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ABSTRACT

In this work, we deal with nonlinear blind source separation.
Our contribution is the derivation of a learning strategy that
minimizes the mutual information between the outputs of
a class of nonlinear recurrent separating systems. By using
the concept of the differential of the mutual information, we
obtain an algorithm that does not need a precise knowledge
of the source distributions, in contrast to the one obtained
by a direct derivation of the minimum mutual information
framework, or equally the maximum likelihood approach,
for the considered model. The validity of our approach is
supported by simulations.

1. INTRODUCTION

The problem of blind source separation (BSS) concerns the
retrieval of an unknown set of source signals by using only
samples that are mixtures of these original signals. A myr-
iad of methods were proposed for the case in which the mix-
ing process is of linear nature [1]. The basis of the majority
of these techniques is the independent component analysis
(ICA) [2]. When the mixing system is nonlinear, the BSS
problem becomes more difficult given that in this situation
the recovery of the independence, which is the very essence
of ICA, does not guarantee, as a rule, source separation. In
view of this limitation, a more reasonable approach is to
consider constrained mixing systems as, for example, post-
nonlinear (PNL) mixtures [3] and linear-quadratic mixtures
[4].

In this work, we deal with the problem of BSS in a par-
ticular class of nonlinear systems which is related to a chem-
ical sensing application. Our approach is based on a re-
cursive separating system and the main contribution of this
work is the derivation of a learning rule based on the ICA
paradigm of mutual information minimization. The paper is
organized as follows: in Section 2, we begin with a descrip-
tion of the mixing model as well as of the chosen separating
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structure. In Section 3, we discuss the application of the
minimum mutual information paradigm on the considered
separating structure. Firstly, in subsection 3.1, we notice
through an example that a mutual information-based algo-
rithm resulted from a direct derivation may not be able to
provide source separation. Then, in subsection 3.2, a learn-
ing rule based on the concept of the differential of the mu-
tual information is proposed. In Section 4, simulations are
carried out in order to verify the viability of our proposal.
Finally, in Section 5, we state our conclusions and remarks.

2. PROBLEM STATEMENT

Blind source separation methods have been proved to be a
very promising approach in chemical sensing applications.
In [5, 6], for instance, BSS algorithms were used in the
problem of estimating the concentrations of several ions in
a solution. A remarkable feature in this kind of application
is that the sensors have a nonlinear response and, thus, one
must resort to nonlinear source separation techniques. A
first approach in this spirit was presented in [6], in which
a post-nonlinear separation algorithm was applied on a set
of mixtures provided by a sensor array of ion-sensitive field-
effect transistors (ISFET). Despite the good results obtained
by this proposal, it is limited to situations in which all the
ions in the solution have the same valence.

In the present work, we envisage the situation in which
the valences are different. We take as our starting point the
Nikolsky-Eisenman model [5], which gives a simple and yet
adequate description of potentiometric-based ion concentra-
tion sensors, as the ISFET ones. According to this model,
the response of thei-th ISFET sensor is given by:

xi = ci1 + ci2 log
(

si +
∑

j,j 6=i

aijs

zi
zj

j

)

, (1)

wheresi andsj are, respectively, the concentration of the
ion of interest and the concentration of thej-th interfering
ion; and wherezi andzj denote the valences of the ionsi
andj, respectively. The selective coefficientsaij model the



interference process;ci1 andci2 are constants that depends
on some physical parameters.

Assuming thatci1 andci2 are previously estimated and
considering a mixture of two ions, the model (1) can be sim-
plified to the following one that will be considered in this
work

x1 = s1 + a12s
k
2

x2 = s2 + a21s
1

k

1

, (2)

wherexi andsj denote thei-th mixture and thej-th source,
respectively. In the context of this application,k is related
to the ratio of the valences of the two considered ions.

2.1. Adopted separating system

For separating sourcessi from mixtures (2), we adopt the
following recurrent network as separating system:

y1(n+ 1) = x1 − w12y2(n)k

y2(n+ 1) = x2 − w21y1(n)
1

k
, (3)

where the vectorw = [w12 w21]
T denotes the parameters

to be adjusted andy(n) = [y1(n) y2(n)]T corresponds to
the separating system outputs at timen. For each sample of
the mixtures, and for a given valuew, the system outputs
are obtained after the convergence of the dynamics (3).

In order to understand how this structure works, lets =
[s1 s2]

T denote a sample of the sources. By considering (2),
one can easily check that when[w12 w21]

T = [a12 a21]
T ,

theny(n + 1) = y(n) = s correspond to an equilibrium
point of (3), that is to say, it becomes possible to counterbal-
ance the action of the mixing system without relying on its
direct inversion. This sort of approach was firstly developed
in [7] regarding linear BSS. Its extension to the problem of
nonlinear BSS was proposed by Hosseini and Deville [4]
in the context of source separation of linear-quadratic mix-
tures.

Given that the adopted separating system corresponds to
a nonlinear dynamic, a crucial point concerns the stabilityof
the separating solutiony = s. In [8], it was shown that, for
each sample of the source, a necessary stability condition is
given by:

|a12a21s
( 1

k
−1)

1 sk−1
2 | < 1. (4)

In this same work, we described a ICA learning rule for (3)
based on the cancellation of the nonlinear correlations be-
tween their outputs. The main advantage of this technique
relies on its simplicity, given that only the estimation of
higher-order (4th) moments is required. On the other hand,
there are convergence problems which are exacerbated when
the sources are close to the stability boundary. Aiming to
obtain a more robust learning algorithm, we discuss, in the
next section, the paradigm of mutual information minimiza-
tion for the considered mixing model.

3. MUTUAL INFORMATION MINIMIZATION
APPROACH

Firstly, let us recall the definition of mutual information,
here expressed for the outputs of (3)

I(y) = H(y1) +H(y2)−H(y1, y2), (5)

whereH(·) denotes the differential entropy [9]. A com-
mon trick to avoid the estimation ofH(y1, y2) consists in
expressing it as a function of the joint entropy of the mix-
tures. Thus, considering that the mapping provided by (3)
after the convergence is invertible in the region containing
the mixed signals and applying the entropy transformation
law [1], one obtains:

I(y) = H(y1) +H(y2)−H(x)− E{log(|detJ|)}, (6)

whereJ is the Jacobian matrix associated to the separating
system mapping. Since we are interested in the minimiza-
tion of (6) with respect tow and given thatH(x) does not
depend on these parameters, then we may adopt the follow-
ing expression as a separating criterion1

C(y) = H(y1) +H(y2)− E{log(|detJ|)}. (7)

In appendix 6.1, we derive the gradient of (7) with re-
spect tow, which is given by:

∂C(y)

∂w
= E

{

detJ

[

ψ(y1)(−y
k
2 ) +

ψ(y1)(ka12y
1

k

1 y
k−1
2 ) +

ψ(y2)(
1
k
a21y

1

k
−1

1 yk
2 ) − a21y

1

k
−1

1 yk−1
2

ψ(y2)(−y
1

k

1 ) − a12y
1

k
−1

1 yk−1
2

]}

(8)

whereψ(yi) = − log(p(yi))
′ denotes the marginal score

function of yi. From this expression, one obtains the fol-
lowing learning rule that would minimize the mutual infor-
mation:

w← w − µ
C(y)

∂w
, (9)

whereµ is the learning rate.
Expression (8) could equally be derived through the max-

imal likelihood framework (see [11], for instance). Usually
in this approach, the true distributions of the sources are ap-
proximated by previously defined nonlinear functions [12]
or by estimations obtained from the reconstructed sources
provided by the separating system. It is well known that the
separation task is accomplished in the linear case even when
the sources distributions are roughly approximated [12]. How-
ever, this is not true for nonlinear mixing systems. Indeed,

1In a nonlinear context, although equivalent in a theoretical standpoint,
expressions (6) and (7) may lead to different practical algorithms due to
the different statistical properties of these two estimators, as demonstrated
for the case of PNL models in [10].
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Fig. 1. Score functions.

we present, in the next section, an example that indicates
that for the mixing system (2), even a satisfactory estima-
tion of the score functions in (8) may not result in source
separation.

3.1. Example of the influence of the score functions es-
timations on the performance of (9)

Let us consider a scenario with two sources uniformly dis-
tributed between[0.1, 1.1], k = 2 and mixing coefficients
given bya12 = a21 = 0.5. This set of parameters satisfies
the structural stability condition given by (4). As it will be
clarified in the sequel, it is useful to describe the pdf of each
uniform source as

p(si) =
1

2
lim

b→∞
tanh(b(si − 0.1))− tanh(b(si − 1.1)).

(10)
Therefore, it is not difficult to show that the score function
of si is given by:

ψ(si) = lim
b→∞

b tanh2(b(si − 1.1))− b tanh2(b(si − 0.1))

tanh(b(si − 0.1))− tanh(b(si − 1.1))
.

(11)
In fact, this limit tends to a sum of two Dirac delta functions
placed at0.1 and1.1, respectively.

In order to verify the influence of the choice of the score
function on (9), we executed this learning rule considering
different values forb in (11). Also we considered the case
in which the score functions are estimated from the recon-
structed sources during the adaptation stage by using two
distinct methods: a kernel-based approach [13] and a MSE
estimation approach [3] using a fourth-order polynomial as
a parametric structure. For matter of illustration, we present,
in Fig. 1, the resulting functions (11) for several values of
b as well as the source score function estimated with the
kernel and MSE methods.
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Fig. 2. Evolution of SNR for distinct score function estima-
tion approaches.

In all executions, we considered as initial conditions
for w the theoretical solution of the problem perturbed by
a small random vector. A typical evolution of a perfor-
mance index (see (18) below) for each approach is depicted
in Fig. 2. It is clear that there is a performance degradation
as b decreases. Whenb = 5 (not depicted in the figure),
for example, the adaptation goes toward a instable region
with respect to the separating system. Also, it is worth spe-
cial attention that, for this scenario, even the application of
a satisfactory score function estimation method, such as the
kernel-based one, could not be able to maintain the good
initial solution.

3.2. An approach based on the notion of the mutual in-
formation differential

As discussed in the above example, a reasonable perfor-
mance of the mutual information approach (or equally the
maximum likelihood one) based on the minimization of (7)
is depending on a very accurate knowledge of the source
score functions. Evidently, this demand is a very contrast-
ing one to the idea of blind source separation. In the sequel,
aiming to overcome this requirement, we shall develop an
alternative rule that directly minimizes (6). By proceeding
in this way, one obtains a learning algorithm that is based
on the so-called score function difference vector (see (13)
below).

The cornerstone of our approach is the notion of the dif-
ferential of the mutual information, proposed in [14]. In this
work, it was proved that a small variation∆ of a given ran-
dom vectory results, up to higher-order terms (expressed by
o(∆)), in the following variation of the mutual information

I(y + ∆)− I(y) = E{∆Tβy(y)}+ o(∆), (12)



whereβy(y) is the score function difference vector associ-
ated with the random variabley. In view of this result, it
can be interpreted as the gradient of the mutual information
with respect toy. In mathematical terms, thei-th element
of βy(y) is given by

βyi
(yi) =

(

−
∂ log p(y)

∂yi

)

−

(

−
d log p(yi)

dyi

)

, (13)

i.e. the difference between thei-th element of the joint score
function ofy and the marginal score function ofyi. It is not
difficult to prove thaty have independent components if,
and only if,βyi

(yi) = 0 for everyi.
The result expressed in (12) provides the guidelines for

the design of a learning algorithm according to the mini-
mum mutual information idea. The first step is to determine
how a small variation of the separating system parameters,
denoted by the vector∆w = [∆w12 ∆w21]

T , affects their
outputs. Then, the “gradient” of the mutual information
with respect tow is estimated by (12), by substituting the
calculated small variations of the outputs in this expression.

In order to determine the variation∆y = [∆y1 ∆y2]
T

given a small variation∆w, one may consider a linearized
version of the separating system (3) with respect tow. Con-
sidering two sources, this is expressed by
[

∆y1
∆y2

]

=
∂y

∂w
∆w =

[

∂y1

∂w12

∂y1

∂w21

∂y2

∂w12

∂y2

∂w21

]

[

∆w12

∆w21

]

.

(14)
In the appendix 6.2 the elements of∂y

∂w
are determined.

If one considers in (12) that∆ = ∆y, then one readily
obtains that:

I(y + ∆y)− I(y) = E

{

∆wT ∂y

∂w

T

βy(y)

}

+ o(∆y).

(15)
As stated above, the score function differenceβy(y) may be
interpreted as the gradient of (12). Hence, considering (12)
and (15), one may argue that the “gradient” of the mutual
information with respect to the parametersw is

∂I

∂w
= E

{

∂y

∂w

T

βy(y)

}

. (16)

Therefore, it expected that the following learning rule min-
imizes the mutual information between the reconstructed
sources

w← w − µE

{

∂y

∂w

T

βy(y)

}

, (17)

whereµ denotes the learning rate.

4. EXPERIMENTAL RESULTS

In order to assess the performance of the learning algo-
rithm (17), experiments were conducted for two scenarios:

Table 1. Average SNR results over50 experiments and
standard deviation (STD).

SNR1 SNR2 SNR STD(SNR)
k = 2 44.40 40.92 42.66 7.71
k = 3 39.41 36.40 37.90 14.18

k = 2 andk = 3. In both cases, the efficacy of the obtained
solutions was quantified according to the following index:

SNRi = 10 log

(

E{s2i }

E{(si − yi)
2
}

)

. (18)

Thus,SNR = 0.5(SNR1+SNR2) defines a global index.
Regarding the estimation of the score function differ-

ence vector, we considered the method proposed in [13]. In
short, this is a kernel-based method which differs from the
classical approaches in two points: the estimation is done
over a regular grid and a cardinal spline is used as kernel
function. As a consequence, one obtain a much faster algo-
rithm than the classical kernel method.

4.1. First scenario -k = 2

In a first scenario, we consider the separation of two sources
uniformly distributed between[0.1, 1.1]. The mixing para-
meters are given bya12 = 0.5 anda21 = 0.5. Concerning
the separation system, a set of2000 samples of the mixtures
was considered. The number of iterations was2000 with a
learning rateµ = 0.01. The initial conditions of the dynam-
ics (3) were chosen as[y1(1) y2(1)]T = [0 0]T . The results
of this first case are expressed in the first row of Table 1.

4.2. Second scenario -k = 3

In this situation, the separation of two sources uniformly
distributed between[0.2, 1.2] is conducted. The other para-
meters were defined in the same way as in the first scenario,
except the learning step which isµ = 0.008. In this sit-
uation, there are some samples of the sources that do not
satisfy the stability condition (4). As a consequence, the
adopted separating system will never converge to these sam-
ples which means that they cannot be retrieved. Also, these
samples act as a kind of noise in the adaptation stage, in the
sense that even for an ideal separating system, there are out-
puts that are still mixtures of the sources which may disturb
the separating criteria.

Regardless the problem discussed above, our proposal
does well in this scenario as can be noticed in the second
row of Table 1. The high standard deviation in this case
is due to the fact that the algorithm did not converge in2
among the 50 experiments. In Fig. 3, the joint distributions
of the mixtures and of the retrieved signals are depicted fora



typical case. Note that the outputs of the separating system
are almost uniformly distributed, which indicates that the
separation task was fulfilled.
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Fig. 3. Second scenario -k = 3.

5. CONCLUSIONS

The objective of this work was to develop a mutual infor-
mation framework for the adjustment of a class of recurrent
separating systems. In a first moment, we showed, through
an example, that the minimization of (7) leads to a learn-
ing rule that may be very dependent on an extremely accu-
rate score function estimation stage. Then, an alternative
method based on the notion of the differential of the mu-
tual information was proposed. The obtained experimental
results confirmed the efficacy of our proposal.

A first perspective of this work would be the applica-
tion of the derived method on a real problem of chemical
sensing. Indeed, in such an application, there are some in-
formations, such as the positivity of the sources, that could
be taken into account in the design of a separating method
for the most general case of the Nikolsky-Eisenman model
expressed in (1).

Also, there are two other interesting subjects for future
work: 1) a theoretical analysis of the experimental result

presented in section (3.1), and2) an investigation of the
cases for which our proposal did not converge. Despite the
fact that just a very small number of trials did not converge,
this problem may be exacerbated in the generalization of
our method to scenarios with a greater number of sources.

6. APPENDIX

6.1. Derivation of (8)

Taking the derivative of (7) with respect tow, one obtains:

∂C(y)

∂w
=
∂H(y1)

∂w
+
∂H(y2)

∂w
− E

{

1

detJ

∂ detJ

∂w

}

.

(19)
As proved in [3]

∂H(yi)

∂w
= E

{

ψ(yi)
∂yi

∂w

}

, (20)

whereψ(yi) denotes the score function ofy1, that is to say:

ψ(yi) = −
d log p(yi)

dyi

= −
p′(yi)

p(yi)
. (21)

By substituting (20) in (19), one obtains

∂C(y)

∂w
= E

{

ψ(y1)
∂y1

∂w

}

+ E

{

ψ(y2)
∂y2

∂w

}

− E

{

1

det(J)

∂ det(J)

∂w

}

. (22)

In appendix 6.2, the expressions for∂yi

∂w
are determined

The next step is to calculate the derivative of the Jaco-
bian determinant associated with the mapping performed by
the separating system. For a given value ofw, the sepa-
rating system system outputs satisfy the following equation
when (3) converges

x1 = y1 + w12y
k
2

x2 = y2 + w21y
1

k

1

. (23)

In fact, this is the inverse mapping with relation to the sepa-
rating system. Therefore, it is possible to calculateJ by de-
termining the Jacobian of this inverse mapping, which will
be denoted byJ′. Obviously, there is a tacit assumption in
this procedure, i.e., we assume that the mapping is invertible
in the domain of the mixtures.

Considering (23), it straightforward to show that

J′ =
∂x

∂y
=

[

1 kw12y
k−1
2

1
k
w21y

1

k
−1

1 1

]

. (24)

Given thatJ = J′−1, then the following expression holds

det(J) =
1

det(J′)
=

1

1− w12w21y
1

k
−1

1 yk−1
2

. (25)



From this expression, it is straightforward to show that

E

{

1

det(J)

∂ det(J)

∂w

}

=

E

{

1

1− w12w21y
1

k
−1

1 yk−1
2

[

w21y
1

k
−1

1 yk−1
2

w12y
1

k
−1

1 yk−1
2

]}

. (26)

Hence, considering (22), (26) and the results derived in the
appendix 6.2, expression (8) is obtained.

6.2. Calculation of ∂y

∂w

In this appendix, we are interested in the determination of

∂y

∂w
=

[

∂y1

∂w12

∂y1

∂w21

∂y2

∂w12

∂y2

∂w21

]

. (27)

After the convergence of (3), the mapping performed by the
separating system is given by (23). Therefore, the deriva-
tives in (26) can be calculated by applying the chain rule
property on (23). For instance, it is not difficult to verify
from that:

∂y1

∂w12
= −(yk

2 + w12ky
k−1
2

∂y2

∂w12
). (28)

Given that

∂y2

∂w12
= −

1

k
w21y

1

k
−1

1

∂y1

∂w12
, (29)

and substituting this expression in (28), one obtains:

∂y1

∂w12
=

−yk
2

1− w12w21y
1

k
−1

1 yk−1
2

. (30)

By conducting similar calculations, one obtains the other
derivatives:

∂y2

∂w12
=

w21y
1

k
−1

1 yk
2

k(1− w12w21y
1

k
−1

1 yk−1
2 )

(31)

∂y1

∂w21
=

kw12y
1

k

1 y
k−1
2

1− w12w21y
1

k
−1

1 yk−1
2

(32)

∂y2

∂w21
=

−y
1

k

1

1− w12w21y
1

k
−1

1 yk−1
2

(33)
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