parameters forT and three parameters forR) as well as the optimum

weights for theNpc principal components, i.e., we have to solve an optimization problem
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having only6+Npc parameters. The optimization ofE(p) is performed using the Levenberg-

Marquardt algorithm [19]. To compute the minimum distances, two different options were

tested, one with (Method 1) and the other without (Method 2) the use of a pre-computed

distance map.

Computing the minimum distances is the most computationally expensive part of the

minimization. In the first case, distances are approximated using an octree-spline distance

map [13] [20]. The two volumes (target and deformable models) are enclosed in a bounding

box and a classical octree decomposition is realized based on the points of the patient’s

tooth. Fig. 5 shows an example of an octree decomposition based on the points of a tooth

root (cloud of points).

For each corner of the terminal octants, the minimum distance to the patient’s tooth is

computed and stored. Given a new pointP , we only need to find the octant the point belongs

to in order to determine the minimum distance, followed by realizing a trilinear interpolation

over the eight corners of this octant. This method allows us to obtain a good approximation

of the required distances. The partial derivatives with respect to every component can be

computed by Ridder’s method of polynomial extrapolation.

The second method useskd-trees [21] that can be built inO(M log M). A kd-tree is a

binary tree used to represent data of dimensiond (hered = 3). Each node of the binary tree

represents a subset of the data record and a partitioning of that subset. The structure of a

kd-tree makes it very easy to compute the required distances. This second method requires

the construction of a newkd-tree after each iteration of the Levenberg-Marquardt algorithm.

We can obtain the true distances and a closed-form expression for the gradient ofE(p)

becomes available.

The optimization process can lead to a local minimum instead of the expected global

minimum. To overcome this difficulty, the number of modes can be increased successively



8

during the minimization process, beginning with the more significant ones until theNpc

modes are included in the minimization or sufficient precision is reached.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Reconstruction Based on Crown Information

1) Leave-one-out test:Different experiments were conducted to investigate the validity

of the method described in this paper. Here we present the results obtained using crown

information only andNpc = 7 modes of deformation for the statistical model. A leave-one-

out test was performed as described below. For each of theN teeth belonging to the training

set, the following test is realized:

• PCA is first performed on theN − 1 other teeth (excluding toothTi) and new modes

are defined.

• Ti’s crown is extracted.

• The crown of the mean shape model is extracted as well as the corresponding deformation

modes.

• The new modes are then used to reconstructTi.

• The distance between the toothTi before (root included) and after reconstruction (T̂i)

is then found.

To estimate the distance between two volumes represented by triangular meshes, we use

the main Hausdorff distance described by Garlandet al. in [22]. Tables II and III present

the results obtained using or not a distance map to compute the minimum distances between

the mean shape and the target. Figure 6 shows some examples of shape recovery for three

different specimens.
For all the teeth of the test set, the reconstruction processes lead to a perfect match between

the crowns ofTi andT̂i and in the majority of the reconstructions, a very good approximation

of the tooth heights and widths (Fig. 6(a) and Fig. 6(b)).
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Table II: Leave-one-test results: reconstruction based on crown information (Method 1).
HD (mm) HD (% teeth height)

Max Mean RMS Max Mean RMS
Minimum 1.21 0.17 0.25 6.21 0.87 1.28
Maximum 4.22 0.50 0.91 21.66 2.57 4.67
Mean 2.10 0.29 0.49 10.77 1.49 2.51
Variance 0.7057 0.0103 0.0306 18.5841 0.2712 0.8058

Table III: Leave-one-test results: reconstruction based on crown information (Method 2).
HD (mm) HD (% teeth height)

Max Mean RMS Max Mean RMS
Minimum 0.84 0.09 0.12 4.47 0.48 0.64
Maximum 3.76 0.46 0.81 19.99 2.44 4.31
Mean 2.02 0.25 0.43 10.74 1.33 2.29
Variance 0.7018 0.0085 0.0291 19.8542 0.2405 0.8232

Only one tooth in the training set (Fig. 6(c)) produced results far from those expected

using any one of the two methods. Indeed, the reconstruction being based on a statistical

representation, outliers will lead to erroneous results. For this particular specimen, the corre-

lation usually observed between the height and width of a tooth and the size (i.e., the shape

and width) of the crown is not followed in that the crown is extremely large compared to its

height; this gave rise to a reconstructed model that was much longer than the original one.

2) Reconstruction using patient data:A second test was then realized using real data.

Though the test realized above is realistic in forensic medicine, the data used by orthodontists

usually present losses at the interstices as shown in Fig. 7, whatever the segmentation method

used to extract the crown.

A study model was digitized using the Cyberware Rapid 3D Digitizer Model 3030R-HIREZ

laser scanner. The upper right second premolar was then extracted using Kondoet al.’s method

of segmentation [12] (Fig. 8(a)) and the 3D shape of the tooth determined (Fig. 8(b)). Despite

the important loss of information introduced by the segmentation, reconstruction results in an

excellent match between the original crown and those of the tooth. The reconstructed tooth

was then combined with the orthopantomogram (a panoramic X-ray of the jaw and the teeth)
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of the same patient (Fig. 8(c)) to test the validity of the shape reconstruction. As shown in

Fig. 8(d), the method proposed led to a very good estimate of the tooth shape and size.

B. Reconstruction Based on Root Information

In this section, we present the results obtained using root information only and the seven

modes of deformation for the statistical model. This kind of reconstruction finds applications

mainly in forensic medicine when reconstructing a dentition for identification. A leave-one-

out test using theN specimens was performed as described in Section IV-A.1.

As shown in Tables IV and V and Figure 9, the results are far from reliable. The HD

between the original teeth and their reconstructed versions using root information are smaller

than that previously obtained (reconstruction using crown information), but larger with respect

to the part being inferred (crown or root). The main problem comes from the root shape.

Its simplicity, in comparison with the complexity of the molar shape, makes the matching

process more difficult. Indeed, when one tries to minimize the distance between the target

Ti (root only) and the mean shape by summing over the target’s points, the optimization

process may lead to satisfactory results ifTi is bigger than the mean shape root. In this

case, the root extremities will match and the upper points ofTi will tend toward the upper

points of the mean shape root. On the other hand, ifTi is smaller, the matching will not

work; the upper points ofTi will tend toward the closer points of the mean shape root, which

do not correspond to the upper part of the mean shape root. Consequently, the root of the

reconstructed tooth will be much higher than those of the original model.

Table IV: Leave-one-test results: reconstruction based on root information (Method 1).
HD (mm) HD (% teeth height)

Max Mean RMS Max Mean RMS
Minimum 0.76 0.14 0.22 3.63 0.67 1.05
Maximum 2.86 0.82 1.11 13.68 3.92 5.31
Mean 2.01 0.41 0.57 9.61 1.96 2.73
Variance 0.5555 0.0481 0.0901 12.7080 1.1004 2.0612
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Table V: Leave-one-test results: reconstruction based on root information (Method 2).
HD (mm) HD (% teeth height)

Max Mean RMS Max Mean RMS
Minimum 0.88 0.14 0.19 5.14 0.82 1.11
Maximum 2.58 0.67 0.83 15.09 3.91 4.85
Mean 1.67 0.32 0.45 9.77 1.87 2.63
Variance 0.2469 0.0175 0.0296 8.4452 0.5986 1.0125

Figure 10 shows the Hausdorff distance distribution betweenTi and T̂i for two different

teeth (lighter colors corresponding to larger distances). We notice that even the roots of the

target and the mean shape do not always match correctly (cf. tooth on the left). Introducing

feature points on both the target and the mean shape can solve this problem. Fig. 11 shows

the locations of the feature points. The left image shows the position of the three feature

pointsF1, F2 andF3 for a given tooth. The right image shows a cross-section of a root and

the exact location ofF2 andF3.

These feature points are automatically defined for the two teeth (F1,t, F2,t and F3,t for

the target andF1,m, F2,m andF3,m for the mean shape). In order to enforce a correct match

between the corresponding feature points, a penalty term is then added to the objective

function. Eq. (5) is modified to

E(p) =
Mc−1
∑

i=0

min(‖dj −mi‖2)1≤j≤K + W

3
∑

j=1

‖Fj,t − Fj,m‖2 (6)

The weightW has to be chosen such that it penalizes the merit function when the feature

points are far apart without excessively minimizing the influence of the first term (i.e., the

influence of the other points of the target).

Figure 12 shows the effect of adding feature points on the reconstruction. The top three

tooth images show the result of the reconstruction without the use of feature points. The

three images below correspond to a similar reconstruction process (same number of modes,

same algorithm) except that feature points are used.

The use of feature points ensures a better correspondence between the roots of the two
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teeth (original and reconstructed). This leads to a better determination of the crown shape.

The different experiments that were carried out showed a slight improvement in the shape

determination (the influence is more or less important among the specimens). However, using

feature points is not always sufficient to obtain a good approximation of the tooth shape.

Modifying Eq. (6) could possibly improve the results further. We also observe that the use

of feature points has nearly little effect on the time required for reconstruction of the tooth.

C. Computation Time

The algorithm was implemented using MSVC++ and run on a Pentium IV 2.4 GHz

personal computer. The computation time related to the the leave-one-out tests described

in Sections IV-A and IV-B are summarized in Table VI. For a reconstruction using either

crown or root information, Method 2 is much faster than Method 1. Though the distance

map allows quick access to the minimum distances, Method 1 is greatly penalized by the

computation time of the gradient. Furthermore, Method 1 is more affected by an increase

in the density of the statistical model than Method 2 (the running time of Method 1 is

proportional to the number of points of the statistical model).

Table VI: Computation time for the reconstruction (in seconds).
Using crown information Using root information
Method 1 Method 2 Method 1 Method 2

Minimum 213 20 45 7
Maximum 276 33 60 15
Mean 259.0 26.7 51.8 9.6

D. Number of Specimens Used

The results presented above were realized usingN = 22 specimens. To determine if this

number was sufficient, we evaluated the influence of the number of specimens used on the

reconstruction. Leave-one-out tests (using crown information) were performed using a number
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of specimensN between 2 and 22. For each value ofN , p (p ≤ 8) groups were constituted

randomly. The mean of the mean HD was then evaluated for each value ofN and the results

are as shown in Fig. 13. This experiment indicates that about 12 teeth is sufficient to obtain

a good knowledge about the variability in the tooth type being considered.

E. Number of Modes of Deformation

Using an optimal or near-optimal number of modesNpc is important as an insufficient

number of modes would limit the deformations of our mean model and prevent it taking

on the exact shape of the target, whereas a high number of deformation modes would slow

down the reconstruction and, above all, introduce undesirable noise. Reconstructions using

increasing values forNpc were realized and the results compared. Though not optimal for

every reconstruction, the value selected (Npc = 7) leads globally to the optimal results.

V. CONCLUSION

The methods presented here have been proven to be efficient to reconstruct teeth using only

crown information and could help clinicians to visualize the outcome of a surgery or choosing

between different procedures. Our approach presents two major advantages: it exploits the

whole prior information available for a given tooth and it requires little or no interaction

from the user.

The reconstructions based on the crown gave a very good precision of the tooth height

and width, with an average HD around 10% between the specimens and their reconstructed

shapes. However it gave only a coarse approximation of the teeth shape when using root

information only. We have also shown that this approach could be quite fast; indeed, despite

the high resolution of our specimens (105µm), Method 2 requires, on average, less than 30

seconds to reconstruct a specimen.
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The method described was developed using a particular kind of tooth. However, it could

easily be extended to all single-rooted teeth. Generating a new PDM per tooth is not absolutely

necessary; mirror teeth can be reconstructed using the same training set, since the mirror

PDM could be created using the mirror view of the mean shape and those of the different

modes. Teeth whose shapes differ only in size (e.g., first and second premolar, milk tooth

and corresponding adult tooth) could also use the same database by simple scaling of the

mean shape and different modes of the PDM.

When 2D information is available in the form of an X-ray and higher accuracy required,

combining this information with the proposed method could lead to a better estimation of

the PDM’s parameters and avoid erroneous reconstructions when dealing with an outlier

specimen.
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List of Figures

Fig. 1 Fitting of tooth on the dental cast in order to obtain the position of the root.

Fig. 2 Generic model and elastic registration onto a tooth exemplar. (a) Generic model.
(b) Tooth exemplar reconstructed for microtomography. (c) Generic model matched
onto the exemplar. The mean HD between (b) and (c) equals 0.15 mm.

Fig. 3 (a) Eigenvalues of the autocorrelation matrix in decreasing order. (b) Cumulative
percentage of variability given the number of components.

Fig. 4 (a) Influence of the first mode of decomposition on the mean shape. (b) Influence
of the second mode of decomposition on the mean shape.

Fig. 5 Octree decomposition realized on a tooth root using 3 levels of decomposition (6
levels are used in the implemented algorithm).

Fig. 6 Examples of reconstruction using crown information only, without the use of a
distance map. The 3D mesh represents a given tooth after reconstruction and the
surface the original tooth. (a) and (b) are representative specimens while (c) is one
particular case among the 22 exemplars.

Fig. 7 Tooth segmentation from a dental cast affects the crown shape: some information
is lost on the facial view (left image) and distal view (right image) of the crown
extracted.

Fig. 8 Process of fitting a tooth on a dental cast. (a) Crown of the tooth after segmentation.
(b) Tooth after reconstruction (gray surface) and original crown (blue surface). (c)
Patient’s OPG. (d) X-ray of the patient’s tooth matched with the tooth reconstructed
(blue).

Fig. 9 Examples of reconstruction using root information only, without the use of a distance
map. The 3D mesh represents a given tooth after reconstruction and the surface the
original tooth. (a) and (b) are representative specimen while (c) is one particular
case among the 22 exemplars.

Fig. 10 Distribution of the Hausdorff distance on the reconstructed shapes (reconstruction
based on root data). Distances are given in mm.

Fig. 11 Location of the feature points on the root: the image on the left represents the distal
view of the root, and the image on the right a 2D view of the upper part of the root.

Fig. 12 Effect of adding feature points on a reconstruction using root information. Upper
row: reconstruction without feature points. Lower row: same tooth reconstructed
using three feature points.

Fig. 13 Influence of the number of specimens used to build the statistical model.
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