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For axiom A diffeomorphisms and equilibrium state, we prove a Large deviation result for the sequence of successive return times into a fixed open set, under some assumption on the boundary. Our result relies on and extends the work by Chazottes and Leplaideur who where considering cylinder sets of a Markov partition.

Introduction

Recall that for any given measurable and ergodic dynamical system (X, T, µ), and for any set A with positive µ-measure, the Kač theorem implies that the sequence r n A of return-times into A by iterations of the map T satisfies

lim n→+∞ r n A (x) n = 1 µ(A)
.

The Large Deviation Principle we are interested in, gives estimates for the measure of the set of points whose nth return time is far from the asymptotic value; namely we want to show the existence of the rate function Φ A such that for every u > 1 µ(A) ,

lim n→∞ 1 n log µ r n A n ≥ u = Φ A (u)
and for every 0

≤ u < 1 µ(A) , lim n→∞ 1 n log µ r n A n ≤ u = Φ A (u).
If this holds, we will say that the sequence of return-times into the set A satisfies the LDP for the measure µ. In a more restrictive case, if this property only holds for u ⊂]u, u[ with u < 1 µ(A) < u, we will say that the sequence of return-times into A satisfies a LDP for the measure µ near the average.

A powerful method in Large Deviation Theory is to prove a level 2 large deviation result, at the level of empirical measures, and then extract from this abstract result some precise information about our particular sequence (See e.g. [START_REF] Dembo | Large deviations techniques & applications[END_REF]). Although this method would certainly lead to some result, it is not straightforward since the return time into a set is in general not continuous (it is even unbounded). This was already the case for cylinder sets considered in [START_REF] Chazottes | Fluctuations of the nth return time for Axiom A diffeomorphisms[END_REF], but here the picture is even worse since we are considering non-rectangle sets.

Another common and more naive method is to compute the cumulant generating function Ψ A , defined by the following limit (if it exists)

Ψ A (α) = lim n→∞ 1 n log e αr n A dµ,
and show that it is continuous and convex. Then it is straightforward to derive the relation between these two functions : they form a Legendre transform pair, namely

Φ A (u) = inf α {-αu + Ψ A (α)} . (1) 
This is the approach that we are adopting in this paper.

Our result applies to Axiom A diffeomorphism and equilibrium state of Hölder potential, and for the sequence of successive return times into an open set A that satisfies a condition about the smallness of its (non-Markovian) boundary. Taking a Markov partition and the corresponding semi-conjugacy, we will state the result for subshifts of finite type, keeping in mind that this really corresponds to a result for open sets on the manifold.

Statements

Throughout, (Σ, σ) will denote a mixing shift of finite type. The set of vertices of the defining graph of (Σ, σ) is {1, . . . , N} with N ≥ 2. We denote by A = (a ij ) the N ×N-transition (aperiodic) matrix associated to Σ; namely points in Σ are sequences x = {x n } n∈Z such that for every n, x n belongs to {1, . . . , N} and

a xnx n+1 = 1.
Let φ : Σ → R be α-Hölder continuous. For a given σ-invariant measure λ, the φpressure is the quantity P λ (φ) := h λ (σ) + φ dλ; P λ (φ) will also be called the ν-pressure of φ. The unique equilibrium state for φ, i.e. the unique σ-invariant probability measure with maximal φ-pressure, will be denoted by µ φ . Its pressure is the topological φ-pressure.

For a set A ⊂ Σ and an integer n, we denote by ∂A its topological boundary A ∩ Σ \ A.

Note that ∂A can be empty; this holds for example when A is a finite union of cylinders. We let P φ (∂A) be the φ pressure of ∂A ; since ∂A may not be invariant we define it according to the variational principle: P φ (∂A) = sup h ν + φdν : ν ergodic and ν(∂A) > 0 Note that this does not correspond to the dimension-like definition of the pressure introduced by Pesin and Pitskel [START_REF] Ya | Topological pressure and the variational principle for non-compact sets[END_REF].

If D is any subset in Σ, and for x ∈ Σ, we denote by r D (x) the first hitting in D by iterations of σ (if it exists). Namely r D (x) is the smallest integer n > 1 such that σ n (x) belongs to D, and r D (x) = +∞ if no such integer exists. We also set r 1 D (x) = r D (x), and denote the nth return time r n D (x) the cocycle defined by

r n+1 D (x) = r n D (x) + r D (σ r n D (x) (x)).

Then our result is:

Theorem. Let A ⊂ Σ be an open set. Let φ : Σ → R be any Hölder continuous function. We have:

1. if for any σ-invariant measure µ, µ(∂A) = 0, then the sequence (r n A ) n≥1 satisfies the Large Deviation Principle for µ φ . 2. if the φ-pressure P φ (∂A) of the boundary is strictly smaller than the φ-topological pressure then the sequence (r n A ) n≥1 satisfies a Large Deviation Principle for µ φ near the average. We recall that our method is based on the existence of the cumulant generating function Ψ A (α) for every α in some open set ]α, α[. For the point 1, we will prove that the function Ψ A is defined on an interval ] -∞, α[. For the point 2, we will only get the existence of Ψ A on some open neighborhood ]α, α[ of 0.

The hypotheses µ(∂A) = 0 for any invariant measure µ could seem very restrictive; however it should appear quite often in some general situations, as the following example suggests.

Example 2.1. Let (M, f ) be an hyperbolic automorphism of the 2-torus, and consider the family of balls B(x, r) about a given point x ∈ M. Then, for all but countably many radii r > 0, the condition µ(∂B(x, r)) = 0 for every invariant measure µ is satisfied.

Proof. Let S be the boundary of a ball. Using hyperbolicity one can show that the intersection of S with its images f n (S) consists, at most, of countably many points. Hence the set of recurrent points R(S) in S is at most countable. If an invariant measure gives weight to S, by Poincare Recurrence Theorem it implies that it gives weight to R(S) which is a countable set. Thus the measure must have an atomic part consisting of a periodic orbit. Hence S must contain a periodic point. Since the set of periodic points of such a map is countable there can be at most countably many boundaries ∂B(x, r) carrying a periodic point as r varies, which proves the proposition.

The hypotheses in Point 2 about the pressure of the boundary appears quite naturally in the thermodynamic formalism of dynamical systems with singularities. In the case of φ = 0 it simply says that the boundary ∂A does not carry full measure theoretical entropy. A more explicit condition can be given on the manifold itself. Proposition 2.2. Let f be an axiom A diffeomorphism of a manifold M and let µ φ be an equilibrium state of a Hölder potential φ. Let V be a Borel set and denote by U ε (∂V ) the ε-neighborhood of the set ∂V . Assume that there exist some constants c > 0 and a > 0 such that µ φ (U ε (∂V )) ≤ cε a ∀ε > 0.

Then, P φ (∂V ) < P φ (M).

See Section 5 for further details. In particular we have: Proof. Set φ = -log |D u x f |. The equilibrium measure µ φ is the SBR measure which is here the volume measure, and the assumption in Proposition 2.2 is clearly satisfied.

Outline of the proof of the theorem: in Section 3 we recall how the LDP was obtained for the return-times in cylinders. In Section 4 we compare the cumulant generating functions of inner and outer approximation of our set A by union of cylinders. In section 5, under the assumption of the point 2 of the theorem, we prove the existence of the cumulant generating function Ψ A on some interval. In section 6 we give a dynamical proof of the statement in point 1 if the theorem.

Large deviation for return time in cylinders

We first recall the local thermodynamic formalism introduced in [START_REF] Leplaideur | Local product structure for equilibrium states[END_REF]. Then we recall how the large deviation principle for union of cylinders was obtained in [START_REF] Chazottes | Fluctuations of the nth return time for Axiom A diffeomorphisms[END_REF]. Finally, we derive a uniform mass concentration principle.

3.1. Induced systems and local thermodynamic formalism. For a given point x = (x n ) n∈Z ∈ Σ, the past (resp. future) of the point denotes the backward (resp. forward) sequence (x n ) n≤0 (resp. (x n ) n≥0 ). For x and y in Σ, when x 0 = y 0 , the point z def = x, y is the point obtained when we take the past of y and the future of x.

In Σ, the cylinder [i k , . . . , i k+n ] will denote the set of points x ∈ Σ such that x j = i j (for every k ≤ j ≤ k + n). Such a cylinder will also be called a word (of length n + 1) or equivalently a (k, k + n)-cylinder. If x is in Σ, C k,k+n (x) will denote the cylinder [i k , . . . , i k+n ] such that x j = i j (for every k ≤ j ≤ k + n). By extension, C -∞,n (x) will denotes the set of points (y k ) such that y k = x k for every k ≤ n; similarly C n,+∞ (x) will denotes the set of points (y k ) such that y k = x k for every k ≥ n. By definition, the local unstable leaf W u loc (x) is C -∞,0 (x), and the local stable leaf W s loc (x) is C 0,+∞ (x). For n ≥ 0, a n-cylinder will denote a (-n, n)-cylinder. The letter R = ∪R i denotes some finite union of (-n, n)-cylinders; in each of these cylinders we fix some local unstable leaf F i . There is a natural projection from each R i onto each F i defined by π F i (z) = z, x , where x is any point in F i . For convenience we denote by π F the map defined on R by

π F (z) = π F i (z) ⇐⇒ z ∈ R i .
We denote by g the first return map in R, and by g F the map π F • g. We thus have g(x) = σ r R (x) (x). Note that if the maps r R , g and g F are not defined everywhere in R, the inverse branches of g F are well defined in the whole F .

We can thus define the Ruelle-Perron-Frobenius operator for g F : for x in F , we set

L S (T )(x) = y, g F (y)=x e S r R (y) (φ)(y)-r R (y).S T (y),
where T : F → R is a continuous function, and S is a real parameter. As usual, S n (φ)(x) denotes the Birkhoff sum φ(x)

+ . . . + φ • σ n-1 (x).
There exists some critical S c , such that for every S > S c all the following holds: L S admits a unique and single dominating eigenvalue λ S in the set of α-Hölder continuous functions. The adjoint operator L * S has also λ S for unique and single dominating eigenvalue; we denote by ν S the unique probability measure on F such that L * S (ν S ) = λ S .ν S . We denote by H S , the unique α-Hölder continuous and positive function on F satisfying L S (H S ) = λ S .H S and H S dν S = 1. We also denote by µ S the measure H S .ν S , and by µ S the natural extension of µ S . We recall that µ S is a g F -invariant probability measure, and µ S is a g-invariant probability measure. At last, we denote by m S the opened-out measure: namely m S is the σ-invariant measure satisfying, m S (R) > 0, and µ S is the conditional measure m S (.|R).

The spectral properties of L S yield the existence of positive real constants C φ and ε S , such that for every Hölder continuous T : F → R, for every integer n ≥ 1, for every x in F and for every S > S c

L n S (T )(x) = e n log λ S T dν S H S (x) + O(e n(log λ S -ε S ) )||T || ∞ . (2) 
Note that H S is a positive function on the compact set F . We now finish this subsection with some important characterization for the measure m S .

Lemma 3.1. The measure m S is the unique equilibrium state in (Σ, σ) associated to φ -log λ S .1I R . Moreover, the φ -log λ S .1I R -pressure is S.

Proof. for simplicity we set β := log λ S The measure m S satisfies for every S > S c ,

h m S (σ) + φ dm S = S + m S (R)β. ( 3 
)
We refer the reader to [START_REF] Leplaideur | Local product structure for equilibrium states[END_REF], prop. 6.8 for a proof. Moreover, the measure µ S is the unique equilibrium state for (R, g) associated to the potential S r(.) (φ)(.) -S.r(.), with pressure β. Let us pick some σ-invariant probability measure, ν.

Let us first assume that ν(R) > 0. We have,

h ν (σ) + φ dν -S = ν(R) h ν |R (g) + S r(.) (φ) dν |R -S. r(.) dν |R , ≤ ν(R)β,
where ν |R is the conditional measure ν(.|R). This gives

h ν (σ) + φ dν -β. 1I R dν ≤ S,
with equality if and only if ν |R = µ S (i.e. m S = ν).

If we assume that ν(R) = 0, then ν is a σ-invariant probability measure with support in Σ R . Therefore it must satisfy

h ν (σ) + φ dν -β. 1I R dν = h ν (σ) + φ dν ≤ S c < S.
This finishes the proof of the lemma.

3.2.

Large deviation for return times in cylinders. In [START_REF] Chazottes | Fluctuations of the nth return time for Axiom A diffeomorphisms[END_REF], it is proved that the critical value S c is the pressure of the dotted system, with hole R, associated to the potential φ. Namely we consider in Σ the system Σ R := n∈Z σ -n (Σ \ R) . Up to the fact that this new system is mixing, it was proved in [START_REF] Chazottes | Fluctuations of the nth return time for Axiom A diffeomorphisms[END_REF] that its φ-pressure is the critical S c . We claim that the mixing hypothesis can be omitted. Indeed, any subshift of finite type can be decomposed in irreducible components, which satisfy the mixing property, but for some iteration of the map σ (see e.g. [START_REF] Bowen | Equilibrium states and the ergodic theory of Anosov diffeomorphisms[END_REF]). As we are considering first returns in R, note that the word defined by the cylinder C 0,r R (x) (x) contains no R i but at the first position. Now, two different irreducible components can be joined in Σ only by a path which contains R. Therefore, the word defined by the cylinder C 0,r R (x) (x) is an admissible word for a unique irreducible component.

Unicity of the equilibrium state in any mixing subshift (for φ) implies that the topological φ-pressure P φ (Σ R ) for (Σ R , σ) is strictly lower than the topological φ-pressure for Σ, P φ (Σ).

In [START_REF] Chazottes | Fluctuations of the nth return time for Axiom A diffeomorphisms[END_REF], it is also proved that λ S → +∞ as S goes to S c . Moreover, the map S → log λ S is a decreasing convex map on ]S c , +∞[. There also exists some complex neighborhood of ]S c , +∞[ such that the map S → log λ S admits an analytic extension on it. In particular the map S → log λ S is real-analytic on ]S c , +∞[. Finally, it is proved in [START_REF] Chazottes | Fluctuations of the nth return time for Axiom A diffeomorphisms[END_REF] that for every α < α(R)

:= P φ (Σ) -Pφ(Σ R ), lim n→+∞ 1 n log R e α.r n R (x) dµ φ = log λ P φ (Σ)-α . (4) 
We shall show now that the large deviation for successive return time and entrance time is the same question; namely, the fact that we are starting from the set R or from the whole space to compute the integral does not make any difference. Proposition 3.2. If R and S are finite unions of cylinders, then

Ψ R (α) = lim 1 n log S e αr n R dµ, in particular we have Ψ R (α) = log λ P φ (Σ)-α .
Remark 1. As mentioned in the introduction, this readily implies the large deviation principle for return times in the form given by (1).

The proposition is a weak consequence of the ψ-mixing property of the measure µ φ . Indeed, there exists M > 0 and κ > 1 such that if f and g are two integrable functions such that f (x) only depends on (x n ) n≤p and g(x) only depends on (x n ) n≥p+M then

κ -1 f dµ φ gdµ φ ≤ f gdµ φ ≤ κ f dµ φ gdµ φ . (5) 
Lemma 3.3. If R and S are finite union of (-m, m) cylinder then for any n ≥ M + 2m and for

κ -1 µ(S) Σ e αr n-(M +2m) R dµ φ ≤ S e αr n R dµ φ ≤ κµ(S)e α(M +2m) Σ e αr n R dµ φ (α ≥ 0) κ -1 µ(S)e α(M +2m) Σ e αr n R dµ φ ≤ S e αr n R dµ φ ≤ κµ(S) Σ e αr n-(M +2m) R dµ φ (α ≤ 0).
Proof. For any n ≥ M + 2m we have

r n-(M +2m) R • f M +2m ≤ r n R ≤ M + 2m + r n R • f M +2m
from which the result follows by inequality [START_REF] Dembo | Large deviations techniques & applications[END_REF].

The proof of the proposition consists in applying twice the lemma : from the integration over S to Σ and then to R.

Concentration of the mass.

Let R be a finite union of cylinders. The large deviation principle holds for the return times r n R . It is well-known that this implies a kind of concentration of the mass. Proposition 3.4. Let R be a finite union of cylinders. Let α and δ > 0 such that

α + δ < α(R). Then for every τ > Ψ R (α + δ) -Ψ R (δ) δ we have Ψ R (α) = lim n→+∞ 1 n log e α.r n R dµ φ = lim n→+∞ 1 n log {r n R ≤nτ } e α.r n R dµ φ .
Proof. Take ε > 0 so small that -δτ

+ Ψ R (α + δ) + ε ≤ Ψ R (α) -ε.
Using Markov inequality we get

r n R >nτ e α.r n R dµ φ = r n R >nτ e (α+δ).r n R e -δ.r n R dµ φ ≤ e -δ.nτ r n R >nτ e (α+δ).r n R dµ φ ≤ e -δ.nτ e (α+δ).r n R dµ φ ≤ e -δ.nτ e n.(Ψ R (α+δ)+ε) = o(e n.Ψ R (α) )
4. Existence of inner and outer approximations, properties and consequences of their equality

In the first subsection we prove a monotonicity result about cumulant generating functions. The idea is to approximate the set A from the inside and from the outside by finite unions of cylinders, and show that the inner cumulant generating function Ψ in and the outer cumulant generating function Ψ out exist. Finally, we study the consequence of their equality on the cumulant generating function of the set A. As any (-m, m)-cylinder is a union of (-m -1, m + 1)-cylinders, we have

B m ⊂ B m+1 ⊂ A ⊂ C m+1 ⊂ C m ; Therefore (D m ) is a decreasing sequence of compact set which converges to ∂A.
Following what is done above, there exists two analytic functions Ψ Bm and Ψ Cm respectively defined on ] -∞, α(B m )[ and ] -∞, α(C m )[. As it is said above, α(B m ) is the difference between P φ (Σ) and the topological φ-pressure of the dotted system Σ Bm . In the same way, α(C m ) is the difference between P φ (Σ) and the topological φ-pressure of the dotted system Σ Cm . Now, we clearly have Σ Cm ⊂ Σ Bm , because C m ⊃ B m . We also have Proposition 4.1. For any 0 ≤ α < α 0 and for any sufficiently large m, we have

C
Ψ Cm (α) ≤ Ψ A (α) ≤ Ψ A (α) ≤ Ψ Bm (α).
For any α < 0 we have

Ψ Bm (α) ≤ Ψ A (α) ≤ Ψ A (α) ≤ Ψ Cm (α).

Proof. The double inclusion B

m ⊂ A ⊂ C m implies that r n Bm ≥ r n A ≥ r n Cm .
The result follows then immediately by integration and taking the appropriate limits.

Remark 2. Forgetting the set A in the previous proof, we have in fact proved that if B and C are finite unions of cylinders satisfying B ⊂ C, then for any α < 0,

Ψ B (α) ≤ Ψ C (α), (6) 
and for any α ≥ 0 (but sufficiently small such that the functions are well-defined)

Ψ B (α) ≥ Ψ C (α). (7) 
4.2. Existence of inner and outer cumulant generating functions. Let us pick some 0 < α < α 0 . By [START_REF] Ya | Topological pressure and the variational principle for non-compact sets[END_REF], the sequence of functions (Ψ Bm ) m is a non-increasing sequence of non-decreasing convex functions on [0, α[ (for sufficiently large m !). It thus (simply) converges to some limit function Ψ in . This function Ψ in has to be convex, thus continuous on ]0, α[. It also has to be non-decreasing, thus it must be continuous on [0, α[. Moreover the Dini Theorem yields that the convergence is uniform on every compact set included in [0, α[. This occurs for any 0 < α < α 0 , thus the limit function Ψ in is non-decreasing and continuous on [0, α 0 [ and the convergence is uniform on every compact set included in [0, α 0 [ . In the same way sequence of functions (Ψ Cm ) m is a non-decreasing sequence of nondecreasing convex functions on [0, α 0 [ (for any m !). It thus (simply) converges to some limit function Ψ out ; this function Ψ out is convex and continuous on ]0, α 0 [. Note that by [START_REF] Ya | Topological pressure and the variational principle for non-compact sets[END_REF] we have 0 ≤ Ψ out ≤ Ψ in .

As Ψ Bm (0) = Ψ Cm (0) = 0 for any m, Ψ out is continuous on [0, α 0 [, and the convergence is uniform.

We do the same work on ] -∞, 0] using (6) instead of [START_REF] Ya | Topological pressure and the variational principle for non-compact sets[END_REF]. Note that for α ≤ 0 we have

0 ≥ Ψ out (α) ≥ Ψ in (α).
The two functions Ψ in and Ψ out are convex and non-decreasing. By proposition 4.1 we have

Ψ out (α) ≤ Ψ A (α) ≤ Ψ A (α) ≤ Ψ in (α) for α ≥ 0, and Ψ in (α) ≤ Ψ A (α) ≤ Ψ A (α) ≤ Ψ out (α) for α ≤ 0.
We emphasize that the existence of the limit Ψ A (α) immediately follows from the equality Ψ in (α) = Ψ out (α): Proposition 4.2. If Ψ in = Ψ out on an open interval then the cumulant generating function Ψ A exists, is equal to Ψ in = Ψ out on this interval and it is a convex, continuous, non-decreasing function.

Note that if the cumulant generating function Ψ A exists on some open interval (-∞, α)

and satisfies lim α→α Ψ A (α) = +∞ then one gets the Large Deviation Principle and the formula (1) holds. In Sections 5 and 6 we will prove, under the assumption in point 1 of the theorem, the existence of Ψ A on an interval (-∞, α) but we are not able to prove its maximality (the limit could be finite).

Nevertheless, using next proposition which exploits the symmetry of our assumption, this will be sufficient to get the existence of the rate function Φ A on the whole interval. 

Φ A (u) = (u -1) Φ A c u u -1 .
In particular, if Φ A c is the Legendre transform of the cumulant generating function

Ψ A c then Φ A (u) = inf α<0 {-αu + (u -1)Ψ A c (α)} .
Proof. Observe that if u > 1 µ(A) ≥ 1 then r n A ≥ nu if and only if the orbit entered at most n times in A before the time ⌊nu⌋, which means that the orbit entered at least ⌊n(u -1)⌋ times into A c before the time ⌊nu⌋. Therefore

1 n log µ φ (r n A ≥ nu) = 1 n log µ φ r ⌊n(u-1)⌋ A c
< ⌊n(u -1)⌋ ⌊nu⌋ ⌊n(u -1)⌋ and the result follows by taking the limit as n → ∞.

Coincidence of inner and outer approximation in the case of a small pressure boundary

The goal of this section is to prove the point 2 of the theorem. By the previous analysis (See Proposition 4.2) it is sufficient to prove the existence of some interval (α 2 , α 1 ) ∋ 0 such that for any α ∈ (α 2 , α 1 ) we have Ψ in (α) = Ψ out (α).

5.1.

A more explicit condition to get a small pressure boundary. Let K ⊂ Σ be a Borel set. We recall our definition of its φ-pressure:

P φ (K) = sup h ν + φdν : ν ergodic and ν(K) > 0 .
Note that it is not the same as the one defined as a dimension like characteristic with forward cylinders. That would satisfy us in the case of expanding maps, but for diffeomorphisms it would lead to a condition much too strong. Proposition 5.1. Let K ⊂ Σ be a Borel set and let V n (K) be the smallest union of (-n, n)-cylinders which contains K. If there exist some constants c > 0 and θ > 0 such that µ φ (V n (K)) ≤ ce -θn for all integers n, then P φ (K) ≤ P φ (Σ) -1 2 θ. Proof. Let S n φ(x) = n-1 k=-n φ(x) denote the two sided Birkhoff sum and Z x n the (-n, n)cylinder containing the point x ∈ Σ. Recall that since µ φ is a Gibbs measure, for some constant b > 0 and for every x ∈ Σ we have

e -b ≤ µ φ ( Z x n ) exp S n φ(x) -2nP φ (Σ) ≤ e b .
Let ν be an ergodic measure such that ν(K) > 0. We have

c ≥ e θn µ φ (V n (K)) ≥ K exp θn + log µ φ ( Z x n ) ν( Z x n ) dν(x) = K exp 2n θ 2 + P φ (Σ) + 1 2n S n φ(x) - 1 2n log ν( Z x n ) dν(x).
The Shannon-McMillan-Breiman theorem and the ergodic theorem implies the convergence ν-a.e. of the term into square bracket to the value θ 2 + P φ (Σ) + h ν + φdν, which cannot be positive according to Fatou's lemma.

Proof of Proposition 2.2. Take a Markov partition of sufficiently small diameter and denote by π : Σ → M the semi-conjugacy. We know that the diameter of the image by π of a (-n, n)-cylinder goes uniformly to zero at an exponential rate. Thus, setting A = π -1 V we get, since ∂A ⊂ π -1 ∂V that the (-n, n)-cylindrical neighborhood of ∂A has a measure exponentially small, thus Proposition 5.1 applies.

5.2.

Coincidence for positive values of α. Lemma 3.1 characterizes Ψ Bm and Ψ Cm : as soon as Ψ Bm (α) is defined, Ψ Bm (α) is the unique real number t = t(α, m) such that the topological pressure associated to the potential φ -t1I Bm , P φ-t1 I Bm , equals P φ (Σ)α.

Similarly, Ψ Cm (α) is the unique real number t = t(α, m) such that the topological pressure associated to the potential φ -t1I Cm , P φ-t1 I Cm , equals P φ (Σ)α.

Let us pick some α > 0. We denote by m Bm,α the measure m S obtained when we have R = B m and S = P φ (Σ)α in subsection 3.1. This measure is the unique equilibrium state associated to the potential φ -Ψ Bm (α).1I Bm . The measure weights B m , hence C m and we can take the induced measure on C m . Therefore we have (omitting the subscribe m for convenience)

h m B,α (f ) + φ -Ψ B (α) dm B,α = P φ (Σ) -α h m B,α (f ) + φ -(P φ (Σ) -α) dm B,α = m B,α (B)Ψ B (α) m B,α (C) h µ B,α,C (g C ) + S r C (φ -(P φ (Σ) -α))dµ B,α,C = m B,α (B)Ψ B (α),
where µ B,α,C is the conditional measure m B,α|C and g C is the first return map on C. This measure has a pressure in C lower than Ψ C (α); we thus get

m Bm,α (B m ) m Bm,α (C m ) Ψ Bm (α) ≤ Ψ Cm (α). (8) 
Recall that for positive α, 0 < Ψ Cm (α) ≤ Ψ Bm (α) and are upper bounded (uniformly in every compact set in [0, α 0 [).

Proposition 5.2. There exists some α 1 > 0 such that for every α ∈ (0, α 1 ),

lim m→+∞ m Bm,α (D m ) m Bm,α (C m ) = 0.
In particular, Ψ in = Ψ out on this interval.

The proof of the proposition is an immediate consequence of these two lemmas and Inequality (8). Let us show that L > 0 whenever α < α 0 .

Since µ m is an equilibrium state we have

h µm + φ dµ m -Ψ Bm (α)µ m (B m ) = P φ (Σ) -α. (9) 
By semi-continuity for the metric entropy and the continuity of φ we obtain

P ν (φ) = h ν + φdν ≥ P φ (Σ) -α + Ψ in (α)L. ( 10 
)
If ν(B j ) = 0 then this yields that ν is a σ-invariant measure for the dotted system Σ B j . Hence, its φ-pressure must be smaller than P φ (Σ B j ), which is by definition P φ (Σ)α(B j ).

If this holds for every j then P ν (φ) ≤ P φ (Σ)α 0 (remember that (α(B j )) converges to α 0 ). On the other hand by (10) we had P ν (φ) ≥ P φ (Σ)α, and α < α 0 . This yields a contradiction. Therefore ν(B j ) > 0 for some j. Additionally, whenever m ≥ j we get µ m (B m ) ≥ µ m (B j ), and the later converges to ν(B j ) by continuity of 1I B j . This achieves the proof of the lemma since C m ⊃ B m for any m. Proof. Let us fix some α ∈ (0, α 1 ). Let us pick any accumulation point ν for the sequence of measures µ m (we keep the notation of the preceding lemma). We claim that ν(∂A) = 0. Assume for a contradiction that ν(∂A) > 0. Then let H = ∪ n∈Z f -n ∂A be the invariant hull of ∂A. Let ν 0 and ν 1 be the conditional measures of ν on H and Σ \ H. These two invariant probabilities are such that ν = pν 0 + qν 1 for some p > 0. Observe that by definition, any ergodic component of ν 0 gives mass to H. Therefore even if ν 0 is not ergodic, since the entropy is affine we still get that

h ν 0 + φ dν 0 ≤ P φ (∂A) = P φ (Σ) -α 1 . (11) 
Copying the equality (9), we get for every integers m ≥ j that

h µm + φdµ m -Ψ Bm (α)µ m (B j ) ≥ P φ (Σ) -α.
Thus letting m → ∞ gives, since the entropy is semi-continuous and affine,

p h ν 0 + φ dν 0 -Ψ in (α)ν 0 (B j ) + q h ν 1 + φ dν 1 -Ψ in (α)ν 1 (B j ) ≥ P φ (Σ) -α, (12) 
Hence ( 11) and (12) yield that for every j

h ν 1 + φ dν 1 -Ψ in (α)ν 1 (B j ) ≥ P φ (Σ) -α + p q (α 1 -α).
We now choose j large enough such that

h ν 1 + φ dν 1 -Ψ B j (α)ν 1 (B j ) > P φ (Σ) -α
holds. This is a contradiction because the measure ν 1 would have a φ -Ψ B j 1I B j -pressure strictly larger than the associated equilibrium state. Thus we have ν(∂A) = 0.

To finish the proof let us fix some ε > 0 and consider any j such that ν(D j ) < ε. Such an integer j exists by outer regularity of the measure ν and because ∂A = ↓D n . Note that 1I D j is continuous. Now, for any m ≥ j we have D m ⊂ D j , and then we get

0 ≤ lim sup m µ m (D m ) ≤ ν(D j ) < ε.
This holds for every positive ε, which proves the lemma.

Remark 3. We remark that under the assumption in point 1 of the theorem, we always have ν(A) = 0 for the measure ν constructed in Lemma 5.4, therefore α 1 = α 0 . 5.3. Coincidence for negative values of α. We remark that the measure m C,α is a Gibbs measure with full topological support, thus it gives weight to B. Therefore we can copy the case α positive and induce on B (instead of C); we get similarly

m Cm,α (C m ) m Cm,α (B m ) Ψ Cm (α) ≤ Ψ Bm (α). ( 13 
)
Proposition 5.5. There exists some real α 2 < 0 such that for every α ∈ (α 2 , 0),

lim m→+∞ m Cm,α (D m ) m Cm,α (C m ) = 0.
In particular, Ψ in = Ψ out on this interval.

The proof of the proposition is an immediate consequence of these two lemmas and Inequality (13). Since µ m is an equilibrium state we have

h µm + φ dµ m -Ψ Cm (α)µ m (C m ) = P φ (Σ) -α. (14) 
By semi-continuity for the metric entropy and the continuity of φ we obtain

P ν (φ) = h ν + φdν ≥ P φ (Σ) -α + Ψ out (α)L. ( 15 
)
Therefore L = 0 otherwise the right hand side would be larger than the topological pressure of φ.

Lemma 5.7. There exists α 2 < 0 such that for any α ∈ (α 2 , 0) we have lim m→∞ m Cm,α (D m ) = 0.

Proof. We keep the notation of the preceding lemma. Let ν be an accumulation point of (µ m ). We first show that ν(∂A) = 0. By equality (14) we get that for any integers m ≥ j, since C j ⊃ C m and now Ψ Cm (α) < 0, we have

h µm + φdµ m -Ψ Cm (α)µ m (C j ) ≥ P φ (Σ) -α.
Letting m → ∞ gives, since the entropy is semi-continuous and 1I C j is continuous, that

h ν + φdν -Ψ out (α)ν(C j ) ≥ P φ (Σ) -α.
Assume for a contradiction that ν(∂A) > 0 and decompose ν = pν 0 + qν 1 as in the case α positive. Let δ > 0. By definition of Ψ out , for any j sufficiently large we have -Ψ C j (α)ν 1 (C j ) + δ ≥ -Ψ out (α)ν 1 (C j ). Since the entropy is affine, we get

p h ν 0 + φdν 0 -Ψ out (α)ν 0 (C j ) + q h ν 1 + φdν 1 -Ψ C j (α)ν 1 (C j ) + δ ≥ P φ (Σ) -α.
This together with (11) gives

q h ν 1 + φdν 1 -Ψ C j (α)ν 1 (C j ) + δ ≥ P φ (Σ) -α -p (P φ (Σ) -α 1 -Ψ out (α)ν 0 (C j )) . Since the pressure P ν 1 (φ -Ψ C j (α)1I C j ) ≤ P φ (Σ) -α this implies that q(P φ (Σ) -α + δ) ≥ P φ (Σ) -α -p (P φ (Σ) -α 1 -Ψ out (α)ν 0 (C j )) .
By outer regularity of the measure ν 0 we have ν 0 (C j ) → ν 0 (A) ≤ ρ(A) as j → ∞ (recall that ρ(A) = sup µ µ(A)). Since δ is arbitrary this gives p(-α 1 -Ψ out (α) + α) ≥ 0, which is contradictory if p > 0 and α is small enough, since the function α → α -Ψ out (α)ρ(A) is continuous and vanishes for α = 0. Thus there exists α 2 < 0 such that if α ∈]α 2 , 0[ we have ν(∂A) = 0.

The conclusion of the lemma follows as in the positive case.

Remark 4. We remark that under the assumption in point 1 of the theorem, we always have ν(A) = 0 for the measure ν constructed in Lemma 5.7, therefore α 2 = -∞.

A dynamical proof of the coincidence of inner and outer approximation in the case of totally negligible boundary

In this section we give an alternative and somewhat more direct proof of the point 1 in our theorem. By Proposition 4.3 it suffices to show the equality Ψ in = Ψ out on the interval (-∞, 0) for the set A and its complement A c . The hypotheses on the boundary is completely symmetric if we replace A by A c , so it is sufficient to prove the equality on the interval (-∞, 0) for the set A only. However, we also prove that the equality holds some interval (-∞, α 0 ) for some α 0 > 0. This in turn not only implies that the rate function Φ A exists on the whole interval [0, +∞), but also shows that the formula (1) is satisfied on some interval [0, u) for some u > 1 µ φ (A) . Let us pick some fixed positive ε. We have Letting ε go to 0 we get that Ψ in = Ψ out . This holds for every α < α 1 and for every α 1 ≤ α 0 . Therefore it holds for every α < α 0 .

6.3.

Coincidence for negative values of α. We now do the proof for a fixed α < 0.

Here again we omit the subscript "m" when it is not necessary. We also pick some positive ε. Then, we have: 

e α.
Let us pick some positive real τ which will be chosen latter. We have 

for some α ′ > α 0 . Fix some j and some α ∈ (0, α(B j )). Choose then τ such that τ . α + Ψ B j ( α) < 2.Ψ B j (α) < 0.

Recall that on R + all the Ψ C are lower than all the Ψ B , and the converse holds on R -. Therefore we get for every m that 

for every large enough m and for every large enough n. Therefore ( 22), (26), and (27) yield for every large enough m and for every large enough n: e α.r n Bm dµ φ ≥ e n.(1+ε).(Ψ Cm (α)-ε)e 2n.(1+ε).Ψ Cm (α)e n.(1+ε)(2Ψ Cm (α)+ε) ,

For fixed m, letting n go to +∞ and using proposition 4.1 with α < 0 we get for every ε > 0 Ψ in (α) ≥ (1 + ε)(Ψ out (α)ε).

When ε goes to 0, we get that Ψ in (α) = Ψ out (α) for α < 0.

Example 2 . 3 .

 23 Let (M, f ) be a C 2 volume preserving Anosov diffeomorphism and let V ⊂ M be an open set with piecewise C 1 boundary. Then the sequence of return times into V satisfies a Large Deviation Principle near the average.

4. 1 .

 1 Monotonicity of the rate function on rectangles. For m an integer, let B m be the biggest union of m-cylinders contained in A and C m be the smallest union of mcylinders which contains A. Then, we denote by D m the set C m \ B m (See Figure 4.1).
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 111 Figure 1. Inner and outer approximation of the set A by m-cylinders.

Proposition 4 . 3 .

 43 Assume that the Large deviation principle for return times into A c holds for u ∈ (0, 1 µ(A c ) ) with a continuous rate function Φ A c . Then the Large Deviation Principle for return times into A holds for u > 1 µ(A) with a rate function Φ A which satisfies

Lemma 5 . 3 .

 53 For any α ∈ (0, α 0 ) we have lim inf m→+∞ m Bm,α (C m ) > 0 Proof. Let us denote by µ m the measure m Bm,α , and pick any accumulation point ν of (µ m ) such that µ m (B m ) converges (up to the correct subsequence) to L := lim inf m→+∞ µ m (B m ).

Lemma 5 . 4 .

 54 Let us set α 1 := min(P φ (Σ) -P φ (∂A), α 0 ) > 0. For every α ∈ (0, α 1 ) we have lim m→+∞ m Bm,α (D m ) = 0.
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 56 For any negative α we have lim inf m→+∞ m Cm,α (C m ) > 0 Proof. Let us denote by µ m the measure m Cm,α , and pick any accumulation point ν of (µ m ) such that µ m (C m ) converges (up to the correct subsequence) to L := lim inf m→+∞ µ m (C m ).

Figure 2 .

 2 Figure 2. The rate function Φ D (v) is the maximal distance between αv and Ψ D ( α) on the negative axis.

  e α.r n B dµ φ .(18)The first term in the right hand side of this equation is simply bounded bye α.r n.(1+ε) C dµ φ ≤ e n(1+2ε)Ψ C (α)(19)provided n is sufficiently large. We turn to the second term. The condition r n(1+ε) C < r n B ≤ n.τ implies that r nε D ≤ nτ , hence we get r n.(1+ε) C <r n B ≤n.τ e α.r n B dµ φ ≤ e α.n.τ µ φ (r n.ε D ≤ nτ ) = e α.n.τ µ φ (r nε D ≤ (n.ε).

2 ,

 2 if we consider m ≥ M( τ ε ) for some fixed ε, for n large enough we getµ φ (r n.ε D ≤ n.ε τ ε ) ≤ e -2α.τ.n , Therefore, (20) gives for n sufficiently large r n.(1+ε) C <r n B ≤n.τ e α.r n B dµ φ ≤ 1. Recall that Ψ C (α) ≥ 0 for α ≥ 0. Then, (18) together with (19) and (17) yield that Ψ B (α) ≤ (1 + 2ε)Ψ C (α) It follows from proposition 4.1 that Ψ in (α) ≤ (1 + 2ε)Ψ out (α). (21)

C

  dµ φ ≤ µ φ r n B > r n.(1+ε) C > n.(1 + ε) τ + +µ φ r n B > r n.(1+ε) C ∩ n.(1 + ε) τ ≥ r n.(1+ε) C ≤ µ φ r n.(1+ε) C > n.(1 + ε) τ + µ φ (r nε D ≤ n.(1 + ε) τ ) . (23)The large deviation principle forr k C means Φ C ( τ ) := lim α<α ′ {τ α + Ψ C ( α)}

-

  τ . α + Ψ Cm ( α) < 2.Ψ Cm (α) < 0. (25)For n large enough, (24) and (25) yieldµ φ r n.(1+ε) C > n.(1 + ε) τ ≤ e n.(1+ε)(Φ C ( τ )+ε) ≤ e n.(1+ε)(2Ψ C (α)+ε) .(26)Following Proposition 6.2 we getµ φ (r nε D ≤ n.(1 + ε) τ ) ≤ e 2n.(1+ε).Ψ C (α)

6.1. Infinite rate function for return times near the boundary. Recall that D m = C m \ B m is the m-cylindrical neighborhood of the boundary ∂A. For convenience, and for general computations, we remove the subscript "m" and just write D. Our aim is to show that, the probability that the successive return times into D m are small, is extremely small. We first prove a key lemma. Let Proof. Since D m is decreasing the limit ρ ∞ = lim m→+∞ ρ(D m ) exists. For any m there exists some probability µ m such that

Let us pick any accumulation point µ for the sequence of probabilities (µ m ). Recall that the map 1I Dm is continuous. Let us pick some integer m. For simplicity we write converging sequences instead of converging subsequences.

By outer regularity of the measure µ this yields that ρ ∞ ≤ lim µ(D m ) = µ(∂A) = 0. Proposition 6.2. For every v > 0, there exists some M = M(v) such that for every m ≥ M, Φ Dm (v) = -∞.

Proof. Let v > 0. By Lemma 6.1 we always can consider m large enough such that 1 µ φ (D) > v.

Note that D is a union of (-m, m)-cylinders. We thus can use the large deviation principle for (r k D ) (see Remark 1) which gives

where α ′ = α(D) > 0 (it thus depends on m).

We emphasize that the slope of α → Ψ D ( α) as α goes to -∞ is 1 ρ(D)

. Lemma 6.1 yields the existence of some M = M(v) such that for every m ≥ M, 1 ρ(Dm) < v. This implies by (16 for all sufficiently large m.