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STRUCTURED MATRICES AND INVERSES ∗

P. COMON†

Abstract. A matrix (and any associated linear system) will be referred to as struc-
tured if it has a small displacement rank. It is known that the inverse of a structured
matrix is structured, which allows fast inversion (or solution), and reduced storage re-
quirements. According to two definitions of displacement structure of practical interest,
it is shown here that several types of inverses are also structured, including the Moore-
Penrose inverse of rank-deficient matrices.

Key Words. Displacement rank, Structured matrix, Töplitz, Hankel, Inverse,
Schur, Moore-Penrose, Pseudo-inverse, Deconvolution.

AMS(MOS) subject classification. 15A03, 15A06, 15A09, 15A57, 65F20, 65F30.

1. Introduction. Close to Töplitz or close to Hankel matrices ap-
pear in various areas including signal processing and automatic control
(e.g. prediction of second-order nearly stationary time series). In radar or
sonar (or more generally antenna processing), Töplitz matrices are encoun-
tered when far-field sources impinge an array of regularly spaced sensors
after propagating through an homogeneous medium. If 2-dimensional reg-
ular arrays are utilized, then block-Töplitz matrices can be found. Other
applications include optics, image processing (when the spreading function
is shift invariant), differential or integral equations under certain boundary
conditions and for certain discretizations (e.g. oil prospecting), seismics,
geophysics, transmission lines, and communications. . . In general, these ap-
plications correspond to the solution of some inverse problems. When shift
invariance properties are satisfied, the linear operator to invert is Töplitz,
or block-Töplitz, and it is dealt with a deconvolution problem.

However, Töplitz matrices in the strict sense are rarely encountered in
the real word, because the abovementioned invariance properties are not
satisfied. For instance, second-order stationarity of long time series, or
homogeneity of propagation media, are idealized assumptions. In antenna
array processing, the decalibration of the array is the main cause of many
problems, among which the deviation from Töplitz is one of the mildest
ones. For instance in sonar, decalibration occurs because of the effects of
pressure, temperature, and usage, among others. Another major cause of
problems is the distorsion of wave fronts impinging the array due to inho-
mogeneity of the medium or to local turbulences (note that improvements
can be obtained by assuming that the celerity is random with a small vari-
ance, but this is out of the scope of the present discussion). Lastly, a simple
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deviation from Töplitz that has been already studied is the effect of limited
length of the data. The proximity to Töplitz then depends on the way the
matrix is calculated: its displacement rank ranges from 2 to 4 under ideal
assumptions.

Since the set of Töplitz (or Hankel) matrices is a linear space, it is
easy to compute the closest Töplitz approximate of any matrix by a simple
projection. However, this operation should be avoided in general, since it
would destroy other important structures (e.g. just the rank). On the other
hand, finding the best approximate of a matrix by another of given rank
and given displacement rank is still an open problem. It is true that some
simple iterative algorithms have already been proposed in the literature
for the Töplitz case, but the convergence issue has not been completely
covered.

Since the early works by Schur (1917), Levinson (1947), Durbin (1960),
Trench (1964), and Bareiss (1969), a lot of work has been done. In par-
ticular, Kailath and others introduced in the seventies the concept of dis-
placement rank, which allows in some way to measure a distance to Töplitz
[16]. By the way, the concept of displacement rank may be seen to have
some connections with integral and differential equations [18]. An excellent
survey of related works can be found in [17]. Other recent investigations
are also reported in [6].

It is known that a linear system Tx = b can be solved with O(n2)
flops if T is a n × n Töplitz matrix. If T is just only close to Töplitz, it is
useful to define a displacement rank, δ, measuring a distance to the Töplitz
structure [11]. Then it has been shown that the solution requires only
O(δn2) flops, to be compared to the O(n3) complexity necessary to solve
a dense linear system of general form. More recently, superfast algorithms
have been proposed to solve Töplitz systems, and their complexity ranges
from O(nlog2n) to O(αnlogn), α < n, [1] [2] [3].

The displacement rank of a linear system is clearly related to the com-
plexity of its solution. It has been shown in [4] [5] that this complexity
reduction also holds for the calculation of various factorizations, provided
the Schur algorithm is run on the appropriate block-matrix. In this paper,
the displacement rank will be defined in a slightly more general framework,
such that the structure of a wider class of matrices can be taken into ac-
count. In this framework, the first step in the quest of fast algorithms is
to check whether the system considered has a displacement structure, and
under what displacement operator its displacement rank is the smallest.
Building explicitly fast algorithms taking advantage of this structure is the
next question. However, our investigations are limited in this paper to the
study of the displacement rank itself, and it will not be discussed how to
build the corresponding fast algorithm.

The paper is organized as follows. Definitions and basic properties are
given in section 2. In section 3, the structure of inverses and products
of full-rank structured matrices is analyzed. Section 5 is devoted to the
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study of structured rank-deficient matrices, and utilizes preliminary results
derived in section 4.

2. Definitions and first properties. The structure that will be
considered in this paper is exclusively the displacement structure [16] [11].
Roughly speaking, a structured matrix is the sum of displaced versions of
a unique generating matrix of small rank. For instance, sparse matrices
may not have any interesting displacement structure. Displacement op-
erators can be defined in different ways, and two definitions will be used
subsequently.

Definition 2.1. For any fixed pair of matrices (Z, N) of appropriate
dimension, the displacement of a matrix A with respect to displacement
operator ∇Z,N is defined as

∇Z,NA = A − ZAN.(1)

Definition 2.2. For any fixed pair of matrices (Z, N) of appropriate
dimension, the displacement of a matrix A with respect to displacement
operator ∆Z,N is defined as

∆Z,NA = ZA − AN.(2)

In the remaining, matrices Z and N will be referred to as displacement
matrices, and the pair {, Z, N} to as the displacement pattern. . Once
the above definitions are assumed in the primal space, then it is conve-
nient to use the definitions below in the dual space, denoting by (∗) the
transposition:

∇N,Z(A∗) = A∗ − NA∗Z,

∆N,Z(A∗) = NA∗ − A∗Z.(3)

Definition 2.3. Matrices for which any of the four displaced matrices
(1), (2), (3) or (3) has a rank bounded by a value that does not depend on
the size of A will be referred to as structured. This rank will be called the
displacement rank of A with respect to the displacement operator considered,
and will be denoted as δ∇Z,N{A}, δ∇N,Z{A

∗}, δ∆
Z,N{A}, or δ∆

N,Z{A
∗}.

This definition is consistent with [6]. Displacement matrices Z and N
are usually very simple (typically formed only of ones and zeros). Addition-
ally, it can be seen that the displacement operator (1) is easily invertible
as soon as either Z or N is nilpotent. To see this, assume that Zk+1 = 0
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and explicit the displacement ∇Z,N in the sum

k
∑

i=0

∇Z,N{ZiAN i}.

Then this expression can be seen to be nothing else than A itself. For
additional details, see [17] and references therein. Note that the results
shown in this paper will not require a particular form for matrices Z and
N (nilpotent for instance), unless otherwise specified. Other considerations
on invertibility of displacement operators are also tackled in [4]. In [20],
displacement operators are defined (in a manner very similar to [4]), but
displacement ranks of products or pseudo-inverses are unfortunately not
obtained explicitely. Lastly, other displacement structures, including (2),
are being investigated by G.Heinig.

Example 2.4. Denote S the so-called lower shift matrix:

S =







0

1
. . .
. . .

. . .
1 0






.(4)

For Hankel matrices, it is easy to check out that we have

δ∇Z,N{H} ≤ 2, for (Z, N) = (S, S),(5)

δ∆
Z,N{H} ≤ 2, for (Z, N) = (S, S∗),(6)

whereas for Töplitz matrices, we have

δ∇Z,N{T } ≤ 2, for (Z, N) = (S, S∗),(7)

δ∆
Z,N{T } ≤ 2, for (Z, N) = (S, S).(8)

In these particular cases, the non-zero entries of displaced matrices are
indeed contained only in one row and one column. These four statements
hold also true if matrices Z and N are permuted. In other words,

δ∆
S∗,S{H} ≤ 2, and δ∇S∗,S{T } ≤ 2.

It turns out that the definitions 2.1 and 2.2 yield displacement ranks
that are not independent to each other. We have indeed the following

Theorem 2.5. For any given matrices Z, N, A, the two inequalities
below hold

δ∇Z,N{A} ≤ δ∆
Z∗,N{A} + δ∇Z,Z∗{I},(9)

δ∆
Z,N{A} ≤ δ∇Z∗,N{A} + δ∇Z,Z∗{I},(10)
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where I denotes the identity matrix having same dimensions as A.

Proof. ∇Z,NA = Z(Z∗A−AN)+(I−ZZ∗)A shows the first inequality,
and ∆Z,NA = Z(A − Z∗AN) − (I − ZZ∗)AN shows the second one.

Example 2.6. If A is a circulant Töplitz matrix, e.g.,

A =





a b c d
d a b c
c d a b



 ,

then it admits a displacement rank δ∇Z,N{A} = 1 provided the following
displacement pattern is assumed: Z = S3 as given by (4), and

N =









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









.

In this example, we also have δ∆
Z∗,N{A} = 1, which is conform to theorem

2.5.

Example 2.7. Let A be a m×n Töplitz matrix. Define N = Sn, and

Z =











0 1 0 0

0 0
. . . 0

1 0 0 1
0 0 0 0











.

Then it can be seen that δ∆
Z∗,N{A} = 2, and δ∇Z,N{A} = 3. This example

shows that equality can occur in theorem 2.5.

Example 2.8. If T is Töplitz m× n and H is Hankel m× p, then the
block matrix (T H) has a displacement rank equal to 3 with respect to the
displacement pattern {Z, N} = {Sm, S∗

n ⊕ Sp}.

The notation A⊕B will be subsequently used when A and B are square
to denote the block-diagonal matrix having A and B as diagonal blocks.

3. Displacement of various inverses and products. There is a
number of situations where the displacement rank of a matrix can be quite
easily shown to be small. Since our main concern is inverses, let us start
with the simplest case.

Theorem 3.1. Let A be an invertible square matrix. Then

(i) δ∆
Z,N{A} = δ∆

N,Z{A
−1}, and (ii) δ∇Z,N{A} = δ∇N,Z{A

−1}.(11)

In other words, A and A−1 have the same displacement rank with respect
to dual displacement patterns.
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To prove the theorem, it it useful to recall the following lemma.

Lemma 3.2. Let f and g be two linear operators, and denote Eh
λ

the eigenspace of operator h associated with the eigenvalue λ. If λ is an
eigenvalue of fog, then it is also an eigenvalue of gof . In addition, the
eigenspaces have the same dimension as soon as λ is non-zero:

dim{Efog
λ } = dim{Egof

λ }.

Proof. Assume λ is an eigenvalue of fog. Then for some non-zero
vector x, fog(x) = λx. Composing both sides by operator g immediately
shows that

gof(g(x)) = λg(x).(12)

Next there are two cases: (i) if g(x) 6= 0, then g(x) is an eigenvector of gof
associated with the same eigenvalue λ; (ii) if g(x) = 0, then fog(x) = 0
and necessarily λ = 0. Now assume without restricting the generality of
the proof that dim{Efog

λ } > dim{Egof
λ }. Then there exists a vector x

in Efog
λ such that g(x) = 0 (since otherwise relation (12) would imply

that g(x) is also in Egof
λ ). Yet composing by f yields fog(x) = 0 and

consequently λ = 0. As a conclusion, if λ 6= 0, eigenspaces must have the
same dimension.

Proof. of theorem. We have by definition δ∆
Z,N{A} = rank{ZA −

AN} = rank{Z − ANA−1}, and δ∆
N,Z{A

−1} = rank{NA−1 − A−1Z} =

rank{ANA−1 − Z}. But these two matrices are opposite, and therefore
have the same rank. This proves (i).

Similarly since the rank does not change by multiplication by a regular
matrix, we have δ∇Z,N{A} = rank{A − ZAN} = rank{I − ZANA−1}. On

the other hand δ∇N,Z{A
−1} = rank{A−1−NA−1Z} = rank{I−NA−1ZA}.

Now from lemma 3.2 we know that ker{I − fog} and ker{I − gof} have
the same dimension. If f and g are endomorphisms in the same space, this
implies in particular that rank{I − fog} = rank{I − gof}. Now applying
this result to f = ZA, g = NA−1 eventually proves (ii).

The proof that an invertible matrix and its inverse have the same dis-
placement rank has been known for a long time, and proved for symmetric
matrices [17]. However, the proof for general Töplitz matrices seems to
have been given only recently in [6] for a displacement of type (1). Our
theorem is slightly more general.

Corollary 3.3. For any given square matrix A, let the regularized
inverse be given by R = (A+ηI)−1, for some number η such that A+ηI is
regular. Then the displacement ranks of A and R are linked by the inequality
below

δN,Z{R} ≤ δZ,N{A} + δZ,N{I},(13)
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this inequality holding for both displacements ∇ and ∆.

Proof. Just write δ∇N,Z{R} = δ∇Z,N{R−1} = δ∇Z,N{A + ηI}, and since
the rank of a sum is smaller than the sum of the ranks, we eventually
obtain the theorem. In order to prove the inequality for the displacement
∆, proceed exaclty the same way.

When close to Töplitz or close to Hankel matrices are considered, the
displacement matrices Z and N are essentially either the lower shift matrix
S or its transposed. In such a case, it is useful to notice that

δ∇S,S∗{I} = δ∇S∗,S{I} = 1.(14)

On the other hand for any matrix Z (and S or S∗ in particular):

δ∆
Z,Z{I} = 0.(15)

For a Töplitz matrix T , we have a stronger (and obvious) result, be-
cause T and T + ηI are both Töplitz.

δ∇S∗,S{R} = δ∇S,S∗{T }.

Corollary 3.4. Let M be the 2 × 2 block matrix below

M =

(

A B
C D

)

,

where A and D are square of dimension n1 and n2, respectively. Assume
M and A are invertible. When the last n2 ×n2 block of the matrix M−1 is
invertible, it can be written as Ā−1, where Ā is the so-called Schur comple-
ment of A in M : Ā = D−CA−1B. If M has a displacement rank δN,Z{M}
with respect to a displacement pattern {Z, N} = {Z1⊕Z2, N1⊕N2}, where
Zi and Ni are ni × ni matrices, then the displacement rank of Ā satisfies
the inequality below for both displacements ∇ and ∆:

δZ2,N2
{Ā} ≤ δZ,N{M}.(16)

Proof. Applying twice the theorem 3.1, and noting that the rank of M
is always larger than the rank of any of its submatrices, yield δZ2,N2

{Ā} =
δN2,Z2

{Ā−1} ≤ δN,Z{M
−1} = δZ,N{M}.

This kind of property has been noticed for several years by Chun and
Kailath. See for instance [4] [6]. This corollary restates it in the appropriate
framework.

Theorem 3.5. Let A1 and A2 be two full-rank matrices of size n1×n2

and n2 ×n1, respectively, with n1 ≤ n2. Then the displacement rank of the
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matrix A1A2 is related to the displacement ranks of A1 and A2 for either
displacement ∇ or ∆ by

δZ1,Z2
{A1A2} ≤ δZ1,N1

{A1} + δN1,N2
{In2

} + δN2,Z2
{A2},(17)

Proof. To prove the theorem, form the square matrix M of size n1+n2:

M =

(

I A2

A1 0

)

,

consider the displacement pattern {N2 ⊕Z1, N1 ⊕Z2} and apply corollary
3.4. Again, since the displacement pattern is block-diagonal, the displaced
block matrix is formed of the displaced blocks.

In the present case, the Schur complement is precisely the product
−A1A2. This proof is identical to that already proposed in [6] for particular
structured matrices.

Note that if N1 = N2, (15) implies δ∆
N1,N2

{I} = 0. On the other hand,

if N1 = N∗
2 = S, then δ∇N1,N2

{I} = 1 from (14). For particular displacement
matrices Z and N , the general bounds given by theorem 3.5 may be too
loose. In particular for Töplitz or Hankel matrices, the corollary below is
more accurate.

Corollary 3.6. Let S be the lower shift matrix defined in (4), T1

and T2 be Töplitz matrices, and H1 and H2 be Hankel. Then under the
conditions of theorem 3.5:

(a) δ∆
S,S{T1T2} ≤ 4, (b) δ∆

S,S{H1H2} ≤ 4, (c) δ∆
S,S∗{T1H2} ≤ 4,(18)

(a) δ∇S,S∗{T1T2} ≤ 4, (b) δ∇S,S∗{H1H2} ≤ 4, (c) δ∇S,S{T1H2} ≤ 4.(19)

Proof. Equations (18) result from a combination of example 2.4 and
theorem 3.5. In fact, take Zi = Ni = S for (a), Z1 = Z2 = N∗

1 = N∗
2 = S

for (b), and Z1 = N1 = N2 = Z∗
2 = S for (c).

On the other hand, if we try to apply theorem 3.5 to prove (19), we
find a result weaker than desired, for we obtain δ∇ ≤ 5. A more careful
analysis is therefore necessary. Restart the proof of theorem 3.5: if T1 and
T2 are full rank Töplitz, the displaced block matrix ∇S⊕S,S∗⊕S∗M has the
following form:

(

∇I ∇T2

∇T1 0

)

=









x x x
x
x

x x x
x









,

where crosses indicate the only locations where the matrix is allowed to
have non-zero entries: only in two rows and two columns. Such a matrix
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is clearly of rank at most 4. Following the same lines as in theorem 3.5, it
can be seen that the product T1T2 has a displacement rank bounded by 4.

A similar proof could be derived in the case of two Hankel matrices,
and will not be detailed here. In order to prove (19c), let us consider finally
the block matrix

M =

(

I H2

T1 0

)

.

Assuming the displacement pattern {S ⊕ S, S∗ ⊕ S}, the displaced matrix
∇M is now of the form

(

∇I ∇H2

∇T1 0

)

=









x x x
x
x

x x x
x









,

which is again obviously of rank at most 4. The last result follows.
The theorem 3.5 was valid only for full-rank matrices of transposed

sizes. For further purposes it is useful to extend it to products of rectan-
gular matrices of general form.

Theorem 3.7. Let A and B be m × n and n × p matrices. Then the
product AB is also structured, and the inequality below holds:

δ∆
ZA,NB

{AB} ≤ δ∆
ZA,NA

{A} + δ∆
NA,ZB

{In} + δ∆
ZB ,NB

{B},(20)

where In denotes the n × n identity matrix.

Proof. Write first the displaced matrix as

∆ZA,NB
AB = (ZAA − ANA)B + A(NAB − BNB).

Then splitting the second term into A(NA −ZB)B +A(ZBB−BNB) gives

∆ZA,NB
(AB) = ∆ZA,NA

A . B + A . ∆NA,ZB
I . B + A . ∆ZB ,NB

B,(21)

which eventually proves the theorem, since the rank of a product is always
smaller than the rank of each of its terms.

A similar result holds for displacement ∇. A direct consequence of
equation (21) is the following corollary, that looks like a differentiation
rule.

Corollary 3.8. When A and B have dual displacement patterns, we
obtain the following simple result:

∆Z,Z(AB) = ∆Z,NA . B + A . ∆N,ZB.

In particular, if AB = I, this displaced matrix is null, because of (15).
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Corollary 3.9. Let A be a full-rank m × n matrix, with m ≥ n.
Then its pseudo-inverse B = (A∗A)−1A∗ has a reduced displacement rank,
as show the two bounds below:

δ∆
N,Z{B} ≤ δ∆

Z,N{A} + 2δ∆
N,Z{A

∗},(22)

δ∆
N,Z∗{B} ≤ 3δ∆

Z,N{A} + δ∆
Z∗,Z{Im}.(23)

Proof. Apply corollary 3.8 to A∗A, next theorem 3.1, and lastly theo-
rem 3.7.

Example 3.10. If A is Töplitz, equation (22) claims that δ∆
S,S{B} ≤ 6.

In practice, it seems that no Töplitz matrix could yield a displacement rank
larger than δ∆

S,S{B} = 4, which suggests that the bound is much too large.

Definition 3.11. Given any matrix A, if a matrix A− satisfies

(i) AA−A = A, (ii) A−AA− = A−,

(iii) (AA−)∗ = AA−, (iv) (A−A)∗ = A−A,(24)

then it will be called the Moore-Penrose (MP) pseudo-inverse of A. A so-
called generalized inverse need only to satisfy conditions (i) and (ii).

It is well known that A− is unique, and that A− and A∗ have the
same range and the same null space [12]. On the other hand, a generalized
inverse is not unique. When a matrix A is rank deficient, it is in general not
possible to construct a MP pseudo-inverse having the same displacement
rank, as will be demonstrated in section 5.

4. The space of P -symmetric matrices. In this section, more spe-
cific properties shared by matrices in a wide class will be investigated. The
property of P -symmetry will be necessary in section 5 to transform a matrix
into its transposed just by a congruent transformation.

Definition 4.1. Let P be a fixed orthogonal n by n matrix. The set
of P -symmetric matrices is defined as follows:

SP = {M ∈ IRn×n/PMP ∗ = M∗},(25)

where (∗) denotes transposition and IR the set of real numbers.

It will be assumed in this section that the matrix to invert (or the
system to solve) belongs to SP , for some given known orthogonal matrix
P . For instance, if a matrix A is square and Töplitz, then it is centro-
symmetric and satisfies

JAJ∗ = A∗,
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which shows that A ∈ SJ , where J denotes the reverse identity:

J =





1
. .

.

1



 .(26)

If A is Hankel, then A ∈ SI because A is symmetric. The property of
P -symmetry is interesting for it is preserved under many transformations.
For instance, singular vectors of a P -symmetric matrix are P -symmetric
in the sense that if {u, v, σ} is a singular triplet, then so is {Pv, Pu, σ}. A
sum or a product of P -symmetric matrices is P -symmetric.

Example 4.2. Define the ‘alternate Töplitz matrix’ below

A =











2 -2 -2 1 1

1 -2 -2 2 1

1 1 2 -2 -2

4 -1 1 -2 -2

-8 4 1 1 2











,

and assume the displacement pattern

Z =











0 0 0 0 0

1 0 0 0 0

0 -1 0 0 0

0 0 1 0 0

0 0 0 -1 0











, and N = −Z∗.

Then we have PAP ∗ = A∗ as requested in the definition above, with P = J .
This matrix has displacement ranks δ∇Z,N{A} = 2 and δ∆

Z∗,N{A} = 2, and is
singular. The displacement rank of its MP pseudo inverse will be calculated
in example 5.4.

Property 4.3. The properties of P -symmetry and P ∗-symmetry are
equivalent.

Proof. Let A be P -symmetric. Then transposing (25) gives M =
PM∗P ∗. Next pre- and post-multiplication by P ∗ and P , respectively,
yields P ∗MP = M∗.

Theorem 4.4. If A is P -symmetric, then so is A−1 whenever A is
invertible. If A is singular, then its Moore-Penrose inverse, A−, is also
P -symmetric.

Proof. Inversion of both sides of the relation PAP ∗ = A∗ yields imme-
diately PA−1P ∗ = A−1∗. Now to insure that when A is singular, A− is P -
symmetric, it suffices to prove that the matrix B = PA−∗P ∗ indeed satisfies
the four conditions of definition (24). First, ABA = APA−∗P ∗A yields
ABA = PA∗A−∗A∗P ∗ = PA∗P = A, which shows (i) of (24). Second,
BAB = PA−∗P ∗APA−∗P ∗ yields similarly BAB = PA−∗A∗A−∗P ∗ =
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PA−∗P ∗, which equals B by definition. Next to prove (iii), consider AB =
APA−∗P ∗, which gives after premultiplication by PP ∗: AB = PA∗A−∗P ∗.
But since (A−A)∗ = A−A, we have AB = PA−AP ∗. Then insertion of
P ∗P yields finally AB = PA−P ∗A∗, which is nothing else then B∗A∗. The
proof of (iv) can be derived in a similar manner.

It may be seen that in the last proof, A does not need to be a nor-
mal matrix, which was requested in a similar statement in [15]. On the
other hand, it is true that if A is P -symmetric, AA∗ is in general not
P -symmetric.

5. Displacement of MP pseudo-inverses. In section 3, it has been
shown among other things that the pseudo-inverse of a full-rank matrix is
structured. It will be now analyzed how the rank deficience weakens the
structure of the MP pseudo-inverse.

Theorem 5.1. Let A be a P-symmetric square matrix, and let Z and
N be two displacement matrices linked by the relation

PZP = N.(27)

Then the displacement ranks of A and A− are related by

δ∇N,Z{A
−} ≤ 2δ∇Z,N{A}.(28)

In this theorem, the condition (27) is satisfied in particular for both
close to Töplitz and close to Hankel matrices, with (P, Z, N) = (J, S, S∗)
and (P, Z, N) = (I, S, S), respectively.

Proof. For conciseness, denote in short δ the displacement rank δ∇Z,N{A},
and assume A is n × n. In order to prove the theorem, it is sufficient to
find two full-rank n × n − δ matrices E1 and E2 such that

E∗
2∇N,Z{A

−}E1 = 0.(29)

For this purpose, define the following full-rank matrices with n rows:

G1 = matrix whose columns span Ker∇A
G2 = matrix whose columns span Ker(∇A)∗

K1 = matrix whose columns span KerAN ∩ Ker∇A
K2 = matrix whose columns span Ker(ZA)∗ ∩ Ker(∇A)∗

V1 = matrix whose columns span ANG1

V2 = matrix whose columns span A∗Z∗G2.

(30)

Then define the two matrices Ei as:

Ei = [Vi, Wi], with Wi = PKi.
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Let us prove first that Ei are indeed of rank n − δ, and then that (29) is
satisfied.

From (30), we have by construction AK1 = 0. Then inserting a factor
P ∗P and premultiplying by P gives PAP ∗PK1 = 0, which shows that
A∗W1 = 0. Yet, V1 is in the range of A by definition, and thus V1 and W1

are necessarily orthogonal as members of the orthogonal subspaces KerA∗

and ImA. In addition, P is bijective so that W1 has the same dimension
as K1. As a consequence, dimE1 = dimV1 + dimK1, which is nothing else
but dimG1 if we look at the definitions (30). Similarly, one can show that
W2 and V2 are orthogonal because W2 ⊂ KerA. This yields after the same
argumentation that dimE2 = dimG2 = n − δ.

Now it remains to prove (29). To do this, it is shown that the four
blocks of E∗

2∇A−E1 are zero. The quantity µ = V ∗
2 ∇A−V1 is null since µ =

G∗
2ZA(A−−NA−Z)ANG1 can be written µ = G∗

2ZANG1−G∗
2ZANA−ZANG1,

which is the difference of two identical terms by construction of matri-
ces Gi. In fact from (30), ZANG1 = AG1 and G∗

2ZAN = G∗
2A. Next

W ∗
2 ∇A− is null because W ∗

2 ∇A∗ is null (remember that A− and A∗ have
the same null space). In fact, W ∗

2 ∇A∗ = K∗
2P ∗A∗ − K∗

2P ∗NA∗Z by
definition of W2 and ∇. Now using the relation (27) and P -symmetry
of A yield W ∗

2 ∇A∗P = K∗
2A − K∗

2ZAN . These two terms are even-
tually null by construction of K2. It can be proved in a similar man-
ner that ∇A∗W1 = 0. In fact, ∇A∗W1 = A∗PK1 − NA∗ZPK1 implies
P ∗∇A∗W1 = AK1 − P ∗NP ∗PA∗P ∗PZPK1. Again these two terms can
be seen to be zero utilizing (27), P -symmetry of A, and the definition (30)
of K1.

This theorem is an extension of a result first proved in [7]. As pointed
out in [8], when the displacement rank of A is larger than its rank, the
theorem above gives too weak results as is next shown.

Theorem 5.2. Let A be a square matrix, and denote by r{A} its
rank. Then there exist two other bounds for the displacement rank of its
MP pseudo-inverse:

δ∇N,Z{A
−} < 2r{A} if δ∇Z,N{A} < 2r{A}, and(31)

δ∇N,Z{A
−} ≤ 2r{A} otherwise.(32)

Proof. The proof of (32) is easy. In fact, it holds true for any matrix
M since

rank{M − ZMN} ≤ rank{M} + rank{ZMN} ≤ 2rank{M}

is always true. So let us prove (31). Since A has rank r{A}, it may be
written as

A = UΣV ∗,
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where Σ is invertible and of size r{A}. Define the matrices A = [U ZU ],
B = [V N∗V ], and Λ = Diag(Σ,−Σ). Then it may be seen that

∇A = AΛB∗.

Since Λ is of full rank, either A or B must be rank defficient, otherwise
∇A would be of rank 2rank{A} which is contrary to the hypothesis. Thus
assume without restricting the generality of the proof that rank{A} <
2r{A}. Then rank{∇A−} < 2r{A} because:

∇A−∗ = AΛ−1B∗.

This completes the proof.

Corollary 5.3. Let T and H be close to Töplitz and close to Hankel
square matrices, respectively. Then

δ∇S∗,S{T
−} ≤ 2δ∇S,S∗{T }, δ∇S,S{H

−} ≤ 2δ∇S,S{H},(33)

δ∆
S,S{T

−} ≤ 2δ∆
S,S{T } + 1, δ∆

S∗,S{H
−} ≤ 2δ∆

S,S∗{H} + 1.(34)

Proof. To prove (33), simply use theorem 5.1 and relation (14). In
order to prove equations (34), utilize theorem 2.5 and relation (15).

Note that the bounds are tight enough to be reached, as now shown in
examples.

Example 5.4. Take again the matrix defined in example 4.2. This
matrix is of rank 4 and displacement rank 2. In addition, the displacement
pattern satisfies PZP = N as required in the theorem 5.1. With the
notations of example 4.2, the MP pseudo inverse of A has displacement
ranks δ∆

N,Z∗{A−} = 4 and δ∇N,Z{A
−} = 4. This is consistent with theorem

5.1.

Example 5.5. Define the 5 × 5 Töplitz matrix of rank 3 :

A =











2 4 3 1 2

1 2 4 3 1

3 1 2 4 3

4 3 1 2 4

2 4 3 1 2











,

and assume as displacement pattern Z = S5 and N = S∗
5 . Then A has a

displacement rank δ∇Z,N = 2, and its MP pseudo-inverse has a displacement

rank δ∇N,Z equal to 4. This result was expected, according to corollary 5.3.

Example 5.6. If H is Hankel, then the displacement rank of H− with
respect to the displacement operator ∆S∗,S is bounded by 5.
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Other particular examples can be found in [7] and [8]. Let us now
switch to the case of rectangular and rank-deficient structured matrices.
In order to extend corollary 3.9, we need a variant of the inversion lemma:

Lemma 5.7. Let M be the block matrix:

M =

(

P A2

A1 0

)

,

where P is square invertible, and where A1 and A2 have the same rank.
Then the MP-pseudo-inverse of M is:

M− =

(

Y −P−1A2X
−XA1P

−1 X

)

,

where X = −(A1P
−1A2)

−, and Y = P−1 + P−1A2XA1P
−1.

Proof. Let Ai = UiDiV
∗
i denote the SVD of Ai. Then define the matrix

M̄ =

(

U∗
2 0
0 U∗

1

)

M

(

V1 0
0 V2

)

,

and apply the usual inversion lemma to the invertible square portion of M̄ ,
denoted B. In other words we have:

M̄ =

(

B 0
0 0

)

and M̄− =

(

B−1 0
0 0

)

.

The last lines of the proof are then just obvious manipulations.

Corollary 5.8. Let A be an m × n rectangular matrix with m > n.
Then the displacement rank of its MP pseudo inverse verifies

δ∆
N,Z{A

−} ≤ 3δ∆
N,Z{A

∗} + 2δ∆
Z,N{A} + 2δ∇N,N∗{Im}.

Proof. Write A− as (A∗A)−A∗, apply theorem 5.1 to the square matrix
(A∗A), and then apply the product rule given in corollary 3.9.

6. Concluding remarks. In this paper various aspects of the dis-
placement rank concept were addressed in a rather general framework. In
particular, displacement properties of rank-deficient matrices were inves-
tigated. However the bounds given in corollaries 3.9 and 5.8 are obvi-
ously too large. It is suspected that corollary 5.8 could be improved to
δ{B} ≤ 2δ{A}+ δ{I} in most cases. On the other hand, particular exam-
ples have been found showing that the bounds given in other theorems are
indeed reached (in particular theorems 5.1 and 5.2).

Another major limitation of this work lies in the fact that our proofs
are in general not constructive, in the sense that they do not define suitable
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algorithms having the expected complexity. This is now the next question
to answer. First ideas in this direction can be found in [4] and [14] and
could be used for this purpose.

The author thanks Georg Heinig for his proofreading of the paper.
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systems, SIAM Journal Matrix Analysis., vol.9, jan 1988, 61-76.

[2] A.W. Bojanczyk, R.P. Brent, and F.R. DeHoog, QR factorization of Töplitz
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