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Abstract – This paper deals with enriched qualitative belief functions for reasoning under uncertainty and for
combining information expressed in natural language through linguistic labels. In this work, two possible enrich-
ments (quantitative and/or qualitative) of linguistic labels are considered and operators (addition, multiplication,
division, etc) for dealing with them are proposed and explained. We denote them qe-operators, qe standing for
“qualitative-enriched” operators. These operators can be seen as a direct extension of the classical qualitative
operators (q-operators) proposed recently in the Dezert-Smarandache Theory of plausible and paradoxist reason-
ing (DSmT). q-operators are also justified in details in this paper. The quantitative enrichment of linguistic label
is a numerical supporting degree in [0,∞), while the qualitative enrichment takes its values in a finite ordered
set of linguistic values. Quantitative enrichment is less precise than qualitative enrichment, but it is expected
more close with what human experts can easily provide when expressing linguistic labels with supporting degrees.
Two simple examples are given to show how the fusion of qualitative-enriched belief assignments can be done.

Keywords: Information fusion, Qualitative beliefs, DSmT, DST.

1 Introduction

Qualitative methods for reasoning under uncertainty have gained more and more attention by Information
Fusion community, especially by the researchers and system designers working in the development of modern
multi-source systems for defense, robotics and so on. This is because traditional methods based only on quanti-
tative representation and analysis are not able to completely satisfy adequately the need of the development of
science and technology integrating at higher fusion levels human beliefs and reports in complex systems. There-
fore qualitative knowledge representation becomes more and more important and necessary in next generations
of (semi) intelligent automatic and autonomous systems.

For example, Wagner et al. [16] consider that although recent robots have powerful sensors and actuators,
their abilities to show intelligent behavior is often limited because of lacking of appropriate spatial representa-
tion. Ranganathan et al. [11] describe a navigation system for a mobile robot which must execute motions in a
building, the environment is represented by a topological model based on a Generalized Voronoi Graph (GVG)
and by a set of visual landmarks. A qualitative self-localization method for indoor environment using a belt of
ultrasonic sensors and a camera is proposed. Moratz et al. [6] point out that qualitative spatial reasoning (QSR)
abstracts metrical details of the physical world, of which two main directions are topological reasoning about
regions and reasoning about orientations of point configurations. So, because concrete problems need a combina-
tion of qualitative knowledge of orientation and qualitative knowledge of distance, they present a calculus based
on ternary relations where they introduce a qualitative distance measurement based on two of the three points.
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Duckham et al. [4] explore the development and the use of a qualitative reasoning system based on a descrip-
tion logic for providing the consistency between different geographic data sets. Their research results suggest
that further work could significantly increase the level of automation for many geographic data integration tasks.

Recently, Smarandache and Dezert in [14] (Chap. 10) give a detailed introduction of major works for qual-
itative reasoning under uncertainty. Among important works in this field, one must mention George Polya
who first attempted in 1954 to find a formal characterization of qualitative human reasoning, then followed by
Lotfi Zadeh’s works [19, 20]. Later, Wellman [17] proposed a general characterization of qualitative probabil-
ity to relax precision in representation and reasoning within the probabilistic framework, in order to develop
Qualitative Probabilistic Networks (QPN). Wong and Lingras [18] have proposed a method for generating basic
belief functions from preference relations between each pair of propositions be specified qualitatively based on
Dempster-Shafer Theory (DST) [12]. Parsons [7, 8] then proposed a qualitative Dempster-Shafer Theory, called
Qualitative Evidence Theory (QET) by using techniques from qualitative reasoning. This approach seems how-
ever to have been abandoned by Parsons in favor of qualitative probabilistic reasoning (QPR). In 2004, Brewka
et al. [2] have proposed a Qualitative Choice Logic (QCL), which is a propositional logic for representing alter-
native, ranked options for problem solutions. This logic adds to classical propositional logic a new connective
called ordered disjunction, that is, if possibleA, but if A is not possible then at least B. The semantics of
qualitative choice logic is based on a preference relation among models. Very recently, Badaloni and Giacomin
[1] integrate the ideas of flexibility and uncertainty into Allen’s interval-based temporal framework and define
a new formalism, called IAfuz , which extends classical Interval Algebra (IA) to express qualitative fuzzy con-
straints between intervals.

In [14], Smarandache and Dezert introduce a definition of qualitative basic belief assignment (qbba or just
qm - standing for qualitative mass), and they propose an extension of quantitative fusion rules developed in
DSmT framework for combining directly qbba’s without mapping linguistic labels into numbers, and thus com-
puting directly with words. Such extension (mainly the qualitative extension of DSmC, DSmH and PCR5 rules
- see [14]) is based on the definition of new operators (addition, multiplication, etc) on linguistic labels which
are called q-operators. In this work, we propose to enrich the original definition of qualitative basic belief as-
signment (qbba) into two possible different ways, quantitatively and qualitatively. These enrichments yields to
the definition new linguistic operators for these new types of enriched qbba’s. We will denote them qe-operators.

The first qbba enrichment consists in associating a quantitative (numerical) supporting degree in [0,∞) given
a body of evidence/source to each linguistic label. Such enrichment allows to take into account and mix (when
available) some numerical extra knowledge about the reliability/trustability of the linguistic label committed
to propositions of the frame of discernment. The second possible enrichment is purely qualitative in order to fit
more closely with what human experts are expected to provide in reality when enriching their linguistic labels
using natural language.

This paper is organized as follows: In section 2, we remind briefly the basics of DSmT. In section 3 we present
and justify in details the q-operators, in order to get ready for introducing new enriched qualitative-enriched
(qe) operators in sections 5. In section 6, we illustrate through very simple examples how these operators can
be used for combining enriched qualitative beliefs. Concluding remarks are then given in 7.

2 Basics of DSmT for quantitative beliefs

Let Θ = {θ1, θ2, · · · , θn} be a finite set of n elements θi, i = 1, . . . , n assumed to be exhaustive. Θ corresponds
to the frame of discernment of the problem under consideration. In general (unless introducing some integrity
constraints), we assume that elements of Θ are non exclusive in order to deal with vague/fuzzy and relative
concepts [13]. This is the so-called free-DSm model which is denoted by Mf (Θ). In DSmT framework, there
is no need to work on refined frame Θref consisting in a (possibly finer) discrete finite set of exclusive and
exhaustive hypotheses which is usually referred as Shafer’s model M0(Θ) in literature, because DSm rules of
combination work for any models of the frame, i.e. the free DSm model, Shafer’s model or any hybrid model.
The hyper-power set (Dedekind’s lattice) DΘ is defined as the set of all compositions built from elements of Θ
with ∪ and ∩ (Θ generates DΘ under ∪ and ∩) operators such that
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a) ∅, θ1, θ2, · · · , θn ∈ DΘ.

b) If A, B ∈ DΘ, then A ∩ B ∈ DΘ and A ∪ B ∈ DΘ.

c) No other elements belong to DΘ, except those obtained by using rules a) or b).

A (quantitative) basic belief assignment (bba) expressing the belief committed to the elements of DΘ by a
given source/body of evidence S is a mapping function m(·): DΘ → [0, 1] such that:

m(∅) = 0 and
∑

A∈DΘ

m(A) = 1 (1)

Elements A ∈ DΘ having m(A) > 0 are called focal elements of the bba m(.). The general belief function
and plausibility functions are defined respectively in almost the same manner as within the DST [12], i.e.

Bel(A) =
∑

B∈DΘ,B⊆A

m(B) (2)

Pl(A) =
∑

B∈DΘ,B∩A 6=∅

m(B) (3)

The main concern in information fusion is the combination of sources of evidence and the efficient manage-
ment of conflicting and uncertain information. DSmT offers several fusion rules, denoted by the generic symbol
⊕, for combining basic belief assignments. The simplest one, well adapted when working with the free-DSm1

model Mf(Θ) and called DSmC (standing for DSm Classical rule) is nothing but the conjunctive fusion oper-
ator of bba’s defined over the hyper-power set DΘ. Mathematically, DSmC for the fusion of k ≥ 2 sources of
evidence is defined by mMf (Θ)(∅) = 0 and ∀A 6= ∅ ∈ DΘ,

mMf (Θ)(A) , [m1 ⊕ · · · ⊕ mk](A)

mMf (Θ)(A) =
∑

X1,··· ,Xk∈DΘ

X1∩···∩Xk=A

k
∏

s=1

ms(Xs) (4)

When working with hybrid models and/or Shafer’s model M0(Θ), other rules for combination must be used
for taking into account integrity constraints of the model (i.e. some exclusivity constraints and even sometimes
no-existing constraints in dynamical problems of fusion where the model and the frame can change with time).
For managing efficiently the conflicts between sources of evidence, DSmT proposes mainly two alternatives to the
classical Dempster’s rule of combination [12] for working efficiently with (possibly) high conflicting sources. The
first rule proposed in [13] was the DSm hybrid rule (DSmH) of combination which offers a prudent/pessimistic
way of redistributing partial conflicting mass. The basic idea of DSmH is to redistribute the partial conflicting
mass to corresponding partial ignorance. For example: let’s consider only two sources with two bba’s m1(.) and
m2(.), if A ∩ B = ∅ is an integrity constraint of the model of Θ and if m1(A)m2(B) > 0, then m1(A)m2(B)
will be transferred to A ∪ B through DSmH. The general formula for DSmH is quite complicated and can
be found in [13] and is not reported here due to space limitation. DSmH is actually a natural extension of
Dubois & Prade’s rule of combination [3] which allows also to work with dynamical changes of the frame and
its model. A much more precise fusion rule, called Proportional Conflict Redistribution rule no. 5 (PCR5)
has been developed recently in [14] for transferring more efficiently all partial conflicting masses. Basically, the
idea of PCR5 is to transfer the conflicting mass only to the elements involved in the conflict and proportionally
to their individual masses. For example: let’s assume as before only two sources with bba’s m1(.) and m2(.),
A∩B = ∅ for the model of Θ and m1(A) = 0.6 and m2(B) = 0.3. Then with PCR5, the partial conflicting mass
m1(A)m2(B) = 0.6 · 0.3 = 0.18 is redistributed to A and B only with the following proportions respectively:
xA = 0.12 and xB = 0.06 because the proportionalization requires

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)

m1(A) + m2(B)
=

0.18

0.9
= 0.2

General PCR5 fusion formula for the combination of k ≥ 2 sources of evidence can be found in [14].
1We call it free because no integrity constraint is introduced in such model.
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3 Extension of DSmT for qualitative beliefs

In order to compute with words (i.e. linguistic labels) and qualitative belief assignments instead of quantitative
belief assignments2 over GΘ, Smarandache and Dezert have defined in [14] a qualitative basic belief assignment
qm(.) as a mapping function from GΘ into a set of linguistic labels L = {L0, L̃, Ln+1} where L̃ = {L1, · · · , Ln} is
a finite set of linguistic labels and where n ≥ 2 is an integer. For example, L1 can take the linguistic value “poor”,
L2 the linguistic value “good”, etc. L̃ is endowed with a total order relationship ≺, so that L1 ≺ L2 ≺ · · · ≺ Ln.
To work on a true closed linguistic set L under linguistic addition and multiplication operators, Smarandache
and Dezert extended naturally L̃ with two extreme values L0 = Lmin and Ln+1 = Lmax, where L0 corresponds
to the minimal qualitative value and Ln+1 corresponds to the maximal qualitative value, in such a way that
L0 ≺ L1 ≺ L2 ≺ · · · ≺ Ln ≺ Ln+1, where ≺ means inferior to, or less (in quality) than, or smaller than, etc.
Labels L0, L1, L2, . . . , Ln, Ln+1 are said linguistically equidistant if: Li+1−Li = Li−Li−1 for all i = 1, 2, . . . , n
where the definition of subtraction of labels is given in the sequel by (11). In the sequel Li ∈ L are assumed
linguistically equidistant3 labels such that we can make an isomorphism between L = {L0, L1, L2, . . . , Ln, Ln+1}
and {0, 1/(n + 1), 2/(n + 1), . . . , n/(n + 1), 1}, defined as Li = i/(n + 1) for all i = 0, 1, 2, . . . , n, n + 1. Using
this isomorphism, and making an analogy to the classical operations of real numbers, we are able to define the
following qualitative operators (or q-operators for short):

• q-addition of linguistic labels

Li + Lj =
i

n + 1
+

j

n + 1
=

i + j

n + 1
= Li+j (5)

but of course we set the restriction that i+j < n+1; in the case when i+j ≥ n+1 we restrict Li+j = Ln+1.
So this is the justification of the qualitative addition we have defined.

• q-multiplication of linguistic labels4

a) Since Li × Lj = i
n+1 · j

n+1 = (i·j)/(n+1)
n+1 , the best approximation would be L[(i·j)/(n+1)], where [x]

means the closest integer to x, i.e.

Li × Lj = L[(i·j)/(n+1)] (6)

For example, if we have L0, L1, L2, L3, L4, L5, corresponding to respectively 0, 0.2, 0.4, 0.6, 0.8,
1, then L2 · L3 = L[(2·3)/5] = L[6/5] = L[1.2] = L1; using numbers: 0.4 · 0.6 = 0.24 ≈ 0.2 = L1; also
L3 · L3 = L[(3·3)/5] = L[9/5] = L[1.8] = L2; using numbers 0.6 · 0.6 = 0.36 ≈ 0.4 = L2.

b) A simpler approximation of the multiplication, but less accurate (as proposed in [14]) is thus

Li × Lj = Lmin{i,j} (7)

• Scalar multiplication of a linguistic label

Let a be a real number. We define the multiplication of a linguistic label by a scalar as follows:

a · Li =
a · i

n + 1
≈

{

L[a·i] if [a · i] ≥ 0,

L−[a·i] otherwise.
(8)

• Division of linguistic labels

2GΘ is the generic notation for the hyper-power set taking into account all integrity constraints (if any) of the model. For
example, if one considers a free-DSm model for Θ then GΘ = DΘ. If Shafer’s model is used instead then GΘ = 2Θ (the classical
power-set).

3If the labels are not equidistant, the q-operators still work, but they are less accurate.
4The q-multiplication of two linguistic labels defined here can be extended directly to the multiplication of n > 2 linguistic

labels. For example the product of three linguistic label will be defined as Li × Lj × Lk = L[(i·j·k)/(n+1)(n+1)], etc.
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a) Division as an internal operator: / : L × L → L. Let j 6= 0, then

Li/Lj =

{

L[(i/j)·(n+1)] if[(i/j) · (n + 1)] < n + 1,

Ln+1 otherwise.
(9)

The first equality in (9) is well justified because when [(i/j) · (n + 1)] < n + 1, one has

Li/Lj =
i/(n + 1)

j/(n + 1)
=

(i/j) · (n + 1)

n + 1
= L[(i/j)·(n+1)]

For example, if we have L0, L1, L2, L3, L4, L5, corresponding to respectively 0, 0.2, 0.4, 0.6, 0.8,
1, then: L1/L3 = L[(1/3)·5] = L[5/3] = L[1.66] ≈ L2. L4/L2 = L[(4/2)·5] = L[2·5] = Lmax = L5 since
10 > 5.

b) Division as an external operator: ⊘ : L×L → R
+. Let j 6= 0. Since Li⊘Lj = (i/(n+1))/(j/(n+1)) =

i/j, we simply define
Li ⊘ Lj = i/j (10)

Justification of b): when we divide say L4/L1 in the above example, we get 0.8/0.2 = 4, but no
label is corresponding to number 4 which is not even in the interval [0, 1], hence in the division as
an internal operator we need to get as response a label, so in our example we approximate it to
Lmax = L5, which is a very rough approximation! So, depending on the fusion combination rules, it
might better to consider the qualitative division as an external operator, which gives us the exact
result.

• q-subtraction of linguistic labels: − : L × L → {L,−L},

Li − Lj =

{

Li−j if i ≥ j,

−Lj−i if i < j.
(11)

where −L = {−L1,−L2, . . . ,−Ln,−Ln+1}. The q-subtraction above is well justified since when i ≥ j,
one has Li − Lj = i

n+1 − j
n+1 = i−j

n+1 .

The above qualitative operators are logical, justified due to the isomorphism between the set of linguistic
equidistant labels and a set of equidistant numbers in the interval [0, 1]. These qualitative operators are built
exactly on the track of their corresponding numerical operators, so they are more mathematical than the ad-hoc
definition of qualitative operators proposed so far in the literature. They are similar to the PCR5 combination
numerical rule with respect to other fusion combination numerical rules based on the conjunctive rule. But
moving to the enriched label qualitative operators the accuracy decreases.

Remark about doing multi-operations on labels: When working with labels, no matter how many opera-
tions we have, the best (most accurate) result is obtained if we do only one approximation, and that one should
be just at the very end. For example, if we have to compute terms like LiLjLk/(Lp + Lq) as for qPCR5 (see
example in section 6), we compute all operations as defined above, but without any approximations (i.e. not
even calculating the integer part of indexes, neither replacing by n + 1 if the intermediate results is bigger than
n + 1), so:

LiLjLk

Lp + Lq
=

L(ijk)/(n+1)2

Lp+q
= L (ijk)/(n+1)2

p+q ·(n+1)
= L (ijk)/(n+1)

p+q
= L ijk

(n+1)(p+q)
(12)

and now, when all work is done, we compute the integer part of the index, i.e. [ ijk
(n+1)(p+q) ] or replace it by n+1

if the final result is bigger than n+1. Therefore, the term LiLjLk/(Lp +Lq) will take the linguistic value Ln+1

whenever [ ijk
(n+1)(p+q) ] > n + 1. This method also insures us of a unique result, and it is mathematically closer

to the result that would be obtained if working with corresponding numerical masses. Otherwise, if one does
approximations either at the beginning or after each operation or in the middle of calculations, the inaccuracy
propagates (becomes bigger and bigger) and we obtain different results, depending on the places where the
approximations were done.
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4 Quasi-normalization of qm(.)

There is no way to define a normalized qm(.), but a qualitative quasi-normalization [14, 15] is nevertheless
possible when considering equidistant linguistic labels because in such case, qm(Xi) = Li, is equivalent to a
quantitative mass m(Xi) = i/(n + 1) which is normalized if

∑

X∈DΘ

m(X) =
∑

k

ik/(n + 1) = 1

but this one is equivalent to
∑

X∈DΘ

qm(X) =
∑

k

Lik
= Ln+1

In this case, we have a qualitative normalization, similar to the (classical) numerical normalization. But, if the
previous labels L0, L1, L2, . . ., Ln, Ln+1 from the set L are not equidistant, so the interval [0, 1] cannot be
split into equal parts according to the distribution of the labels, then it makes sense to consider a qualitative
quasi-normalization, i.e. an approximation of the (classical) numerical normalization for the qualitative masses
in the same way:

∑

X∈DΘ

qm(X) = Ln+1

In general, if we don’t know if the labels are equidistant or not, we say that a qualitative mass is quasi-normalized
when the above summation holds. In the sequel, for simplicity, one assumes to work with quasi-normalized qual-
itative basic belief assignments.

From these very simple qualitative operators, it is thus possible to extend directly the DSmH fusion rule
for combining qualitative basic belief assignments by replacing classical addition and multiplication operators
on numbers with those for linguistic labels in DSmH formula. In a similar way, it is also possible to extend
PCR5 formula as shown with detailed examples in [14] and in section 6 of this paper. In the next section,
we propose new qualitative-enriched (qe) operators for dealing with enriched linguistic labels which mix the
linguistic value with either quantitative/numerical supporting degree or qualitative supporting degree as well.
The direct qualitative discounting (or reinforcement) is motivated by the fact that in general human experts
provide more easily qualitative values than quantitative values when analyzing complex situations.

In this paper, both quantitative enrichments and qualitative enrichments of linguistic labels are considered
and unified through same general qe-operators. The quantitative enrichment is based directly on the percentage
of discounting (or reinforcement) of any linguistic label. This is what we call a Type 1 of enriched labels. The
qualitative enrichment comes from the idea of direct qualitative discounting (or reinforcement) and constitutes
the Type 2 of enriched labels.

5 qe-operators

We propose to improve the previous q-operators for dealing now with enriched qualitative beliefs provided from
human experts. We call these operators the qe-operators. The basic idea is to use “enriched”-linguistic labels
denoted Li(ǫi), where ǫi can be either a numerical supporting degree in [0,∞) or a qualitative supporting degre
taken its value in a given (ordered) set X of linguistic labels. Li(ǫi) is called the qualitative enrichment5 of
Li. When ǫi ∈ [0,∞), Li(ǫi) is called an enriched label of Type 1, whereas when ǫi ∈ X , Li(ǫi) is called an
enriched label of Type 2. The (quantitative or qualitative) quantity ǫi characterizes the weight of reinforcing or
discounting expressed by the source when using label Li for committing its qualitative belief to a given propo-
sition A ∈ GΘ. It can be interpreted as a second order type of linguistic label which includes both the linguistic
value itself but also the associated degree of confidence expressed by the source. The values of ǫi express the
expert’s attitude (reinforcement, neutral, or discounting) to a certain proposition when using a given linguistic
label for expressing its qualitative belief assignment.

5Linguistic labels without enrichment (discounting or reinforcement) as those involved in q-operators are said classical or being
of Type 0.
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For example with enriched labels of Type 1, if the label L1 , L1(1) represents the linguistic variable Good,
then L1(ǫ1) represents either the reinforced or discounted L1 value which depends on the value taken by ǫ1. In
this example, ǫ1 represents the (numerical) supporting degree of the linguistic value L1 = Good. If ǫ1 = 1.2,
then we say that the linguistic value L1 = Good has been reinforced by 20% with respect to its nominal/neutral
supporting degree. If ǫ1 = 0.4, then it means that the linguistic value L1 is discounted 60% by the source.

With enriched labels of Type 2, if one chooses by example X = {NB, NM, NS, O, PS, PM, PB}, where
elements of X have the following meaning: NB , “negative big”, NM , “negative medium”, NS ,“negative
small”, O , “neutral” (i.e. no discounting, neither reinforcement), PS , “positive small”, PM ,“positive
medium” and PB , “positive big”. Then, if the label L1 , L1(O) represents the linguistic variable Good, then
L1(ǫ1), ǫ1 ∈ X , represents either the qualitative reinforced or discounted L1 value which depends on the value
taken by ǫ1 in X . ǫ1 = O means a neutral qualitative supporting degree corresponding to ǫ1 = 1 for enriched
label of Type 1. ǫ1 represents the qualitative supporting degree of the linguistic value L1 = Good. If ǫ1 = PS,
then we say that the linguistic value L1 = Good has been reinforced a little bit positively with respect to its
nominal/neutral supporting degree. If ǫ1 = NB, then it means that the linguistic value L1 is discounted slightly
and negatively by the source.

We denote by L̃(ǫ) any given set of (classical/pure) linguistic labels L̃ = {L1, L2, . . . , Ln} endowed with the
supporting degree property (i.e. discounting, neutral and/or reinforcement). In other words,

L̃(ǫ) = {L1(ǫ1), L2(ǫ2), . . . , Ln(ǫn)}

represents a given set of enriched linguistic labels6. We assume the same order relationship ≺ on L̃(ǫ) as the one
defined on L̃. Moreover we extend L̃(ǫ) with two extreme (minimal and maximal) enriched qualitative values
L0(ǫ) and Ln+1(ǫ) in order to get closed under qe-operators on L(ǫ) , {L0(ǫ), L̃(ǫ), Ln+1(ǫ)}. For working
with enriched labels (and then with qualitative enriched basic belief assignments), it is necessary to extend the
previous q-operators in a consistent way. This is the purpose of our new qe-operators.

An enriched label Li(ǫi) means that the source has discounted (or reinforced) the label Li by a quantitative
or qualitative factor ǫi. Similarly for Lj(ǫj). So we use the q-operators for Li, Lj labels, but for confidences we
propose three possible versions: If the confidence in Li is ǫi and the confidence in Lj is ǫj , then the confidence
in combining Li with Lj can be:

a) either the average, i.e. (ǫi + ǫj)/2;

b) or min{ǫi, ǫj};

c) or we may consider a confidence interval as in statistics, so we get [ǫmin, ǫmax], where ǫmin , min{ǫi, ǫj}

and ǫmax , max{ǫi, ǫj}; if ǫi = ǫj then the confidence interval is reduced to a single point, ǫi.

In the sequel, we denote by “c” any of the above resulting confidence of combined enriched labels. All these
versions coincide when ǫi = ǫj = 1 (for Type 1) or when ǫi = ǫj = O (for Type 2), i.e. where there is no
reinforcement or no discounting of the linguistic label. However the confidence degree average operator (case a)
) is not associative, so in many cases it’s inconvenient to use it. The best among these three, more prudent and
easier to use, is the min operator. The confidence interval operator provides both a lower and a upper confidence
level, so in an optimistic way, we may take at the end the midpoint of this confidence interval as a confidence level.

The new extended operators allowing working with enriched labels of Type 1 or Type 2 are then defined by:

6In this formal notation, the quantities ǫ1, . . ., ǫn represent any values in [0,∞) if the enrichment is quantitative (Type 1), or
values in X is we consider an qualitative enrichment (Type 2).
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• qe-addition of enriched labels

Li(ǫi) + Lj(ǫj) =

{

Ln+1(c) if i + j ≥ n + 1,

Li+j(c) otherwise.
(13)

• qe-multiplication of linguistic labels

a) As direct extension of (6), the multiplication of enriched labels is defined by

Li(ǫi) × Lj(ǫj) = L[(i·j)/(n+1)](c) (14)

b) as another multiplication of labels, easier, but less exact:

Li(ǫi) × Lj(ǫj) = Lmin{i,j}(c) (15)

• Scalar multiplication of a enriched label

Let a be a real number. We define the multiplication of an enriched linguistic label by a scalar as follows:

a · Li(ǫi) ≈

{

L[a·i](ǫi) if [a · i] ≥ 0,

L−[a·i](ǫi) otherwise.
(16)

• qe-division of enriched labels

a) Division as an internal operator:

Let j 6= 0, then

Li(ǫi)

Lj(ǫj)
=

{

Ln+1(c) if [(i/j) · (n + 1)] ≥ n + 1,

L[(i/j)·(n+1)](c) otherwise.
(17)

b) Division as an external operator:

Let j 6= 0, then we can also consider the division of enriched labels as external operator too as follows:

Li(ǫi) ⊘ Lj(ǫj) = (i/j)supp(c) (18)

The notation (i/j)supp(c) means that the numerical value (i/j) is supported with the degree c.

• qe-subtraction of enriched labels

Li(ǫi) − Lj(ǫj) =

{

Li−j(c) if i ≥ j,

−Lj−i(c) if i < j.
(19)

These qe-operators with numerical confidence degrees are consistent with the classical qualitative operators
when ei = ej = 1 since c = 1 and Li(1) = Li for all i, and the qe-operators with qualitative confidence degrees
are also consistent with the classical qualitative operators when ei = ej = O (this is letter “O”, not zero, hence
the neutral qualitative confidence degree) since c = O (neutral).

6 Examples of qPCR5 fusion of qualitative belief assignments

6.1 Qualitative masses using quantitative enriched labels

Let’s consider a simple frame Θ = {A, B} with Shafer’s model (i.e. A∩B = ∅), two qualitative belief assignments
qm1(·) and qm2(·), the set of ordered linguistic labels L = {L0, L1, L2, L3, L4, L5, L6}, n = 5, enriched with
quantitative support degree (i.e. enriched labels of Type 1). For this example the (prudent) min operator
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A B A ∪ B A ∩ B
qm1(·) L1(0.3) L2(1.1) L3(0.8)
qm2(·) L4(0.6) L2(0.7) L0(1)
qm12(·) L3(0.3) L2(0.7) L0(0.8) L1(0.3)

Table 1: qm1(·), qm2(·) and qm12(·) with quantitative enriched labels

for combining confidences proposed in section 5 (case b) ) is used, but other methods a) and c) can also be
applied.We consider the following qbba summarized in the Table 1:
Note that qm1(·) and qm2(·) are quasi-normalized since L1 + L2 + L3 = L4 + L2 + L0 = L6 = Lmax. The last
raw of Table 1, corresponds to the result qm12(·) obtained when applying the qualitative conjunction rule. The
values for qm12(·) are obtained using intermediate approximations as follows:

qm12(A) = qm1(A)qm2(A) + qm1(A)qm2(A ∪ B) + qm2(A)qm1(A ∪ B)

= L1(0.3)L4(0.6) + L1(0.3)L0(1) + L4(0.6)L3(0.8)

≈ L[(1·4)/6](min{0.3, 0.6}) + L[(0·1)/6](min{0.3, 1}) + L[(4·3)/6](min{0.6, 0.8})

= L1(0.3) + L0(0.3) + L2(0.6) = L1+0+2(min{0.3, 0.3, 0.6}) = L3(0.3)

qm12(B) = qm1(B)qm2(B) + qm1(B)qm2(A ∪ B) + qm2(B)qm1(A ∪ B)

= L2(1.1)L2(0.7) + L2(1.1)L0(1) + L2(0.7)L3(0.8)

≈ L[(2·2)/6](min{1.1, 0.7}) + L[(2·0)/6](min{1.1, 1}) + L[(2·3)/6](min{0.7, 0.8})

= L1(0.7) + L0(1) + L1(0.7) = L1+0+1(min{0.7, 1, 0.7}) = L2(0.7)

qm12(A ∪ B) = qm1(A ∪ B)qm2(A ∪ B) = L3(0.8)L0(1)

≈ L[(3·0)/6](min{0.8, 1}) = L0(0.8)

and the conflicting qualitative mass by

qm12(∅) = qm12(A ∩ B) = qm1(A)qm2(B) + qm2(A)qm1(B)

= L1(0.3)L2(0.7) + L4(0.6)L2(1.1)

≈ L[(1·2)/6](min{0.3, 0.7}) + L[(4·2)/6](min{0.6, 1.1})

= L0(0.3) + L1(0.6) = L0+1(min{0.3, 0.6}) = L1(0.3)

The resulted qualitative mass, qm12(·), is (using intermediate approximations) quasi-normalized since L3+L2+
L0 + L1 = L6 = Lmax.

Note that, when the derivation of qm12(.) is carried out with the approximations done at the end (i.e. the best
way to carry derivations), one gets for qm12(A) in a similar way as in (12):

qm12(A) = qm1(A)qm2(A) + qm1(A)qm2(A ∪ B) + qm2(A)qm1(A ∪ B)

= L1(0.3)L4(0.6) + L1(0.3)L0(1) + L4(0.6)L3(0.8)

= (L1×4/6 + L1×0/6 + L4×3/6)(min{0.3, 0.6, 0.3, 1, 0.6, 0.8})

= L4/6+0/6+12/6(0.3) = L16/6(0.3) ≈ L[16/6](0.3) = L3(0.3)

Similarly:
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qm12(B) = qm1(B)qm2(B) + qm1(B)qm2(A ∪ B) + qm2(B)qm1(A ∪ B)

= L2(1.1)L2(0.7) + L2(1.1)L0(1) + L2(0.7)L3(0.8)

= L2×2/6+2×0/6+2×3/6(min{1.1, 0.7, 1.1, 1, 0.7, 0.8})

= L4/6+0/6+6/6(0.7) = L10/6(0.7) ≈ L[10/6](0.7) = L2(0.7)

But for qm12(∅), computed in a similar way as we did in (12), one gets:

qm12(∅) = qm12(A ∩ B) = qm1(A)qm2(B) + qm2(A)qm1(B)

= L1(0.3)L2(0.7) + L4(0.6)L2(1.1)

= L1×2/6+4×2/6(min{0.3, 0.7, 0.6, 1.1})

= L10/6(0.3) ≈ L[10/6](0.3) = L2(0.3)

Which is different from the previous case when we approximate each time and not only at the end. So qm12(.)
is not quasi-normalized in this way of calculation.

According to qPCR5 (see [14]), we need to redistribute the conflicting mass L1(0.3) to the elements involved
in the conflict, A and B, thus:

a) qm1(A)qm2(B) = L1(0.3)L2(0.7) = L0(0.3) is redistributed back to A and B proportionally with respect
to their corresponding qualitative masses put in this partial conflict, i.e. proportionally with respect to
L1(0.3) and L2(0.7). But, since L0(0.3) is the null qualitative label (equivalent to zero for numerical
masses), both A and B get L0 with the minimum confidence, i.e. L0(0.3).

b) qm2(A)qm1(B) = L4(0.6)L2(1.1) = L1(0.6) is redistributed back to A and B proportionally with respect
to their corresponding qualitative masses put in this partial conflict, i.e. proportionally with respect to
L4(0.6) and L2(1.1), i.e.

xA

L4(0.6)
=

yB

L2(1.1)
=

L4(0.6)L2(1.1)

L4(0.6) + L2(1.1)

whence using (12), one gets

xA =
L4(0.6)L4(0.6)L2(1.1)

L4(0.6) + L2(1.1)
= L[((4·4·2)/62)/(4+2))(6)](min{0.6, 0.6, 1.1, 0.6, 1.1}) = L[8/9](0.6) = L1(0.6)

yB =
L2(1.1)L4(0.6)L2(1.1)

L4(0.6) + L2(1.1)
= L[((2·4·2)/62)/(4+2))(6)](min{1.1, 0.6, 1.1, 0.6, 1.1}) = L[4/9](0.6) = L0(0.6)

Note that in this particular example, we get the same result if one uses the intermediate approximation
as published in [5], i.e.

xA = L4(0.6)·
L4(0.6)L2(1.1)

L4(0.6) + L2(1.1)
≈ L4(0.6)·

L1(0.6)

L6(0.6)
= L4(0.6)·L1(0.6) = L[(4·1)/6](min{0.6, 0.6}) = L1(0.6)

yB = L2(1.1)·
L4(0.6)L2(1.1)

L4(0.6) + L2(1.1)
≈ L2(1.1)·

L1(0.6)

L6(0.6)
= L2(1.1)·L1(0.6) = L[(2·1)/6](min{1.1, 0.6}) = L0(0.6)

Thus, the result of the qPCR5 fusion of qm1(·) with qm2(·) is given by

qmPCR5(A) = L3(0.3) + L0(0.3) + xA = L3(0.3) + L0(0.3) + L1(0.6) = L3+0+1(min{0.3, 0.3, 0.6}) = L4(0.3)

qmPCR5(B) = L2(0.7) + L0(0.3) + yB = L2(0.7) + L0(0.3) + L0(0.6) = L2+0+0(min{0.7, 0.3, 0.6}) = L2(0.3)

qmPCR5(A ∪ B) = L0(0.8)

qmPCR5(A ∩ B) = L0 = L0(1)

This qualitative PCR5-combined resulting mass is also quasi-normalized7 since L4 +L2 +L0 +L0 = L6 = Lmax.

7The confidence level/degree in the labels does not matter in the definition of quasi-normalization.
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6.2 Qualitative masses with qualitative enriched labels

Using qualitative supporting degrees (i.e. enriched labels of Type 2) taking their values in the linguistic set
X = {NB, NM, NS, O, PS, PM, PB}, with NB ≺ NM ≺ NS ≺ O ≺ PS ≺ PM ≺ PB we get similar result
for this example. So, let’s consider a frame Θ = {A, B} with Shafer’s model and qm1(·) and qm2(·) chosen as
in Table 2

A B A ∪ B
qm1(·) L1(NB) L2(PS) L3(NS)
qm2(·) L4(NM) L2(NS) L0(O)

Table 2: qm1(·), qm2(·) with qualitative enriched labels

The qualitative conjunctive and PCR5 fusion rules are obtained with derivations identical to the previous ones,
since NB ≺ NM ≺ NS ≺ O ≺ PS ≺ PM ≺ PB and we associated NB = 0.3 or less, NM = [0.5, 0.6],
NS = [0.7, 0.8], O = 1 and PS = 1.1. The minimum operator on X(qualitative degrees) works similarly as on
R

+ (quantitative degrees). Thus, finally one gets results according to Table 3.

A B A ∪ B A ∩ B
qm12(·) L3(NB) L2(NS) L0(NS) L1(NB)

qmPCR5(·) L4(NB) L2(NB) L0(NS) L0(O)

Table 3: Result obtained with qualitative conjunctive and PCR5 fuion rules

7 Conclusion

With the recent development of qualitative methods for reasoning under uncertainty developed in Artificial
Intelligence, more and more experts and scholars have great interest on qualitative information fusion, especially
those working in the development of modern multi-source systems for defense, robot navigation, mapping,
localization and path planning and so on. In this paper, we have proposed two possible enrichments (quantitative
and/or qualitative) of linguistic labels and a simple and direct extension of the q-operators developed in the
DSmT framework. We have also shown how to fuse qualitative-enriched belief assignments which can be
expressed in natural language by human experts. Two illustrating examples have been presented in details to
explain how our qualitative-enriched operators (qe-operators) and qualitative PCR5 rule of combination work.
Some research in robotics of the application of qe-operators (with quantitative or qualitative supporting degrees)
is under progress and will be presented in a forthcoming publication.
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