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Abstract

We propose here an HMM-based trajectory formation system
that predicts articulatory trajectories of a talking face from
phonetic input. In order to add flexibility to the
acoustic/gestural alignment and take into account anticipatory
gestures, a phasing model has been developed that predicts the
delays between the acoustic boundaries of allophones to be
synthesized and the gestural boundaries of HMM triphones.
The HMM triphones and the phasing model are trained
simultaneously using an iterative analysis-synthesis loop.
Convergence is obtained within a few iterations. We
demonstrate here that the phasing model improves
significantly the prediction error and captures subtle context-
dependent anticipatory phenomena.

1. Introduction

Embodied conversational agents — virtual characters as well as
anthropoid robots — should be able to compute facial
movements from symbolic input in order to engage in
conversation with human partners. This symbolic input
minimally consists in the phonetic string with phoneme
durations. It can be enriched with more phonological
information, facial expressions, or paralinguistic information
that has an impact on speech articulation (mental or emotional
state). A trajectory formation model has thus to be built that
computes articulatory parameters from such a symbolic
specification of the speech task. These articulatory parameters
will then drive the plant (the shape and appearance models of
a talking face or the control model of the robot).

Human interlocutors are sensitive to discrepancies between the
visible and audible consequences of articulation [1, 2] and
have strong expectations on articulatory variability [3]
resulting from the under-specification of articulatory targets
and planning. The effective modeling of coarticulation in
speech is therefore a challenging issue for trajectory formation
systems.

Audiovisual speech synthesizers should therefore cope not
only with the modeling of adequate inter-articulatory
coordination but also with the correct synchronization of
audible and visible articulation [4]. Central to all speech
synthesizers using rules, stored segments or trajectory
formation models to generate speech from phonological input
is the choice of speech landmarks. In most systems acoustic
boundaries between phones are used as such landmarks for
prosody characterization or generation. We question here the
relevance of these landmarks for the generation of gestural
scores.

2. State-of the art

Several strategies can be proposed to build audiovisual text-to-
speech synthesis [5]. The most straightforward solution simply
consists in driving a trajectory formation model from the
phoneme string and phoneme durations computed by an
existing text-to-speech system. The trajectory formation
model then uses acoustic phoneme boundaries to anchor the
gestural score and the coarticulation model if necessary.
Coarticulation is usually predicted using rules [6] or by
exploiting an explicit coarticulation model [7, 8] that anchor
the positions and spans of the phoneme-specific gestural
targets. Interestingly, Kaburagi and Honda [9] have proposed
to add dynamic features in the specification of gestural targets
in order to cope with inter-gestural phasing relations.
Data-driven trajectory formation systems have also been
proposed to automatically capture regularities of the context-
dependent gestural realization of phoneme-sized segments
[10]. Concatenative audiovisual speech synthesis encapsulates
coarticulation effects by storing multimodal segments. The
problem of possible asynchronies is thus pushed in the
segmentation and smoothing of boundaries and eventually in
the compression/expansion of segments if required. Although
HMMs are intrinsically generation engines that are tuned to
emit a set of training observations, they have been used only
recently for speech synthesis and particularly as trajectory
formation systems [11, 12]. HMMs can in fact capture inter-
gestural phasing relations thanks to the state-dependent static
and dynamic probability density functions characterizing the
sub-phonemic observations. Although HMM structures have
been proposed [13] to take into account larger audiovisual
asynchronies, the benefit for audiovisual recognition scores is
highly discussed [14]. We should also mention a third
possibility that consists in computing articulation directly
from speech signals. Proposals range from frame-based linear
[15] or nonlinear models to GMM-based or HMM-based
mapping models that take as input a large speech window
surrounding the current analysis frame [11]. The key problem
is here to determine the span of coarticulation and hope that
the mapping model will learn context-dependent phasing
patterns from training data.

We study here an HMM-based trajectory formation system
and claim that audiovisual asynchrony has an impact on its
performance. A phasing model has thus been developed that
predicts the delays between the acoustic boundaries of
allophones to be synthesized and the gestural boundaries of
HMM triphones that are proposed by unconstrained HMM
alignment.
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Figure 1. Training consists in iteratively refining the context-
dependent phasing model and HMMs (plain lines and dark
blocks). The phasing model computes the average delay
between acoustic boundaries and HMM boundaries obtained
by aligning current context-dependent HMMs with training
utterances. Synthesis simply consists in forced alignment of
selected HMMs with boundaries predicted by the phasing
model (dotted lines and light blocks).

Figure 2. 125 colored beads have been glued on the subject’s
face along Langer’s lines so that to cue geometric
deformations caused by main articulatory movements when
speaking.

3. Data and articulatory model

In order to be able to compare up-to-date data-driven methods
for audiovisual synthesis, a main corpus of 697 sentences
pronounced by a female speaker was recorded. Using a greedy
algorithm, the phonetic content of these sentences was
designed in order to maximize statistical coverage of triphones
(differentiated also with respect to syllabic and word
boundaries).

We used the motion capture technique developed at ICP [16,
17] that consists in collecting precise 3D data on selected
visemes. 3D movements of facial fleshpoints (see Figure 2)
are acquired using photogrammetry and hand-fitted generic
models. Visemes are selected by an analysis-by-synthesis
technique [18] that combines robust automatic tracking with
semi-automatic correction.

Our shape models are built using a so-called guided Principal
Component Analysis (PCA) where a priori knowledge is
introduced during the linear decomposition. We in fact
compute and iteratively subtract predictors using carefully
chosen data subsets [19]. For speech movements, this
methodology enables us to extract six components directly
related to jaw, proper lip movements and clear movements of
the throat linked with underlying movements of the larynx and
hyoid bone. The resulting articulatory model also includes
components for head movements and basic facial expressions
but only components related to speech articulation are
considered here.

We use here only the first 230 sentences for training and 10
sentences for testing. The average modeling error for training
frames is less than half a millimeter for beads located on the
lower face.

4. The trajectory formation system

The principle of speech synthesis by HMM was first
introduced by Donovan for acoustic speech synthesis [20].
This was extended to audiovisual speech by the HTS working
group [21]. The HMM-trajectory synthesis technique
comprises training and synthesis parts.

4.1. Basic principles

An HMM and a duration model for each state are first learned
for each segment of the training set. The input data for the
HMM training is a set of observation vectors. The observation
vectors consist of static and dynamic parameters, i.e. the
values of articulatory parameters and their temporal
derivatives. The HMM parameter estimation is based on ML
(Maximum-Likelihood) criterion [22]. The ML estimation is
achieved using a particular EM (Expectation Maximization)
algorithm known as the Baum-Welch recursion algorithm.
Usually, for each phoneme in context, a 3-state left-to-right
model with single Gaussian diagonal output distributions. The
state durations of each HMM are usually modeled as single
Gaussian distributions. A second training step may also be
added to factor out similar output distributions among the
entire set of states (state tying).

The synthesis is performed as follows. The phonetic string to
be synthesized is first chunked into segments and a sequence
of HMM states is built by concatenating the corresponding
segmental HMMs. State durations for the HMM sequence are
determined so that the output probabilities of the state
durations are maximized (thus usually by z-scoring) From the
HMM sequence with the proper state durations assigned, a
sequence of observation parameters is generated using a
specific ML-based parameter generation algorithm [12].

4.2. Comments

This trajectory formation system exploits the dynamic
parameters both in training and synthesis: the generated
trajectory reflects both the means and covariances of the
output distributions of a number of frames before and after
each of the frames. By this way, this algorithm may
incorporate implicitly part of short-term coarticulation
patterns and inter-articulatory  asynchrony.  Larger
coarticulation effects can also be captured since triphones
intrinsically depend on adjacent phonetic context.



Note however that these coarticulation effects are anchored to
acoustic boundaries that are imposed as synchronization
events between the duration model and the HMM sequence.
Intuitively we can suppose that context-dependent HMM can
easily cope with this constraint. We show here that adding a
context-dependent phasing model helps the trajectory
formation system to better adjust to observed trajectories.

4.3. Adding and learning a phasing model

We propose to add a phasing model to the standard HMM-
based trajectory formation system (see Figure 1) that consists
in learning the time lag between acoustic and gestural units
i.e. between acoustic boundaries delimiting allophones and
gestural boundaries delimiting pieces of the articulatory score
observed/generated by the context-dependent HMM
sequence.

We test here a very simple phasing model: a unique time lag
is associated with each context-dependent HMM. This lag is
computed as the mean delay between acoustic boundaries and
unconstrained alignment of triphones with articulatory
trajectories of training utterances.
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Figure 3: Mean reconstruction error as a function of number
of iterations for context independent (black) and context-
dependent phone HMMs (light gray). Results for training vs.
test utterances are displayed respectively with thick vs. thin
lines. Convergence is very fast and the phasing model benefits
even more from contextual information.
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Figure 4: Average duration (ms) increase/decrease of the
gestural segment with reference to its acoustic duration

according to position and phoneme category. From left to
right: first and final segment of the utterance, unrounded,
rounded vowels, semivowels, bilabials, alveolars, labiodentals
and remaining consonants.

5. Results

Figure 3 shows the significant decrease of prediction error
when the phasing model is introduced in the HMM-based
trajectory formation model. The convergence is obtained
within 2 iterations: regularization constraints guarantying
minimum durations of segments should be applied at least one
time to avoid degeneration of the model.

Figure 4 shows that most gestural expansions occur at initial
and final positions in the utterance (capturing prephonatory
gestures and termination of phonation). Slow vocalic gestures
generally expand whereas rapid consonantal gestures shrink:
this is completely in accordance to the well-known numerical
model of coarticulation proposed by Ohman [23] that
superposes and blends vocalic and consonantal tongue
gestures. The trajectory formation model places boundaries
between segments so that dynamic information contained by
observation probabilities of flanking HMM states best capture
the variations of gestural speeds at the boundaries. Figure 5
gives an example of the necessary compromise between
speech and duration: the large rounding gesture due to the
semi-vowel [yq] is adequately predicted by the proposed
system because the phasing model expands the duration of the
gesture compared to the observed acoustic duration of the
sound.
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Figure 5. Comparing prediction of lip geometry by context-
dependent HMMs trained either using acoustic (light gray) or
gestural boundaries (dark gray) with original test data (black).
The utterance is: ”un huis clos” [&yiklo]. Note the expansion
of initial and final movements (enabling the large final
rounding movement) as well as the expansion of the
semivowel [y] with the following [i] shifted forward in time.



6. Conclusions

We have demonstrated here that the prediction accuracy of an
HMM-based trajectory formation system can be greatly
improved by modeling the phasing relations between acoustic
and gestural boundaries. The phasing model is learned using
an analysis-synthesis loop that uses constrained and
unconstrained HMM alignments with the original data. We
have shown that this scheme improves significantly the
prediction error and captures subtle context-dependent
anticipatory phenomena.

The interest of such an HMM-based trajectory formation
system is double: (a) it provides accurate and smooth
articulatory trajectories that can be used straightforwardly to
control the articulation of a talking face or used as a skeleton
to anchor multimodal concatenative synthesis [see notably the
TDA proposal in 24]; (b) it also provides gestural
segmentation as a by-product of the phasing model. These
gestural boundaries can be used to segment original data for
multimodal concatenative synthesis. This segmentation can
also be used for asynchronous audiovisual speech recognition.
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