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Abstract

This paper addresses the inversion of probabilistic models for the dynamical be-
haviour of structures using experimental data sets of measured frequency-domain
transfer functions. The inversion is formulated as the minimization, with respect to
the unknown parameters to be identified, of an objective function that measures a
distance between the data and the model. Two such distances are proposed, based
on either the loglikelihood function, or the relative entropy. As a comprehensive
example, a probabilistic model for the dynamical behaviour of a slender beam is
inverted using simulated data. The methodology is then applied to a civil and en-
vironmental engineering case history involving the identification of a probabilistic
model for ground-borne vibrations from real experimental data.

Key words: probabilistic modelling, inverse problem, identification, relative
entropy, likelihood, non-parametric probabilistic model

1 Introduction

Predictive models for the dynamical behaviour of complex structures are inevitably
confronted to data uncertainties and modelling errors. Uncertain data include mate-
rial properties, geometric parameters and boundary conditions. Modelling errors are
introduced by the assumptions and approximations made in the modelling process.
The data uncertainties and modelling errors may sometimes result in significant un-
certainties in the model predictions. Probabilistic models then are desirable, since
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they provide a way to quantify the impact of the data uncertainties and modelling
errors on the predictions.

At low frequencies, deterministic models most often allow accurate predictions of
the dynamic response of a structure. The low-frequency response is governed by only
a few global eigenmodes so that the sensitivity of the response to data uncertainties
and modelling errors is low. Upon updating the model by appropriate methods [1–3],
the predictions usually compare very well with experiments. However, the sensitivity
of the response is known to increase with the frequency [4]. At medium and high
frequencies, the data uncertainties and modelling errors must therefore be taken into
account and their propagation to the predictions must be modelled.

Several probabilistic approaches have been proposed in the literature, see e.g. the re-
views [5–8]. Parametric probabilistic models accommodate uncertainty by modelling
the local physical features of a structural model (i.e. its geometrical parameters, fields
of material properties and boundary conditions) by random variables and/or fields,
see e.g. [5, 9, 10]. Non-parametric probabilistic models incorporate uncertainty by
modelling global features of a structural model by random variables. An example
is the non-parametric approach proposed by Soize [11, 12], where reduced matrix
models of structures are defined in terms of random matrices. Models of this last
kind can incorporate a large class of uncertainties, including data uncertainties and
modelling errors.

A central problem in the practical construction of a probabilistic structural model is
the choice of the probability distribution of the random variables, fields or matrices.
This probability distribution should be chosen on the basis of only the available
information, which typically consists of experimental data (such as measurements of
the dynamical response of the real structure under study) and of the essential math-
ematical or physical properties that the probabilistic model should possess (such
as positiveness, symmetry or invertibility, depending on the quantity that is being
modelled).

A general approach consists in representing the probability distribution of the ran-
dom variables, fields or matrices in a versatile manner as a function of a large number
of parameters. For example, it can be represented by a truncated polynomial chaos
expansion, whereby the coefficients of this expansion make up the large set of pa-
rameters of the probability distribution, see e.g. [9, 13–15]. These parameters should
then be identified from the available information. An inherent difficulty associated
to this approach is that the identification of such a large set of parameters may be
difficult in practice (ill-posedness, computational cost).

Soize [11, 12, 16] has presented an alternative approach whereby the essential math-
ematical properties are explicitly used to build the probability distribution of the
random variables, fields or matrices. That probability distribution is chosen, which
maximizes entropy [17–19] under the constraint that the mathematical properties
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should be fulfilled. This principle of construction allows obtaining probability distri-
butions parameterized by the mean value of the random variables, fields or matrices,
and by a minimal set of essential parameters (such as spatial correlation lengths and
dispersion levels). A key advantage is that their experimental identification can gen-
erally be formulated as a well-posed inverse problem that is numerically solvable
with a reasonable computational effort.

This article investigates the inversion of non-parametric probabilistic structural
models with minimal parameterization using experimental data sets of measured
frequency-domain Transfer Functions (TFs). Experimental data of this kind are
often used in more classical inverse problems involving the identification of deter-
ministic structural models, see e.g. [20]. Among their advantages over time-domain
TFs are the possibility to select data in a specific frequency range of interest and
the relatively easy characterization of the distortion of the data due to experimental
noise [3]. Compared to modal data, they have the advantage that they can also be
used in medium-frequency range problems.

Within the theory of mathematical statistics, methods for solving stochastic in-
verse problems are studied and developed, see e.g. the standard texts [21–26]. Three
stochastic inverse methods, often called the classical methods of estimation, are
well-established and frequently used, namely the method of moments, the method
of maximum likelihood and the Bayes estimation method. Several authors have ap-
plied these classical methods to the inversion of probabilistic models of mechanical
structures, see e.g. [2, 16, 27–37]. Moreover, the method of moments has been ap-
plied to the identification of stochastic models for fields of material properties of
heterogeneous geophysical domains, see e.g. [38–40].

In this article, it will be shown that the classical methods of estimation from the
theory of mathematical statistics, in particular the method of maximum likelihood,
are not well-adapted to the experimental identification of probabilistic structural
models from measured TFs. Computational difficulties, and conceptual problems due
to the potential incompatibility of the experimental data and the probabilistic model,
will be shown to hinder the application of the classical methods. To overcome these
difficulties, an alternative formulation of the inverse problem will then be proposed
as the minimization, with respect to the unknown parameters to be identified, of
an objective function that measures a distance between the experimental data and
the probabilistic model. The main objective of this article is to investigate how this
distance can be defined and computed suitably. Two distances, respectively based on
the loglikelihood function and on the entropy entropy [22, 41, 42], will be formulated
and then demonstrated on examples featuring simulated and real experimental data.
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1.1 Notations

The following notations are frequently used in this article. Any vector x = (x1, . . . , xn)
is identified with the (n × 1) column matrix of its components. Let K be R or C.
The space Mm×n(K) is the space of (m×n) matrices X whose entries Xkℓ are in K.
If m = n, Mn×n(K) is denoted simply by Mn(K), and M+

n (K) is the space of Hermi-
tian positive definite matrices. The determinant of matrix X ∈ Mn(K) is denoted
by det(X) and its trace by tr(X) =

∑n
k=1Xkk. The transpose of X ∈ Mm×n(K) is

denoted by XT and its adjoint by X⋆ = X
T
, where X denote the complex conjugate

of X. The Frobenius norm of X ∈ Mm×n(K) is defined by ||X||F =
√

tr (XX⋆).

2 Problem setting

It is assumed that the dynamical behaviour of a single real structure is under study.
Any structural model is usually an imperfect representation of the dynamical be-
haviour of this real structure for two reasons. First, there may be parameter uncer-
tainty in that there may be a lack of knowledge of the geometrical parameters, mate-
rial properties and boundary conditions. Nominal values are then usually assigned,
which may imperfectly characterize the real structure. Second, modelling errors may
have been introduced by simplifying approximations made in the modelling process,
either stemming from a poor understanding of the dynamical behaviour of the real
structure, or being deliberately introduced to reduce the model complexity. Exam-
ples of potential modelling errors are linearization, the use of simple constitutive
laws, or the use of simplified models for joints. Upon considering a single real struc-
ture, there is, in principle, no data variability. Were a collection of similar, but not
perfectly identical, real structures considered instead, the data uncertainties would
also result from variability in these features, due to dispersion in the manufacturing
process.

This article concerns the experimental identification of a non-parametric proba-
bilistic structural model such that the probability distribution of its random predic-
tions as adequately as possible represents the uncertainty in these predictions result-
ing from parameter uncertainty and modelling errors. This probability distribution
should be viewed as a representation of the imperfect knowledge of the dynamical
behaviour of the real structure. Since only a single structure is considered, it cannot
be viewed as a representation of a variability in the dynamical behaviour.

4



3 The data set and the probabilistic structural model

This section introduces a generic experimental data set and a probabilistic structural
model, which will be used in the next section to set up inverse methods.

3.1 The data set

The real structure is assumed to be instrumented by means of nM transducers lo-
cated on its boundary. The dynamical behaviour is studied by applying a broadband
time-limited pressure field on a small portion of the boundary and by measuring the
induced mechanical motion in the nM experimental Degrees Of Freedom (DOFs).
It is assumed that this experiment is repeated nR times. The repetition of the ex-
periment (nR > 1) is useful in regard of the experimental noise which may disturb
the measurement of the applied force and the induced mechanical response. The
noise may concern the mechanical motion of the structure due to parasite excita-
tions, electrical noise in the transducers and the wires and discretization errors.
Under some assumptions, the repetition of the experiment allows recovering, from
the noisy measurement data, those data which would be obtained if the vibration
test were not disturbed by noise, see e.g. [3]. Moreover, it allows estimating the
coherence function to quantify the level of distortion of the experimental data due
to noise, see e.g. [3].

3.1.1 Experimental data

The raw measurement data consist of a time-dependent applied force and of time-
dependent responses measured in nM experimental DOFs for nR repetitions of the
experiment. Accordingly, let f̃ obs

r (t) and ũobs
rm(t) denote the measured applied force

and response at the m-th sensor, respectively, for the r-th repetition. These data
are sampled in the time domain and, subsequently, transformed into the frequency
domain by means of the Discrete Fourier Transform to obtain:

{f̃ obs
r (ωℓ) | 1 ≤ ℓ ≤ nF , 1 ≤ r ≤ nR} , (1)

{ũobs
rm(ωℓ) | 1 ≤ ℓ ≤ nF , 1 ≤ r ≤ nR , 1 ≤ m ≤ nM} , (2)

where {ωℓ | 1 ≤ ℓ ≤ nF} is the set of nF discrete frequencies. The value taken by
the observed TF for the m-th sensor and the r-th repetition at the frequency ωℓ is
defined as the frequency-domain ratio of the measured response and applied force:

h̃obs
rm(ωℓ) =

ũobs
rm(ωℓ)

f̃ obs
r (ωℓ)

. (3)
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These values are gathered in the data set

D̃
obs

= {h̃
obs

1 (ωℓ), . . . , h̃
obs

nR
(ωℓ) | 1 ≤ ℓ ≤ nF} , (4)

where the values taken by the nM observed TFs for the r-th repetition at the fre-

quency ωℓ are gathered in the vector h̃
obs

r (ωℓ) ∈ CnM.

3.1.2 The noise-free idealization

When the vibration test is not disturbed by noise, the experiment is carried out only
once (nR = 1). A data set

Dobs = {hobs(ωℓ) | 1 ≤ ℓ ≤ nF} (5)

is then obtained collecting the values taken by the noise-free TFs at the nF dis-
crete frequencies. The m-th component hobs

m (ωℓ) is the frequency-domain ratio of
the undisturbed response in the m-th transducer and the applied force at the dis-
crete frequency ωℓ.

3.2 The probabilistic structural model

The non-parametric probabilistic model is built on the basis of a deterministic re-
duced matrix model for the dynamical analysis of the structure. Only fixed structures
are considered here, so that the reduction basis does not contain rigid-body modes.
More general cases are presented e.g. in [37].

3.2.1 The deterministic reduced matrix model

A deterministic reduced matrix model is built to predict the TFs of the structure
in the frequency band of analysis B = [ωmin, ωmax], 0 < ωmin < ωmax. It is assumed
that the structure under consideration is modelled by a linear time-invariant damped
Finite Element (FE) model, written in the frequency domain as:

[Kh + iωDh − ω2Mh]uh(ω) = fh(ω) , ω ∈ B. (6)

The matrices Kh,Dh,Mh ∈ M+
nh

(R), where nh is the number of FE DOFs, are
the stiffness, damping and mass matrices, and are independent of ω over B. For a
fixed ω, uh(ω) and fh(ω) collect the FE DOFs and nodal forces.

If the frequency band B corresponds to the low-frequency range, reduced matrix
models can be built by projecting (6) onto subsets of dynamical eigenmodes, see
e.g. [43]. If B belongs to the medium-frequency range, specific reduction bases are
needed, following e.g. the approaches of Soize [44] or Sarkar and Ghanem [45].
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Let an appropriate reduction basis of dimension nT (with nT ≪ nh usually) be de-
fined through the transformation matrix T ∈ Mnh×nT

(R). The deterministic reduced
matrix model related to T is then defined by

[K + iωD − ω2M ]q(ω) = T Tfh(ω) , ω ∈ B , (7)

u(ω) = Tq(ω) , (8)

where K = T TKhT , D = T TDhT , M = T TMhT ∈ M+
nT

(R) are the reduced
stiffness, damping and mass matrices, respectively. For a fixed ω, q(ω) is the vector
of the generalized coordinates, and u(ω) approximates the solution uh(ω) of (6).
The positive definiteness of the reduced matrices ensures the existence, uniqueness
and continuity with respect to the nodal forces fh(ω) of the solution of (7)-(8).

Let the r-th measured applied force at the discrete frequency ωℓ have the FE dis-
cretization fhr(ωℓ) = bhf̃

obs
r (ωℓ), where bh is the input shape vector. It is assumed

here that each experimental DOF m corresponds to a single FE DOF j. Accordingly,
let C denote the nh × nM sensor output matrix, whose entries are Cjm = δ(j −m),
where δ is the Dirac distribution. The nM deterministic TF values at the discrete
frequency ωℓ are then gathered in the complex vector h(ωℓ; K,D,M) defined by:

h(ωℓ; K,D,M) = CTT [K + iωℓD − ω2
ℓ M ]−1T Tb. (9)

Finally, let the mapping γ symbolize the correspondence between the reduced ma-
trices and the deterministic TF values at all discrete frequencies:

γ :
(
M+

nT
(R)
)3

→ CnM×nF : (K,D,M ) 7→ γ(K,D,M ) = {h(ωℓ;K,D,M ) | 1 ≤ ℓ ≤ nF}.
(10)

3.2.2 Construction of the non-parametric probabilistic model

The non-parametric probabilistic model is built by replacing the reduced matrices of
model (7)-(8) by random matrices. Since the TFs depend non-linearly on the reduced
matrices, the complete probability distribution of these random matrices must be
defined to be able to compute statistics of the random TFs (the definition of e.g. only
their second order moments would not be sufficient). This paragraph summarizes
the methodology of Soize [11, 12] for the construction of this probability law.

Let the random matrices replacing K, D and M be denoted by K(p), D(p) and M(p).
They are defined on a probability measure space (A, T , P ) (where A is a sam-
ple space of outcomes, T a σ-algebra of events, and P : T → [0, 1] a proba-
bility measure), have values in M+

nT
(R) and are parameterized by the parameter

set p = {p0,pδ}, which gathers mean model parameters p0 and dispersion parame-
ters pδ, to be defined next.

Soize’s construction assumes the knowledge of the mean values of the random matri-
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ces. Let the mean reduced matrices be denoted by K(p0),D(p0),M(p0) ∈ M+
nT

(R):

E {K(p)} = K(p0), E {D(p)} = D(p0), E {M(p)} = M(p0) , (11)

where E {·} denotes the mathematical expectation. The mean model parameters p0

may consist of local properties of the model (e.g. material properties, geometrical
characteristics or boundary conditions), or of global characteristics (e.g. eigenfre-
quencies), see Section 7 for an example.

Each random matrix A(p) (where A denotes any of K, D or M) is written in the
following form:

A(p) = LA(p0)
TNA(δA)LA(p0) with A(p0) = LA(p0)

TLA(p0). (12)

Each matrix LA(p0) is the Cholesky factor of the corresponding matrix A(p0).
Each normalized random matrix NA(δA) is independent, defined on (A, T , P ), valued
in M+

nT
(R) and parameterized by a dispersion parameter δA ∈ R+

0 such that

δ2
A =

E
{
||NA(δA) − I||2F

}

E
{
||I||2F

} =
E
{
||NA(δA) − I||2F

}

nA

. (13)

The set of dispersion parameters pδ is therefore defined as pδ = {δK, δD, δM}. An
analytical expression for the probability law of NA has been obtained [11, 12] by
entropy maximization [17–19, 42] subject to the following constraints:

• NA(δA) ∈ M+
nT

(R).
• NA(δA) is of the second order and its mean value is the identity matrix I:

E {NA(δA)} = I. (14)

• NA(δA) fulfills the condition:

|E {log (det (NA(δA)))}| < +∞ , (15)

in order to ensure that the following important invertibility property holds:

E
{∣∣∣
∣∣∣NA(δA)−1

∣∣∣
∣∣∣
2

F

}
< +∞. (16)

Requirement (16) is found to be fulfilled [11, 12] if δA satisfies:

0 < δA <
√

(nT + 1)/(nT + 5) < 1. (17)

Upon replacing the reduced matrices K, D and M in model (7)-(8) by the ran-
dom reduced matrices K(p), D(p) and M(p), a non-parametric probabilistic model,
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parameterized by p, is obtained of the form:

[
K(p) + iωD(p) − ω2M(p)

]
Q(ω; p) = T Tfh(ω) , ω ∈ B , (18)

U(ω; p) = TQ(ω; p). (19)

The stochastic processes {Q(ω; p) | ω ∈ B} and {U(ω; p) | ω ∈ B}, defined
on (A, T , P ), indexed on B and with respective values in CnT and Cnh , are the ran-
dom generalized coordinates and the random FE DOFs, respectively. The positive
definiteness of the random reduced matrices implies that the random problem (18)-
(19) is well-posed. If

∀ω ∈ B : ||fh(ω)||2 < +∞ , (20)

and the dispersion parameters pδ satisfy inequality (17), the invertibility proper-
ties (16) of the random reduced matrices allow to show [12] that the random struc-
ture response {U(ω; p) | ω ∈ B} is a second-order stochastic process:

∀ω ∈ B : E
{
||U(ω; p)||2

}
< +∞. (21)

The theoretical properties of, and the computational tools for, second-order random
variables (e.g. convergence properties and the central limit theorem) can then be
used.

The probabilistic model (18)-(19) determines a set of nM random TFs corresponding
to the deterministic TFs defined in (9). These random TFs are the image of the
random matrices through the deterministic mapping γ defined in (10). They are
collected in the stochastic process {H(ωℓ,p) | 1 ≤ ℓ ≤ nF}, defined on (A, T , P ),
indexed on {1 ≤ ℓ ≤ nF}, valued in CnM and of the second order:

{H(ωℓ; p) | 1 ≤ ℓ ≤ nF} = γ
(
K(p),D(p),M(p)

)
. (22)

The stochastic process {H(ωℓ; p) | 1 ≤ ℓ ≤ nF} is assumed to admit a system of
cylindrical PDFs. The n-th order cylindrical PDF, defined as the joint PDF of n
random variables {H(ωℓ1 ; p), . . . ,H(ωℓn

; p)}, is denoted by θ(n)
(
·
∣∣∣ωℓ1, . . . , ωℓn

; p
)

:

CnM×n → R+.

4 The stochastic inverse problem

In the previous section, a generic experimental data set of observed TFs was defined,
and a non-parametric probabilistic structural model was built. The inversion of this
probabilistic model using experimental data of this kind is the subject of this section.
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4.1 The method of maximum likelihood and the relative entropy

The definitions of the method of maximum likelihood and the relative entropy are
now briefly recalled. Let x = {xr | 1 ≤ r ≤ nR} be a set of nR independent and
identically-distributed (iid) observations of a generic random variable X with values
in C. Let the set {f(x|p) | p ∈ P} be a collection of candidate PDFs, defined on C

and parameterized by p ∈ P ⊂ Rn, intended to model the probability distribution
of X. The likelihood of the parameters p given the observations x is defined by:

L(p) =
nR∏

r=1

f(xr|p). (23)

The method of maximum likelihood consists in choosing a parameter point [46]

p̂ = arg max
p∈P

L(p) , (24)

i.e. such that the observed samples are most likely.

Let f1 and f2 be two PDFs with supports T ⊂ Cm and S ⊂ Cm, respectively,
where T ⊂ S. The relative entropy from f1 to f2 is then defined by [22, 41]:

I(f1||f2) =
∫

T
f1(x) log

f1(x)

f2(x)
dx , (25)

and can be interpreted as a distance-like measure of the separation between the
PDFs f1 and f2. However, since it does not in general satisfy the symmetry property
and the triangle inequality, it is not a true metric distance. It should be noted that
there exist many other functionals which allow measuring the separation between
PDFs, see e.g. [47].

4.2 Difficulties in the application of the maximum likelihood principle

When the vibration test has been carried out under noise-free conditions, the max-
imum likelihood estimate reads:

p̂ = arg max
p

θ(nF)(Dobs|ω1, . . . , ωnF
; p). (26)

Considerable difficulties may arise in this application of the method of maximum
likelihood, as explained next.

4.2.1 Potentially prohibitive computational cost

The first difficulty comes from a numerical issue. The following two-step procedure
could be proposed for the numerical approximation of the likelihood of a fixed p:
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• Step 1: Generate a set of iid samples of the stochastic process {H(ωℓ; p) | 1 ≤
ℓ ≤ nF}.

• Step 2: Compute the likelihood of p by estimating the value taken by the
PDF θ(nF)(·|·; p) at the data set Dobs from these samples using a numerical density
estimation method (Sec. 5).

However, it is well known, see e.g. [48], that the computational effort required to nu-
merically approximate a PDF grows rapidly with the dimension of the sample space,
equal here to 2 × nM × nF. The numerical solution of (26) is therefore impractical
when nM or nF is large, which is often the case in vibration tests.

4.2.2 Potential incompatibility of the model and the data

The second difficulty stems from the fact that the probabilistic structural model may
be incompatible with the experimental data: observed TFs Dobs that lie outside the
support of the PDF θ(nF)(·|·; p) for any choice of p may occur.

Equation (22) means that each realisation of the predicted random TFs is the image
of a realisation of the triplet of random reduced matrices, and is hence determined
entirely by a finite number of coefficients, namely the entries of the matrices. The
TFs of the real structure, being defined over the continuous frequency interval B,
are not generally representable in terms of a fixed finite set of finite-dimensional
matrices. This implies that there may in practice not exist any triplet (K,D,M)
such that:

Dobs = γ(K,D,M) , (27)

i.e. such that the deterministic reduced matrix model perfectly reproduces the ob-
served TFs. In such a situation, the observed TFs Dobs lie outside the support
of the PDF θ(nF)(·|·; p) irrespective of the parameter value p, which prohibits the
application of the maximum likelihood principle.

Such an incompatibility of the TFs of the real structure and the random TFs es-
sentially occurs when the former and the realisations of the latter do not depend
on the frequency in the same way. For a simple illustration, consider the case of a
2-DOF oscillator for which a probabilistic model is taken as a 1-DOF oscillator with
random stiffness, damping and mass. All realisations of the random TF then belong
to 1-DOF oscillator responses so that the frequency-dependent TF of the 2-DOF
oscillator is not a realisation of the frequency-dependent random TF.

4.2.3 Potential difficulties due to experimental noise

Additional difficulties caused by distortions of the observed TFs due to experimen-
tal noise were not considered, but are to be expected. These will be addressed in
Section 4.3.2.
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4.3 Proposed inverse methods

The aforementioned difficulties motivate the development of alternative inverse meth-
ods. We propose to formulate the inversion as the minimization, with respect to the
sought parameters, of an objective function that measures a distance between the
observed TFs and the predicted random TFs.

4.3.1 Undisturbed vibration test

When the vibration test has been carried out under noise-free conditions, we pro-
pose to define a distance L as the average over the frequencies of the sign-reversed
loglikelihood function:

L (p) = −
1

nF

nF∑

ℓ=1

log θ(1)
(
hobs(ωℓ)

∣∣∣ωℓ; p
)
. (28)

The unknown parameters can then be estimated from the data on the basis of L by

p̂ = arg min
p

L (p) . (29)

The inverse method (29) can be written in the following equivalent form by inter-
changing the sum and the logarithm in (28):

p̂ = arg max
p

nF∏

ℓ=1

θ(1)
(
hobs(ωℓ)

∣∣∣ωℓ; p
)

, (30)

highlighting that it amounts to the application of the maximum likelihood principle
upon replacing the predicted joint PDF for the possible values of the observed TFs
by the product of the predicted first-order cylindrical PDFs.

4.3.2 Disturbed vibration test

When the vibration measurements are disturbed by experimental noise, we propose
to account for the distortions in the data using a probabilistic model for the noise.

Probabilistic model for the experimental noise For a fixed frequency ωℓ, the
observed TFs obtained for the set of nR repetitions of the vibration measurement
are written in the following form:




h̃
obs

1 (ωℓ)
...

h̃
obs

nR
(ωℓ)




= hobs(ωℓ) +




e1(ωℓ)
...

enR
(ωℓ)




, (31)
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i.e. each noisy observed TF value is viewed as the sum of the noise-free TF value
and a contribution of experimental noise. The nR contributions {er(ωℓ) | 1 ≤ r ≤
nR} are modelled as iid realisations of a circular [3] multivariate complex Gaussian
random variable E(ωℓ). Its mean value is taken vanishing, and its covariance matrix
is estimated from the experimental data as:

Ĉ
obs

(ωℓ) =
1

nR

nR∑

r=1

(
ũobs

r (ωℓ)−ĥ
obs

(ωℓ)f̃
obs
r (ωℓ)

)(
ũobs

r (ωℓ)−ĥ
obs

(ωℓ)f̃
obs
r (ωℓ)

)⋆
, (32)

where ĥ
obs

(ωℓ) is the so-called H1-estimate of the noise-free TF value, defined by [3]:

ĥ
obs

(ωℓ) =
1

nR

∑nR

r=1 ũobs
r (ωℓ)f̃

obs
r (ωℓ)

⋆

1
nR

∑nR

r=1

∣∣∣f̃ obs
r (ωℓ)

∣∣∣
2 . (33)

The PDF of the random variable E(ωℓ) is denoted by N(·|0, Ĉ
obs

(ωℓ)) : CnM → R+,
where, for x,µ ∈ Cn and C ∈ M+

n (C) [3]:

N(x|µ,C) =
1

πndet(C)
exp

(
− (x − µ)⋆

C−1(x − µ)
)
. (34)

Distance on the basis of the loglikelihood function For each frequency ωℓ,
a PDF ϕ(1,nR) (·|ωℓ; p) : CnM×nR → R+ for the set of nR noisy observed TF values
at that frequency is built on the basis of the probabilistic model for the dynamical
behaviour of the structure and the probabilistic model for the experimental noise
as:

ϕ(1,nR)
(
h̃1, . . . , h̃nR

∣∣∣ωℓ; p
)

=
∫

CnM

θ(1)
(
h
∣∣∣ωℓ; p

) nR∏

r=1

N
(
h̃r|h, Ĉ

obs
(ωℓ)

)
dh. (35)

A distance L is defined as the average over the frequencies of the sign-reversed
loglikelihood function:

L(p) = −
1

nF

nF∑

ℓ=1

logϕ(1,nR)
(
h̃

obs

1 (ωℓ), . . . , h̃
obs

nR
(ωℓ)

∣∣∣ωℓ; p
)
. (36)

The unknown parameters can then be estimated from the data on the basis of L by

p̂ = arg min
p

L (p) . (37)

Distance on the basis of the relative entropy For each frequency ωℓ, a nu-
merical density estimation method (Sec. 5) is used to obtain, from the experimental
data, an estimate ψ̂(1)(·|ωℓ) : CnM → R+ of the PDF of the noisy observed TF values
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at that frequency. An alternative PDF ψ̂(1,nR)(·|ωℓ) : CnM×nR → R+ for the set of nR

noisy observed TF values is then obtained as:

ψ̂(1,nR)
(
h̃1, . . . , h̃nR

|ωℓ

)
=

nR∏

r=1

ψ̂(1)
(
h̃r|ωℓ

)
. (38)

An alternative distance J is defined as the average over the frequencies of the relative
entropy between PDFs ψ̂(1,nR)(·|ωℓ) and ϕ(1,nR)(·|ωℓ; p):

J (p) =
1

nF

nF∑

ℓ=1

I
(
ψ̂(1,nR)(·|ωℓ)

∣∣∣
∣∣∣ϕ(1,nR)(·|ωℓ; p)

)
. (39)

The unknown parameters can then be estimated from the data on the basis of J by

p̂ = arg min
p

J (p) . (40)

4.4 Expressions of the distances for Gaussian models

Let the PDFs θ(1)(·|ωℓ; p) and ψ̂(1)(·|ωℓ) be Gaussian:

θ(1)(h|ωℓ; p) = N
(
h
∣∣∣µ0(ωℓ; p),C0(ωℓ; p)

)
, (41)

ψ̂(1)
(
h̃
∣∣∣ωℓ

)
= N

(
h̃
∣∣∣µ1(ωℓ),C1(ωℓ)

)
, (42)

with:

µ1(ωℓ) =
1

nR

nR∑

r=1

h̃
obs

r (ωℓ) , C1(ωℓ) = Ĉ
obs

(ωℓ). (43)

For a vibration test carried out under noise-free conditions, the expression of the
distance L corresponding to the choice (41) reads:

L (p) = L0 + L1 (p) + L2 (p) , (44)

L1 (p) =
1

nF

nF∑

ℓ=1

(
µ0(ωℓ; p) − hobs(ωℓ)

)⋆
C0(ωℓ; p)−1

(
µ0(ωℓ; p) − hobs(ωℓ)

)
,

L2 (p) =
1

nF

nF∑

ℓ=1

log det C0(ωℓ; p) ,

where L0 is a constant. The term L1 is the weighted least-squares distance between
the mean of the predicted random TFs and the noise-free observed TFs. The weight-
ing factor is the inverse of the covariance matrix of the predicted random TF values.
Hence, it attributes a smaller weight to the predictions that are more sensitive to
the uncertainty introduced in the model. The mean and the covariance matrix of
the predicted random TF values are primarily influenced respectively by the mean-
model parameters p0 and by the dispersion parameters pδ. The term L1 is expected
to decrease as the dispersion parameters increase, whereas the term L2 is expected
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to increase. Upon minimizing L, the identification of the mean-model parameters
hence essentially consists of a partial minimization of the least-squares distance L1,
while the identified dispersion parameters achieve a balance between the reduction
of L1 and the increment of L2.

For a vibration test carried out under noisy conditions, the expression of the dis-
tance L corresponding to the choice (41) is obtained as:

L (p) = L0 + L1 (p) + L2 (p) , (45)

L1 (p) =
1

nF

nF∑

ℓ=1

(
µ0(ωℓ;p) − µ1(ωℓ)

)⋆(
C0(ωℓ;p) + C1(ωℓ)/nR

)−1(
µ0(ωℓ;p) − µ1(ωℓ)

)
,

L2 (p) =
1

nF

nF∑

ℓ=1

log det (C0(ωℓ;p) + C1(ωℓ)/nR) ,

where L0 is a constant. The term L1 is the weighted least-squares distance between
the mean of the predicted random TFs and the mean of the noisy observed TFs. The
weighting factor features, this time, the covariance matrices of the predicted random
TF values and of the noisy observed TF values. It therefore attributes a smaller
weight to the predictions that are more sensitive to the uncertainty introduced in
the model, and to the experimental data that are more disturbed by noise.

The expression of the distance J corresponding to the choices (41)-(42) reads:

J (p) = J0 + L1 (p) + L2 (p) + J3 (p) , (46)

J3 (p) =
1

nF

nF∑

ℓ=1

(
tr
((

C0(ωℓ;p) + C1(ωℓ)/nR

)−1
C1(ωℓ)/nR

)
− log det (C1(ωℓ)/nR)

)
,

where J0 is a constant and L1 and L2 are still defined by (45). The main difference
between (45) and (46) is the presence of the term J3. This term is expected to
have a significant influence only when the magnitude of the fluctuations of the noisy
observed TFs is comparable with, or larger than, the magnitude of the fluctuations
of the predicted random TFs. It then favours larger dispersion parameters.

4.5 Adequacy of the proposed inverse methods

The proposed inverse methods allow overcoming the abovementioned difficulties in
the application of the method of maximum likelihood, as explained next.

4.5.1 Computational cost

Compared to the application (26) of the method of maximum likelihood, the compu-
tational cost of the proposed inverse method (29) is lower, since the former method
necessitates the numerical approximation of PDFs of dimension 2×nM×nF, whereas
the latter only requires the approximation of PDFs of dimension 2 × nM.
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4.5.2 Incompatibility of the model and the data

It was discussed in Section 4.2.2 that the method of maximum likelihood can only be
applied when the observed TFs belong to the support of the nF-th order cylindrical
PDF θ(nF)(·|·; p). This condition was found to be fulfilled if there exists a triplet
of reduced matrices for which the deterministic reduced matrix model perfectly
reproduces the observed TF values concurrently at all discrete frequencies, i.e., with
reference to equation (9):

∃K,D,M ∈ M+
nT

(R) : ∀ωℓ : hobs(ωℓ) = h(ωℓ; K,D,M). (47)

By contrast, the distance L, defined in (28), is already well-defined if, for each
discrete frequency ωℓ, the observed TF value hobs(ωℓ) belongs to the support of the
first-order cylindrical PDF θ(1)(·|ωℓ; p) at that frequency. This condition is fulfilled
if, at each discrete frequency ωℓ separately, there exists a triplet of reduced matrices
for which the deterministic reduced matrix model reproduces the observed TF value
at that frequency, i.e.:

∀ωℓ : ∃K,D,M ∈ M+
nT

(R) : hobs(ωℓ) = h(ωℓ; K,D,M). (48)

The expression (48) represents a weaker condition imposed jointly on the prob-
abilistic model and the experimental data than (47). In other words, the inverse
method (29) on the basis of the distance L can be well-defined, even when the ap-
plication of the method of maximum likelihood is prohibited by an incompatibility
between the probabilistic structural model and the experimental data.

4.5.3 Prediction of frequency-dependent confidence regions

The proposed inverse methods (29), (37) and (40) are adequate for the experimen-
tal identification of probabilistic structural models intended to predict frequency-
dependent confidence retions, as will be discussed in Section 6.

4.6 Bibliographical comments

The concept of solving stochastic inverse problems using only low-order cylindrical
distributions is not new. Within the general framework of the theory of mathemat-
ical statistics, considerable research effort has already been devoted to developing
estimation methods of this kind, see e.g. [49–53]. Restrictions to low-order cylin-
drical distributions are in the literature most often defended on the grounds of
computational tractability.
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5 Numerical resolution

Following [11, 12], computations are performed by Monte Carlo simulation. Basic
algorithms are now proposed for that purpose. Algorithm 1 details the computation
of a set of iid realizations of the random TFs predicted by the non-parametric
probabilistic model. Then, algorithms 2, 3 and 4 detail the computation of the
proposed distances.

Algorithm 1: computation with the non-parametric probabilistic model

• Step 1: initialization: choose a number nS of Monte Carlo samples and p.
• Step 2: simulation of the samples of the random reduced matrices:

simulate [11, 12] a set
{(

Ks,Ds,M s

)
| 1 ≤ s ≤ nS

}
of nS iid samples of the

triplet (K(p),D(p),M(p)).
• Step 3: calculation of the samples of the random TFs: for each s ∈ {1 ≤
s ≤ nS} and ℓ ∈ {1 ≤ ℓ ≤ nF}, calculate, with reference to equations (9), (10)
and (22):

hs(ωℓ) = CTT [Ks + iωℓDs − ω2
ℓ M s]

−1T Tb. (49)

Algorithm 2: computation of the distance L, noise-free data

• Step 1: initialization: obtain the experimental data set Dobs and choose p.
• Step 2: computation with the non-parametric probabilistic model: apply

algorithm 1 to obtain the set of iid samples hs(ωℓ) of the random TFs.
• Step 3: numerical approximation of the distance: for each ℓ ∈ {1 ≤ ℓ ≤ nF},

apply a density estimation method to obtain, from the samples {hs(ωℓ) | 1 ≤ s ≤

nS}, an estimate θ̂(1)
(
hobs(ωℓ)

∣∣∣ωℓ; p
)

of the value taken by the PDF θ(1)(·|ωℓ; p)

at the observed TF value hobs(ωℓ). Evaluate L by

L (p) ≃ −
1

nF

nF∑

ℓ=1

log θ̂(1)
(
hobs(ωℓ)

∣∣∣ωℓ; p
)
. (50)

Algorithm 3: computation of the distance L, noisy data

• Step 1: initialization: obtain the experimental data set D̃
obs

and choose p.
• Step 2: identification of the probabilistic model for the noise: for each ℓ ∈

{1 ≤ ℓ ≤ nF}, estimate the covariance matrix Ĉ
obs

(ωℓ) using (32)-(33) .
• Step 3: computation with the probabilistic structural model: apply algo-

rithm 1 to obtain the set of iid samples hs(ωℓ) of the random TFs.

17



• Step 4: numerical approximation of the distance: evaluate L by:

L(p) ≃ −
1

nF

nF∑

ℓ=1

log
1

nS

nS∑

s=1

nR∏

r=1

N
(
h̃

obs

r (ωℓ)
∣∣∣hs(ωℓ), Ĉ

obs
(ωℓ)

)
. (51)

Algorithm 4: computation of the distance J

• Step 1: initialization: choose a number nJ of Monte Carlo samples, obtain the

experimental data set D̃
obs

and choose p.
• Step 2: identification of the probabilistic model for the noise: apply step

2 of algorithm 3 to obtain the set of covariance matrices Ĉ
obs

(ωℓ).
• Step 3: computation with the probabilistic structural model: apply algo-

rithm 1 to obtain the set of iid samples hs(ωℓ) of the random TFs.
• Step 4: numerical approximation of the distance: for each ℓ ∈ {1 ≤ ℓ ≤ nF},

apply a density estimation method to obtain, from the data {h̃
obs

r (ωℓ) | 1 ≤ r ≤

nR}, an estimate ψ̂(1)(·|ωℓ) of the PDF of the noisy TF values at the frequency ωℓ.

Then, simulate a set {h̃rj(ωℓ) | 1 ≤ r ≤ nR , 1 ≤ j ≤ nJ} of nR × nJ iid samples

of a random variable admitting this PDF ψ̂(1)(·|ωℓ). Evaluate J by:

J (p) ≃
1

nF

nF∑

ℓ=1

1

nJ

nJ∑

j=1

log

∏nR

r=1 ψ̂
(1)
(
h̃rj(ωℓ)

∣∣ωℓ

)

1
nS

∑nS

s=1

∏nR

r=1N
(
h̃rj(ωℓ)

∣∣ωℓ;hs(ωℓ)
) . (52)

Algorithms 2 and 4 require the estimation of PDFs from sets of samples. Density
estimation methods are surveyed in [48]. The kernel density estimation method, see
e.g. [48, 54, 55], is used in this work. Methods for the simulation of random variables,
required in algorithm 4, are surveyed in [56]. To numerically solve the optimization
problems (29), (37) and (40), we suggest applying an exhaustive grid-search when
the dimension of the parameter space is three or less. Otherwise, considering that
the distances to be minimized may have multiple local minima and that it may be
difficult to accurately calculate gradients with respect to the parameters, we suggest
applying global-search gradient-free optimization methods. The simulated annealing
method [56–58] and the genetic optimization method [59, 60] are natural choices.
The former is used in this work.

6 Practical methodology

We now describe a practical methodology for the identification of probabilistic struc-
tural models, which implements the above introduced theoretical and numerical
tools.
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6.1 Practical aim of the inverse methodology

As a working frame, the practical aim of the inverse methodology is defined as
identifying the probabilistic structural model such that, upon using the identified
model to predict a TF of the real structure, a frequency-dependent confidence region
associated with a high probability level for the predicted random TF can be viewed
as a region within which the TF of the real structure lies.

6.2 Frequency-dependent confidence regions

A methodology for constructing frequency-dependent confidence regions for pre-
dicted random TFs, which is also used in [12], is now presented. Let {X(ω) | ω ∈ B}
be a generic random TF, being a stochastic process indexed by the frequency band B
and with values in C. A confidence region associated with a given probability level Pc

for the value taken by this random TF at a fixed frequency ω on a logarithmic scale
is then defined as a pair of bounds (dB−(ω), dB+(ω)) such that:

P
(
dB−(ω) < dB(ω) < dB+(ω)

)
≥ Pc , (53)

where:

dB(ω) =
20

log 10
log

(
|X(ω)|

Xref

)
, (54)

in which Xref is a reference value, equal to 1m/N, 1mHz/N or 1mHz2/N depending
on whether X(ω) is a compliance (i.e. a displacement over a force), a mobility (i.e. a
velocity over a force) or an inertance (i.e. an acceleration over a force), respectively.
These confidence bounds are obtained using the Chebychev equation as follows:

dB+(ω) =
20

log 10
log

(
|E{X(ω)}|+ a(ω)

Xref

)
, (55)

dB0(ω) =
20

log 10
log

(
|E{X(ω)}|

Xref

)
, (56)

dB−(ω) = 2dB0(ω) − dB+(ω) , (57)

where:

a(ω)2 =
E{|X(ω) −E{X(ω)}|2}

(1 − Pc)
. (58)

6.3 Proposed practical inverse methodology

We propose to apply the inverse method (29) for an undisturbed vibration test, and
either (37) or (40) for a disturbed vibration test.
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For an undisturbed vibration test, the proposed inverse method (29) is expected to
lead to the identification of a probabilistic model for which the observed TF values
lie within the corresponding predicted confidence bounds. Indeed, considering that
the observed TF values hobs(ωℓ) at a fixed frequency ωℓ can be expected to lie within
the confidence bounds when the first-order cylindrical PDF θ(1)(·|ωℓ; p) takes a large
value at hobs(ωℓ), this property follows from the fact that the sign-reversed logarithm
in expression (28) strongly penalizes probabilistic structural models for which there
are frequencies at which θ(1)(hobs(ωℓ)|ωℓ; p) is small.

6.4 A posteriori error estimation

After the stochastic inverse problem is solved, two methods can be used to evaluate, a
posteriori, the identified probabilistic structural model. The first method consists in
plotting either the sign-reversed loglikelihood or the relative entropy as a function
of the frequency as an a posteriori error estimate. A plot of this kind indicates
the frequencies at which the separation between the experimental data and the
identified model is large. The second method consists in comparing the confidence
regions predicted by the identified model with either the noise-free observed TFs
for an undisturbed vibration test, or with estimates of the noise-free TFs obtained
from the noisy observed TFs for a disturbed vibration test. The identified model
is then considered invalid at the frequencies for which the (estimates of the) noise-
free observed TFs do not lie within the confidence bounds. These two methods are
expected to be equivalent, in that the frequencies at which the distance between the
experimental data and the identified model is large are expected to coincide with
the frequencies for which the (estimates of the) noise-free observed TFs do not lie
within the confidence bounds.

On the basis of a posteriori error indications of this kind, one can modify if necessary
the probabilistic model (for instance, by using a more extensive parameterization),
identify the new parameters, and check wether the modified model has led to a
reduction of the discrepancies between the experimental data and the identified
model.

6.5 Predictive use of the identified model

The identified probabilistic structural model can be used to predict the dynamical
behaviour of the complete real structure (i.e. not only at points where experimen-
tal data are available). For instance, confidence regions can be built for predicted
random TFs. Upon viewing the latter as confidence bounds within which the TFs
of the real structure lie, a characterization of the predictive accuracy is obtained:
wide confidence intervals mean low predictive accuracy and vice versa. However,

20



it should be emphasized that the predicted confidence regions do not define hard
bounds within which the TFs of the real structure would be guaranteed to lie.

7 Inversion of a probabilistic model of a slender beam

This section presents a comprehensive example of the inversion of a non-parametric
probabilistic model using simulated data.

7.1 Problem setting

[Fig. 1 about here.]

The example concerns the dynamical behaviour of the slender beam shown in Fig-
ure 1. A right-handed Cartesian reference frame (x1, x2, x3) with origin o is defined.
The undeformed beam occupies the box-shaped region

Ω =
{
−0.5 m < x1 < 0.5 m, 0 < x2 < 10 m, 0 < x3 < 1.5 m

}
. (59)

It is simply supported at x2 = 0 and x2 = 10 m. It is constituted of a homogeneous,
isotropic, linear elastic material with Young’s modulus E = 33 GPa, Poisson ra-
tio ν = 0.3 and mass density ρ = 2500 kg/m3. Its dynamical behaviour is analyzed
in the frequency band B = [0, ωmax], where ωmax = 2πfmax and fmax = 1000 Hz.
Finally, let t1, t2 and t3 denote the points with coordinates (0, 2.5 m, 0.75 m),
(0, 5 m, 0.75 m) and (0, 6.4 m, 0.75 m), respectively.

7.2 Simulated data

A data set is synthetically generated with a three-dimensional (3D) FE model con-
stituted of 10× 100× 15 isoparametric 8-noded brick elements of equal size. Modal
damping is assumed with modal damping ratio ξ = 0.02. The beam is loaded by a
frequency-dependent pressure p(ω) uniformly applied on the square portion Γp of
the top surface centred at (0.5 m, 4.2 m, 0.75 m) and of area ǫ2 with ǫ ≪ 1 m. The
vertical response is observed at the points t1, t2 and t3. In the following, we will
identify the probabilistic model (to be built) using the response at t2 and t3. The
data set Dobs gathers the TFs from the applied pressure field to the vertical response
at t2 and t3 predicted by the 3D FE model at the discrete frequencies covering the
range between 5 and 1000Hz with a step of 5Hz (hence, nM = 2 and nF = 200).
We will afterwards use the response at t1 to validate the predictive capability of the
identified model.
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7.3 Probabilistic structural model

Deterministic modelling A one-dimensional (1D) FE model made of 100 2-
noded Timoshenko beam elements of equal length is built. At the two edges, the
translational DOFs are set to zero, while the rotational DOFs are unconstrained.
A reduced matrix model of form (7)-(8) is then created using a reduction basis
made of nT bending eigenmodes. The j-th diagonal entries of the reduced stiffness,
damping and mass matrix are respectively given by Kjj = (w1D

j )2, Djj = 2ξ(w1D
j )

and Mjj = 1, where w1D
j is the j-th angular eigenfrequency of the 1D FE model.

Probabilistic modelling A non-parametric probabilistic model is built of form (18)-
(19). The mean values of the random reduced matrices are chosen equal to their
deterministic counterparts in model (7)-(8), i.e.:

E {K(p)} = K , E {D(p)} = D , E {M(p)} = M . (60)

Hence, there are no mean-model parameters, i.e. p0 = ∅, and the random matri-
ces K(p), D(p) and M(p) are parameterized solely by their respective dispersion
parameters δK, δD and δM. For the sake of simplicity, it is assumed that δK = δD =
δM = δ, so that p = {δ} is the only active parameter of the probabilistic model.

Random matrix eigenvalue problem

[Fig. 2 about here.]

Before studying in the next section the stochastic properties of the random TFs
predicted by the probabilistic model, the present section analyzes the random ma-
trix eigenvalue problem (App. A) defined by the random reduced stiffness and mass
matrices K(p) and M(p). Since the stochastic properties of the predicted random
TFs are strongly related to the properties of the random eigenfrequencies and eigen-
modes defined by these random matrices, the analysis of the latter provides useful
insight into the former. The random eigenfrequencies are now studied for frequencies
lower than 1.5 × fmax = 1500 Hz.

First, the stochastic properties of the eigenfrequencies as a function of the dimen-
sion nT of the reduction basis are studied. Figure 2(a) shows the 50 lowest deter-
ministic eigenfrequencies of the mean model, and the mean value (computed us-
ing nS = 10000 Monte Carlo simulations) of the random eigenfrequencies for δ=0.8
and nT = 20, 30, 40 and 50. Since the eigenfrequencies are non-linear functions
of the stiffness and mass matrices, their mean value differs from the deterministic
eigenfrequencies. For a fixed nT, the mean values of the low eigenfrequencies (approx-
imately the lowest nT/2) are observed to be smaller than the deterministic values,
while the mean values of the high eigenfrequencies are observed to be larger. For the
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eigenfrequencies lower than 1000Hz, reasonable convergence is obtained for nT = 50.
All results to follow have been obtained with nT = 50 eigenmodes.

Figure 2(b) shows the PDFs (computed using nS = 10000 Monte Carlo simula-
tions) of the random eigenfrequencies for δ = 0.2 and δ = 0.8 in the frequency
range up to 1000Hz. For δ = 0.2, the dispersion of the random eigenfrequencies
is small compared to the eigenfrequency separation and the PDFs do not overlap.
For δ = 0.8, the dispersion of the random eigenfrequencies is large compared to the
eigenfrequency separation and the PDFs do overlap except for the 3 lowest eigenfre-
quencies. Furthermore, these random eigenfrequencies are observed to decrease as δ
increases.

Predicted random TFs

[Fig. 3 about here.]

Figure 3 shows, as a function of the number nS of Monte Carlo simulations, the sta-
tistical mean of the realizations of the predicted random TF at t2 for the dispersion
levels δ = 0.2 and δ = 0.8 at the frequencies 200Hz and 800Hz. The larger δ and the
higher the frequency, the larger the required number nS becomes. Fully converged
results are clearly obtained for nS = 10000. All results to follow have been obtained
using nS = 10000 Monte Carlo simulations.

[Fig. 4 about here.]

Figure 4 shows the 99%-confidence regions for the predicted random TF at t2 and t3

for δ = 0.2 and δ = 0.8. Their width is observed to increase with δ and also with the
frequency, highlighting that the predictions become more sensitive to uncertainties
as the frequency increases. At low frequencies below approximately 200Hz, the fre-
quencies of the resonance peaks are observed to decrease when δ increases. On the
other hand, at frequencies above 200Hz, the confidence bounds for δ = 0.2 show
resonance peaks while the confidence bounds for δ = 0.8 do not. Indeed, for δ = 0.2,
the dispersion of the random eigenfrequencies is small compared to the eigenfre-
quency separation resulting in resonances randomly occurring in distinct frequency
ranges. In contrast, for δ = 0.8, the dispersion is large compared to the separation,
so that resonances randomly occur at all frequencies.

7.4 Stochastic inverse problem

Identification of the probabilistic model

[Fig. 5 about here.]
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The suitable dispersion level is identified by minimizing the distance L, defined
in (28). Figure 5 shows that the probabilistic model with the largest admissible
dispersion level δ̂ = 0.96, with reference to inequality (17), is optimal.

A posteriori error estimation

[Fig. 6 about here.]

Figure 6(a) shows the sign-reversed loglikelihood of δ̂ = 0.96 as a function of the
frequency. Figures 6(b) and 6(c) compare the 99%-confidence regions for the iden-
tified predicted random TFs to the observed TFs at t2 and t3. The sign-reversed
loglikelihood is seen to be large at frequencies for which the observed TFs do not
lie within the confidence bounds. At low frequencies below 200Hz, the agreement of
the identified model with the data is unsatisfactory. Due to the decrease of the low
random eigenfrequencies with δ, the low-frequency resonances of the random TFs
are located at lower frequencies than those of the observed TFs.

Modification of the probabilistic model To mitigate the discrepancy at the
low frequencies, the probabilistic model is modified. The non-parametric probabilis-
tic model used in the following has the same form (18)-(19), but, this time, the mean
values of the random reduced stiffness and damping matrices are defined by:

E {K(p)} = K(w1, w2, w3) , E {D(p)} = D(w1, w2, w3) , (61)

with:

Kjj(w1, w2, w3) = w2
j , Djj(w1, w2, w3) = 2ξwj (j = 1, 2, 3) ,

Kjj(w1, w2, w3) = (w1D
j )2 , Djj(w1, w2, w3) = 2ξw1D

j (4 ≤ j ≤ nT).

The three lowest angular eigenfrequencies w1, w2 and w3 are now used as mean-model
parameters. The mean value of the random reduced mass matrix is still defined
by (60). The three dispersion parameters are again chosen equal: pδ = {δ}, such
that now p = {w1, w2, w3, δ}.

Identification of the modified probabilistic model The distance L(p) is min-
imized by the parameters ŵ1/2π = 46.67Hz, ŵ2/2π = 172.63Hz, ŵ3/2π = 230.00Hz
and δ̂ = 0.67.

A posteriori error estimation

[Fig. 7 about here.]
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Figure 7(a) shows the sign-reversed loglikelihood of ŵ1/2π = 46.67Hz, ŵ2/2π =
172.63Hz, ŵ3/2π = 230.00Hz and δ̂ = 0.67 as a function of the frequency. Fig-
ures 7(b) and 7(c) compare the 99%-confidence regions for the identified predicted
random TFs to the observed TFs at t2 and t3. Compared to Figure 6(a), the sign-
reversed loglikelihood has been reduced at the low frequencies. The observed TFs
are seen to lie within the confidence bounds at all frequencies. The introduction of
the mean-model parameters has allowed to compensate for the decrease of the lowest
random eigenfrequencies.

Predictive use of the identified probabilistic model

[Fig. 8 about here.]

To validate the predictive capability of the identified probabilistic model, Figure 8
compares the 99%-confidence region for the random TF predicted by the identi-
fied probabilistic model at the point t1 to the corresponding TF predicted by the
3D FE model. The latter TF is seen to lie within the confidence bounds at all fre-
quencies. This result suggests that the identified model can be used in a predictive
manner, namely to predict the dynamical behaviour of the slender beam at points
where no observed TFs are available.

8 Inversion of a probabilistic model for ground-borne vibrations in build-

ings

This section presents a civil and environmental engineering case history involving
the inversion of a non-parametric probabilistic model from real experimental data.

8.1 Problem setting

[Fig. 9 about here.]

The case history concerns the transmission of vibrations from the underground-
railway tunnel of the RER B line of RATP to the Maison du Mexique building
at the Cité Universitaire site in Paris in France (Fig. 9). The tunnel is a masonry
cut-and-cover tunnel at a shallow depth of about 9.3m below the free surface of the
soil embedded in sand layers. Two classic ballast tracks are running in the tunnel.
The Maison du Mexique is a six-storey reinforced-concrete frame structure. It has
two sets of eight columns such that the floor spans are approximately 6.2m. The
floor-to-ceiling height is approximately 2.85m.

[Fig. 10 about here.]
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For the tunnel, a right-handed Cartesian frame of reference (i′1, i
′

2, i
′

3) is defined with
the origin o′ at the free surface of the soil (Fig. 10). For the building, a right-handed
Cartesian frame of reference (i1, i2, i3) is defined with the origin o in the left corner
at the ground floor (Fig. 10). The origin of the reference frame of the building has
coordinates (x′1 = −23.5 m, x2 = −24.3 m, x3 = 0) in the reference frame of the
tunnel. The angle between i2 and i′2 is 25◦.

8.2 Real experimental data

[Fig. 11 about here.]

In the frame of the European CONVURT project (the CONtrol of Vibrations from
Underground Railway Traffic), in situ measurements were performed of the dynam-
ical response in the Maison du Mexique due to excitations applied on the rails in
the tunnel. Vibrations were generated by an impact of an instrumented hammer
with a mass of 5.3 kg and a soft tip on the rail head at the point with coordi-
nates (x′1 = −2.5 m, x′2 = 0, x′3 = −8.2 m), and recorded by accelerometers placed
at different locations in the Maison du Mexique. We will consider here the vertical
response at the locations BA01, F0PL and F201 (Fig. 11 and Table A.1).

[Table 1 about here.]

[Fig. 12 about here.]

A total of nR = 25 events was recorded. The A/D conversion was performed at a
rate of 1000Hz. A total of 4096 data points was recorded for each event (hence, the
frequency-domain resolution is 0.2441Hz). Estimates of the noise-free TFs from the
force applied on the rail head to the vertical velocity in the building have been de-
duced from the noisy experimental data using the H1-estimation method. Figure 12
shows the time history of the response measured during the sixth event, the esti-
mated noise-free TF and the coherence function at BA01, F0PL and F201. Due to
experimental noise, low coherence values, indicating low data quality, are observed
at frequencies below 20Hz and at frequencies above 100Hz. The coherence decreases
with the distance to the impact point.

In the following, we will identify the probabilistic model (to be built) using the TFs

at BA01 and F0PL. The data set D̃
obs

gathers the observed TFs from the applied
force to the response at BA01 and F0PL at the discrete frequencies covering the
range between 20 and 100Hz with a step of 0.2441Hz (hence, nM = 2 and nF = 327).
We will afterwards use the vertical response at the measurement location F201 to
validate the predictive capability of the identified model.
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8.3 Probabilistic structural model

Deterministic modelling On the basis of the assumption that the dynamic in-
teraction of the track, the tunnel and the soil is only weakly coupled to the dynamic
interaction of the soil and the building, the transmission of the vibrations is mod-
elled in two steps. First, a model for the dynamical interaction of the track, the
tunnel and the soil is used to compute the wave field radiated into the soil due to
forces applied on the rails in the tunnel. The dynamic track-tunnel-soil interaction
model is based on the periodic coupled Finite Element-Boundary Element (FE-BE)
formulation proposed by Clouteau et al. [61]. Subsequently, a model for the dynamic
interaction of the soil and the building is used to compute the structural vibration
induced by this incident wave field. The dynamic soil-building interaction model
uses a classical coupled FE-BE formulation in conjunction with the Craig-Bampton
substructuring method, see e.g. [62].

The reduced matrix model for the groundborne vibrations in the Maison du Mexique
thus obtained has the following form [63]:

[K + iωD − ω2M + KS(ω)]q(ω) = fS(ω) , ω ∈ B , (62)

u(ω) = Tq(ω). (63)

The matrices K, D and M are the reduced stiffness, damping and mass matrices
of the building. For a fixed frequency ω, the matrix KS(ω) is the dynamic soil
impedance matrix, fS(ω) is the vector of the generalized forces (the virtual work on
the soil-building-interface modes generated by the tractions induced by the incident
wave field on a fixed foundation), q(ω) is the vector of the generalized coordinates
and u(ω) collects the FE DOFs of the building. The rectangular matrix T is the
transformation matrix of the reduction basis.

Probabilistic modelling A non-parametric probabilistic model, associated to the
deterministic model (64)-(65), is built:

[K(p) + iωD(p) − ω2M(p) + KS(ω)]Q(ω; p) = fS(ω) , ω ∈ B , (64)

U(ω; p) = T Q(ω; p). (65)

The reduced stiffness, damping and mass matrices of the building are modelled by
the random matrices K(p), D(p) and M(p), respectively, parameterized by p. The
dynamic soil impedance matrix and the vector of the generalized forces are kept
deterministic.

The mean values of the random reduced matrices are chosen equal to their determin-
istic counterparts in model (64)-(65). Hence, there are no mean-model parameters,
i.e. p0 = ∅, and the random matrices K(p), D(p) and M(p) are parameterized solely
by their respective dispersion parameters δK, δD and δM. For the sake of simplicity,
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it is assumed that δK = δD = δM = δ, such that p = {δ} is the only active parameter
of the probabilistic model.

Predicted random TFs

[Fig. 13 about here.]

The predicted random TFs are obtained in two steps. First, the deterministic dy-
namic track-tunnel-soil interaction model is used to compute the wave field radiated
by the tunnel into the soil due to the application of a unitary vertical excitation on
the rail head at the point with coordinates (x′1 = −2.5 m, x′2 = 0, x′3 = −8.2 m).
Subsequently, the probabilistic model (64)-(65) is used to compute the random build-
ing response due to this incident wave field.

Figure 13 shows, as a function of the number nS of Monte Carlo simulations, the
statistical mean of the realizations of the predicted random TF at F0PL for the
dispersion levels δ = 0.2 and δ = 0.8 at the frequencies 50Hz and 100Hz. Reasonably
converged results are obtained for nS = 400, and this value is used for all subsequent
computations.

[Fig. 14 about here.]

Figure 14 shows the 99%-confidence regions for the predicted random TFs at BA01
and F0PL for δ = 0.2 and δ = 0.8. Their width is observed to increase with δ and
also with the frequency, highlighting that the predictions become more sensitive to
uncertainties as the frequency increases. At the floor slabs of the building, where the
response is governed by clusters of local plate bending modes [63], the confidence
regions are very wide, even for small values of δ.

8.4 Stochastic inverse problem

Identification of the probabilistic model

[Fig. 15 about here.]

Figure 15 shows the distances L(δ) and J (δ) as a function of the dispersion level δ.
The probabilistic structural model with the dispersion level δ̂ = 0.8 is seen to be
optimal for both distances.

A posteriori error estimation

[Fig. 16 about here.]
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Figure 16(a) shows the sign-reversed loglikelihood of, and the relative entropy for,
δ̂ = 0.8 as a function of the frequency. Figures 16(b) and 16(c) compare the 99%-
confidence region for the identified predicted random TF to the estimate of the
noise-free TF at BA01 and F0PL. At the frequencies for which the coherence function
is large (Fig. 12), the sign-reversed loglikelihood and the relative entropy are large
whenever the estimates of the noise-free TFs do not lie within the confidence bounds.
At frequencies between about 20 and 30 Hz, the agreement of the identified model
with the data is unsatisfactory at BA01. This discrepancy can be traced back to
the dynamic track-tunnel-soil interaction model, in that an energy loss occurs in the
computed incident wave field at these frequencies. A first possible step that could
be taken to mitigate this discrepancy is to modify the dynamic track-tunnel-soil
interaction model so as to bring the computed incident wave field into agreement
with the experimental data. Another possibility is to introduce uncertainty in the
incident wave field, or, equivalently, in the vector of the generalized forces in (64)-
(65). Such modifications are not addressed in this article and are left as a direction
for future work.

Predictive use of the identified probabilistic model

[Fig. 17 about here.]

Figure 17 compares the 99%-confidence region for the random TF predicted by the
identified probabilistic model to the estimate of the noise-free TF at F201. At the
frequencies for which the coherence function is large (Fig. 12), the estimate of the
noise-free TF is seen to lie within the confidence bounds. It should be noted that
this result is not fully conclusive on the predictive capability of the identified model
since the measured response at F201 is very noisy.

9 Conclusions and directions for future work

This article addressed the inversion of probabilistic structural models using measured
TFs. We worked with probabilistic structural models with minimal parameteriza-
tion. Their first interest is that they fulfil, by construction, the essential mathemat-
ical and physical properties of probabilistic structural models. Since they depend
on only a small set of parameters, their second advantage is that their inversion
can generally be formulated as a mathematically well-posed inverse problem that is
numerically solvable with a reasonable computational effort. We first showed that
the method of maximum likelihood is not well-adapted to the inversion of proba-
bilistic structural models using measured TFs, due to computational difficulties and
model incompatibility. We then formulated the inversion of probabilistic models al-
ternatively as the minimization of an objective function that measures a distance
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between the experimental data and the probabilistic model. Two principles of con-
struction for the definition of such distances were proposed, based either upon the
loglikelihood function, or the relative entropy. We showed that the use of distances
accounting only for first-order cylindrical PDFs allows circumventing the aforemen-
tioned difficulties.

The proposed methodology was demonstrated on examples featuring successively
simulated and real experimental data. The first example highlighted that it may
sometimes be useful to parameterize non-parametric probabilistic models with min-
imal parameterization by mean-model parameters. Indeed, the low-frequency ran-
dom eigenfrequencies of probabilistic models of this kind were found to decrease as
the dispersion level increases. If a large dispersion level is required, the introduction
of mean-model parameters allows to compensate for this decrease. The mean-model
parameters must clearly be identified together with the dispersion parameters. In the
second example, the inverse methods based on the minimization of the distances L
and J were found to lead to similar results in that, in that particular example, the
same dispersion level was found to be optimal in the sense of the two distances.

In both examples, the simplifying assumption was made that the dispersion levels of
the stiffness, damping and mass matrix are identical. A natural direction for future
work consists in relaxing this assumption. Furthermore, in the second example, the
soil impedance matrix was kept deterministic. The probabilistic modelling of the
impedance matrix [64] is a second direction for future work.

Finally, it is noted that the inverse methods proposed in this article are not limited
in scope to the identification of probabilistic models with minimal parameterization,
and can also be applied to cases in which the probabilistic model depends on a large
number of parameters, for instance the coefficients of a polynomial chaos expansion.
However, the stochastic inverse problems thus obtained may be mathematically ill-
posed, and the issue of their regularization arises, e.g. by means of Tikhonov or
Bayesian approaches [65].
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A Random matrix eigenvalue problem

In this appendix, a random matrix eigenvalue problem is formulated using the ran-
dom reduced structural matrices introduced in Section 3.2. We note that consid-
erable effort has already been expended in the literature to the study of random
matrix eigenvalue problems, see e.g. [66, 67].

Let K,M ∈ M+
nT

(R) be reduced stiffness and mass matrices obtained by the projec-
tion of corresponding FE stiffness and mass matrices onto a reduction basis. Let the
random matrices K and M, defined on (A, T , P ), be corresponding random reduced
stiffness and mass matrices such that:

K = LT
KNKLK , M = LT

MNMLM , (A.1)

where NK and NM are normalized random matrices, and LK and LM are the Cholesky
factors of K and M , respectively. Since NK and NM are normalized matrices, we
have:

E {K} = K , E {M} = M . (A.2)

The random matrices K and M define the following random matrix eigenvalue prob-
lem:

KQk = W2
kMQk , (A.3)

where the collection {Qk | 1 ≤ k ≤ nT} gathers the random eigenvectors and {Wk | 1 ≤
k ≤ nT} collects the random circular eigenfrequencies.

Since the eigenfrequencies are non-linear functions of the reduced matrices, the mean
values of the random eigenfrequencies generally differ from the eigenfrequencies of
the mean matrices K and M . The lowest, and the highest, random eigenfrequencies
are generally smaller, and larger, than the corresponding eigenfrequencies of the
mean matrices. This can be understood from the Rayleigh quotient. For a fixed a ∈
A, the realizations {Wk(a) | 1 ≤ k ≤ nT} associated to the realizations K(a)
and M(a) can be obtained by the sequential minimization of the Rayleigh quotient,
see e.g. [68]:

W2
k(a) = arg min

x∈Wk(a)

xTK(a)x

xTM(a)x
, (A.4)

where Wk(a) is the subspace of RnT orthogonal to the eigenvectors with lower eigen-
frequencies. The sequential minimization first finds the vectors x combining a smaller
elastic energy xTK(a)x < xTKx with a larger kinetic energy xTM(a)x > xTMx

such that the lowest random eigenfrequencies (and their mean values) are gener-
ally smaller than the corresponding eigenfrequencies of K and M . In contrast, at
the end of the sequential minimization process, the space Wk(a) spans vectors x

with xTK(a)x > xTKx and xTM(a)x < xTMx such that the highest random
eigenfrequencies (and their mean values) are generally larger the corresponding
eigenfrequencies of K and M .
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Fig. 2. Slender beam: (a) 50 lowest deterministic eigenfrequencies of the mean model,
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Fig. 3. Slender beam: statistical mean of the realizations of the predicted random TF at t2

for δ = 0.2 and δ = 0.8 at frequencies (a) 200 Hz and (b) 800 Hz as a function of the
number nS of samples.
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Fig. 4. Slender beam: amplitude of the TF predicted by the mean model, and 99%-confi-
dence regions for the random TF for δ = 0.2 and δ = 0.8 at (a) t2 and (b) t3.
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Fig. 5. Slender beam: distance L(δ) as a function of δ.
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(b) TF at t2.
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Fig. 6. Slender beam: (a) sign-reversed loglikelihood of δ̂ = 0.96 as a function of the
frequency and (b, c) amplitude of the observed TF (solid line) and 99%-confidence bounds
for the identified random TF (grey patch) at t2 and t3.
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(b) TF at t2.
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Fig. 7. Slender beam: (a) sign-reversed loglikelihood of ŵ1/2π = 46.67 Hz,
ŵ2/2π = 172.63 Hz, ŵ3/2π = 230.00 Hz and δ̂ = 0.67 as a function of the frequency
and (b, c) amplitude of the observed TF (solid line) and 99%-confidence bounds for the
identified random TF (grey patch) at t2 and t3.
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Fig. 8. Slender beam: amplitude of the TF predicted by the 3D FE model (solid line)
and 99%-confidence bounds for the identified random TF (grey patch) at t1.
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Fig. 9. Ground-borne vibrations in the Maison du Mexique: (a) tunnel at the station
Gentilly and (b) side view of the Maison du Mexique.
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Fig. 10. Ground-borne vibrations in the Maison du Mexique: schematic overview of the
site of Cité Universitaire.
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Fig. 11. Ground-borne vibrations in the Maison du Mexique: measurement locations.
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(h) F201.
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(i) F201.

Fig. 12. Ground-borne vibrations in the Maison du Mexique: (a, d, g) time history of
the measured acceleration during the sixth event, (b, e, h) amplitude of the estimated
noise-free TF and (c, f, i) coherence function between the applied force and the measured
response at BA01, F0PL and F201.
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Fig. 13. Ground-borne vibrations in the Maison du Mexique: statistical mean of the realiza-
tions of the predicted random TF at F0PL for δ = 0.2 and δ = 0.8 at frequencies (a) 50 Hz
and (b) 100 Hz as a function of the number nS of samples.
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(a) TF at BA01.
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Fig. 14. Ground-borne vibrations in the Maison du Mexique: amplitude of the TF predicted
by the mean model, and 99%-confidence regions for the random TF for δ = 0.2 and δ = 0.8
at (a) BA01 and (b) F0PL.

51



0 0.2 0.4 0.6 0.8 1

0

−2

−4

−6

−8

−
ex

p(
−

L)
, −

ex
p(

−
J)

 [−
]

Dispersion [−]

L
J

Fig. 15. Ground-borne vibrations in the Maison du Mexique: distances L(δ) and J (δ) as
a function of δ.
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(b) TF at BA01.
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(c) TF at F0PL.

Fig. 16. Ground-borne vibrations in the Maison du Mexique: (a) sign-reversed loglikeli-
hood (solid line) and relative entropy (dashed line) of δ̂ = 0.8 as a function of the frequency
and (b, c) amplitude of the estimated noise-free TF (solid line) and 99%-confidence bounds
for the identified random TF (grey patch) at BA01 and F0PL.
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Fig. 17. Ground-borne vibrations in the Maison du Mexique: amplitude of the estimated
noise-free TF (solid line) and 99%-confidence bounds for the identified random TF (grey
patch) at F201.
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List of Tables

A.1 Ground-borne vibrations in the Maison du Mexique: measurement
locations. 56
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Label Location Coordinates (x1, x2, x3)

BA01 in the basement next to column C1 (−0.5m, 26.5m, −3.6m)

F0PL at the ground floor between columns C2 and C3 (−2.9m, 18.2m, 0)

F201 at the second floor right next to column C1 (−0.5m, 26.5m, 6.8m)

Table A.1
Ground-borne vibrations in the Maison du Mexique: measurement locations.
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