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Djalil Chafäı and Didier Concordet

August, 2007. Revised March, 2008.
Accepted for publication in Statistics and Computing

Abstract

We propose a new method for the Maximum Likelihood Estimator (MLE) of
nonlinear mixed effects models when the variance matrix of Gaussian random ef-
fects has a prescribed pattern of zeros (PPZ). The method consists of coupling the
recently developed Iterative Conditional Fitting (ICF) algorithm with the Expecta-
tion Maximization (EM) algorithm. It provides positive definite estimates for any
sample size, and does not rely on any structural assumption concerning the PPZ.
It can be easily adapted to many versions of EM.
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1 Introduction

Nonlinear mixed effects models are widely used in population Pharmacology for Phar-
macokinetics & Pharmacodynamics (PK/PD) modelling. Such models can be seen as
special cases of repeated measurement data, for which the asymptotics concern the num-
ber of individuals rather than the number of measures per individual, see for instance [8]
and references therein. In this article, we show that for nonlinear mixed effects models
with Gaussian random effects, Expectation Maximization (EM) like algorithms for the
computation of the Maximum Likelihood Estimator (MLE) can be coupled with Iterative
Conditional Fitting (ICF) like algorithms in order to take into account a prescribed pat-
tern of zeros (PPZ) in the variance matrix of the random effect. The ICF algorithm has
been developed very recently [4] in the context of directly observed Gaussian graphical
models. Finding an adequate approach for generic PPZ in the context of nonlinear mixed
effects models is a long standing problem. Our approach provides a true solution for the
M step of EM in this context, for any PPZ. It is thus far more satisfactory than the
standard approaches used in the existing software packages such as NLMIXED (SAS),
NONMEM, nlme (S-Plus and GNU-R), or Monolix.

For instance, a traditional model used in population PK/PD is of the form

Yi = F (Xi) + g(Xi, θ)εi, 1 ≤ i ≤ N, (1)
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where Yi is the vector of concentrations/effects observed on the ith individual for the drug
of interest. Here F is a known function, often nonlinear. The q-vectors Xi represent
the unobserved individual parameters assumed independent and identically distributed
N (m,Σ), the εi are N (0, I) , unobserved, independent of the Xi and independent. The
matrix g(Xi, θ) is the Cholesky transform of a positive definite matrix that depends on a
parameter θ ∈ Θ ⊂ R

p.
For instance, Figure 1 represents the maximum concentrations of cortisol (Yi) obtained

after giving fixed doses of ACTH to N = 30 horses. Each individual has its own curve
described by the parameter Xi. The g(Xi, θ) matrix defines the variance heterogeneity of
concentrations obtained with different doses. This matrix is often assumed to be equal to
θdiag(|F (Xi|). The reader will later find a study of a model like (1) for this cortisol data
set.

One of the main goals in population PK/PD is to describe the distribution of the Xi’s
by observation of the Yi’s. This amounts to the estimation of (m,Σ, θ) from the Yi’s.
Recall that the Xi’s are not observed. A natural approach is to compute the MLE by
maximizing

L(m,Σ, θ) =

N∏

i=1

∫
1

|g(xi, θ)|
φ
(
g−1(xi, θ)(Yi − F (xi))

)
φm,Σ(xi)dxi (2)

where φm,Σ(.) is the probability density function of the N (m,Σ) distribution and |g(xi, θ)|
denotes the determinant of the matrix |g(xi, θ)|. Except for specific models, such as
Gaussian linear mixed effects models, maximum likelihood estimators have no closed
form. Several methods have been proposed for estimation of the parameter (m,Σ, θ) in
these models. The methods suggested by Beal and Sheiner [2] or Lindstrom and Bates
[14] are based on a linearization of the conditional model (1) with respect to the vector Xi

about 0 or about a posterior mode. Pinheiro and Bates [15], Vonesh and Carter [18], and
Wolfinger [20] proposed Laplacian approximations of the likelihood. Importance sampling
approximations [15], Gaussian quadratures [8], and pseudo-likelihood methods [5] have
also been investigated. The reader will find a detailed analysis of these methods in the
book by Davidian and Giltinan [8]. More recently, stochastic versions of the EM algorithm
have been proposed, see for instance [13] and [19]. These EM like algorithms converge to
the MLE under some regularity and identifiability conditions.

In many real situations, the kineticist’s knowledge of the drug mechanism imposes a
specific independence pattern on some components of Xi. This means that the variance
matrix Σ contains a PPZ. The estimation of (m,Σ, θ) in the presence of a PPZ in Σ is
problematic due to the positive definiteness constraint in the optimization. Pinheiro and
Bates [15] studied different parameterizations of Σ that ensure the definite positiveness of
the estimate. In particular they suggested the usage of a Cholesky like parameterization.
Unfortunately, except for the case where Σ is a block diagonal matrix up to coordinates
permutation, Cholesky like parametrizations do not preserve the structure of the PPZ
and are thus useless. Kuhn and Lavielle proposed estimating Σ in two steps in the
implementation of their EM like algorithm. First, Σ is estimated without any constraint,
then zeros are plugged according to the PPZ into the estimate provided by the first step.
This method is widely used in practice. Unfortunately, by “forcing the zeros” in this way,
nothing guarantees that the obtained estimate is still a positive matrix, and even when it
is positive definite, it is not the maximum likelihood in general.

For Gaussian linear mixed effects models, the algorithm of Anderson [1] deals with
any linear hypothesis on the variance matrix of the random effect (a PPZ for instance).
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Unfortunately, the estimate is not necessarily positive definite, see for instance [4]. To
our knowledge, no method is available for MLE of nonlinear models such as (1) when the
variance matrix Σ of the random effect has a PPZ.

The aim of this article is to propose a general method for the estimation of (m,Σ, θ)
in the presence of a PPZ in Σ. The method uses the ICF algorithm to perform the
Maximization step of the EM algorithm. In other words, we couple EM and ICF in order
to compute the MLE (or at least a stationary point of the likelihood) of (m,Σ, θ) when
Σ has a PPZ.

The ICF algorithm was developed recently by Chaudhuri et al. in [4] to estimate
a variance matrix with PPZ of observed Gaussian random variables. In contrast, the
random effects Xi’s in (1) are Gaussian but not observed, and that is why we couple
ICF with EM. The ICF converges towards positive definite saddle-points or local maxima
of the likelihood function irrespective of the PPZ. The idea behind ICF is not new in
the framework of graphical models, and is inspired by the famous Iterative Proportional
Fitting (IPF) algorithm. We refer to [4] for a review. Some alternative algorithms to ICF
are available for specific PPZ, such as chain graph models [6] or non-chordal graph models
[7]. The ICF algorithm is attractive because it does not rely on a specific structure of the
PPZ.

The rest of the article is organized as follows. In section 2, we give some of the
properties and drawbacks of the popular “zero forced” estimator, that consists of plugging
zeros according to the PPZ into a full variance matrix. In section 3, we recall the main
properties of the EM algorithm for models such as (1). Section 4 is devoted to the ICF
algorithm, and to the coupling of ICF with EM. Section 5 contains the step by step analysis
of a model like (1) for the cortisol data set depicted in Figure 1. In the last section, we
perform a simulation study that quantifies the benefit of our EM+ICF approach on the
model used for the cortisol data set.

2 The Zero forced estimator

Assume for example that for some specific model we get the following MLE for Σ:

Σ̂uc =




4 −3 3

−3 4 −3
3 −3 4



 ,

without taking into account the PPZ in Σ. We will refer to this as the unconstrained
estimation. If the PPZ consists of Σ13 = Σ31 = 0, the “zero forced” estimation of Σ is
simply given by

Σ̂zf =




4 −3 0

−3 4 −3
0 −3 4



 .

The unconstrained estimate Σ̂uc is a positive definite matrix but the “zero forced” esti-
mate Σ̂zf is not. However we know that for a regular model, the unconstrained MLE is

consistent. Therefore Σ̂uc converges componentwise towards the true matrix Σ with PPZ.
Consequently, there exists a random sample size from which the “zero forced” estimator
is a positive definite matrix but this sample size is somewhat difficult to obtain.

A possible ploy allowing to build a positive definite consistent estimator of Σ could be
as follows. Compute the unconstrained estimator and denote it by Σ̂zf , the corresponding
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“zero forced” estimator. Nothing guarantees that its lower eigenvalue λmin is positive but
since Σ̂zf is a consistent estimator of Σ, the quantity

(λmin)− , max{−λmin, 0}

is a random sequence of positive numbers that converges almost-surely to zero. Now,
consider some auxiliary sequence of positive real numbers (uN) that goes to zero with the
sample size N (e.g. UN = 1/N2), then, for any sample size N , the matrix

Σ̂zf + ((λmin)− + uN) I

is a positive definite consistent estimator of Σ, and features the same PPZ. Its main
drawback is that its diagonal terms are biased and that the choice of the (uN) sequence is
arbitrary. A better way to proceed is to directly consider the MLE of Σ with PPZ, which
is precisely our aim in the next sections.

3 The EM algorithm

The EM algorithm [9] is a popular method to estimate parameters of a model with non-
observed or incomplete data. Let us briefly recall how its general form works as introduced
by Dempster et al. The EM algorithm consists of iterations of an Expectation and a
Maximization step. At the kth iteration, the E step computes the conditional expectation
of the log-likelihood of the complete data (Y,X) with respect to the distribution of the
missing, or non-observed, data X given the observed data Y at the current estimated
parameter value ψ(k):

Q
(
ψ, ψ(k)

)
= E

[
logP (Y,X)|Y, ψ(k)

]
.

The M step finds ψ(k+1) so that for all ψ in the parameter space Ψ

ψ(k+1) = arg sup
ψ∈Ψ

Q
(
ψ, ψ(k)

)
.

These two-step iterations are repeated until convergence. The essential property of the
EM algorithm is that the likelihood increases monotonically along the iterations. Under
some identifiability and regularity conditions, this algorithm converges to a stationary
point of the likelihood, see for instance [22].

Let us now describe more precisely this algorithm for model (1). We need first to
define the parameter space on which the M step is to be performed. In this model, the
parameter to be estimated is ψ = (m,Σ, θ). The variance matrix Σ lives in a subset of
the set S+

q of q × q symmetric positive definite matrices. More precisely, let Π be the set
of subsets of {(i, j); 1 ≤ i < j ≤ q}. For any π ∈ Π, the set

S+
q (π) , {A ∈ S+

q ; ∀(i, j) ∈ π,Aij = 0}

is formed by the symmetric positive definite matrices that have zeros located in π. The
PPZ in Σ is represented by an element π of Π. We thus assume that for some π ∈ Π,
ψ = (m,Σ, θ) ∈ Ψ , M × S+

q (π) × Θ where M and Θ are open subsets of R
q and R

p

respectively.
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At the kth iteration the Expectation step consists of the computation of

Q (m,Σ, θ|mk,Σk, θk) =
∑

i

E

(
log

1

|g(Xi, θ)|
φ
(
g−1(Xi, θ)(Yi − F (Xi))

)
φm,Σ(Xi)|Yi,Σk, mk, θk

)

where

E (f(X, Y )|Y,Σ, m, θ) ,

∫
f(x, Y )

φ (g−1(x, θ)(Y − F (x)))φm,Σ(x)

|g(x, θ)|
∫
φ (g−1(u, θ)(Y − F (u))) /|g(u, θ)|φm,Σ(u)du

dx.

The maximization step computes

(mk+1,Σk+1, θk+1) = arg sup
M×S+

q (π)×Θ

Q (m,Σ, θ|mk,Σk, θk) .

For model (1), the integral that appears in the E step can be split into two parts . The
E step reduces to calculate

Q (m,Σ, θ|mk,Σk, θk) = Q1 (m,Σ|mk,Σk, θk) +Q2 (θ|mk,Σk, θk)

where

Q1 (m,Σ|Yi, mk,Σk, θk) ,
∑

i

E (log φm,Σ(Xi)|Yi, mk,Σk)

= −1

2

∑

i

E
(
(Xi −m)′ Σ−1 (Xi −m) |Yi, mk,Σk

)
− N

2
log |Σ|

= −N
2

tr

(
1

N

∑

i

E
(
(Xi −m) (Xi −m)′ |Yi, mk,Σk

)
Σ−1

)

− N

2
log |Σ|,

and

Q2 (θ|mk,Σk, θk) ,
∑

i

E
(
logφ

(
g−1(Xi, θ)(Yi − F (Xi))

)
− log(|g(Xi, θ)|)|Yi, mk,Σk, θk

)
.

It follows that the M step can also be decomposed into two parts

sup
M×S+

q (π)×Θ

Q (m,Σ, θ|mk,Σk, θk) = sup
M×S+

q (π)

Q1 (m,Σ|mk,Σk, θk) + sup
Θ
Q2 (θ|mk,Σk, θk) .

Note that in the M step the maximization with respect to (m,Σ) is separated from that
of θ. The function Q2 depends only on θ via g.

Remark 1. In most applications, h is the probability density function of a standard
Gaussian distribution, and θ is a variance matrix that can possibly contain a PPZ. In
that case, its maximization can be performed using the ICF method, as for Σ, as described
hereafter.

Maximization of Q1 leads to

mk+1 =
1

N

∑

i

E (Xi|Yi,Σk, mk, θk) (3)
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and
Σk+1 = arg inf

Σ∈S+
q (π)

tr
(
X̃Σ−1

)
+ log |Σ| (4)

where

X̃ =
1

N

∑

i

E
(
(Xi −mk+1) (Xi −mk+1)

′ |Yi,Σk, mk, θk
)
. (5)

The matrix X̃ is an empirical conditional variance matrix. The random vectors Xi are
not observed, however, the matrix X̃ can be evaluated at each iteration of the algorithm.
When π = ∅, that is when Σ has no PPZ, Σk+1 reduces to X̃. When π 6= ∅ the maximum
of Q1(Σ) must be sought in S+

q (π). The next section deals with this problem.

4 Estimating the variance matrix with ICF

We have seen in the previous section that the M step of the EM algorithm involves a
maximization problem such as

Σk+1 = arg inf
Σ∈S+

q (π)
tr
(
X̃Σ−1

)
+ log |Σ|. (6)

The difficulty here is that the optimization is not performed on the entire cone of sym-
metric definite matrices but only on a sub-cone that contains the matrices with PPZ. It
is clear that a standard gradient-like algorithm does not fit these constraints. The usual
method to get rid of the definite-positiveness constraint is to use a Cholesky like decom-
position. Unfortunately, these decompositions do not preserve the PPZ when Σ is not a
block diagonal matrix up to a permutation of the coordinates. The algorithm described
hereafter allows one to move within S+

q (π) whatever π may be.
First, note that in the absence of PPZ in Σ, i.e. when π = ∅, the solution of (6)

is Σk+1 = X̃. We assume from now on that π 6= ∅. The case q = 2 is trivial since the
only possible zero is Σ12 = 0. In this case, the “zero forced” estimator is always positive
definite and is the solution of (6). We assume in the sequel that q > 2 and that π 6= ∅.

The method we propose is the core of the ICF algorithm presented in [4]. Even if
Chaudhuri & al. did not express it at such, it is mainly based on the specific properties
of the Schur complement of a matrix. Let us recall the following classical result, which
can be found in [11] or [24] for instance.

Theorem 1 (Schur). Let l be an integer in {1, . . . , q}. Consider two vectors U and V
that respectively belong to R

q−l and R
l, the q-vector Z ′ = (U ′, V ′) and a matrix Σ ∈ S+

q

that admits the following block decomposition

Σ =

(
A B
B′ C

)

where A ∈ S+
q−l, B is a (q − l) × l matrix and C ∈ S+

l . The Schur complement of A is

the matrix S , C −A′−1B. It belongs to S+
l and moreover

i) det(Σ) = det(A) det(S),

ii) Z ′Σ−1Z = U ′A−1U + (V − B′A−1U)
′

S−1 (V −B′A−1U) .
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The Schur complement appears naturally when the random vector Z described in the
previous Theorem is distributed according to N (0,Σ). More precisely we have:

L (V |U) = N (B′A−1U, S).

Note that properties i) and ii) remain true after permutation of the rows of Σ. In the
particular case where l = 1, we can easily derive the following property.

Corollary 1. We keep the same notations as in the previous proposition. For any j ∈
{1 . . . q}, let A = Σ−j,−j be the submatrix of Σ obtained by removing its jth row and
column , B = Σ−j,j the jth column vector of Σ in which the jth row has been removed,
C = Σj,j. The column vector U and the positive real number V are respectively obtained by
removing the jth row of Z and as Zj. Then, using these notations, the Schur complement
of A = Σ−j,−j is the real positive number S given by the previous proposition and properties
i) and ii) hold.

We are now able to solve the optimization problem (4) by running iteratively the
decomposition of the Corollary over the columns of Σ. Set Ti = Xi−mk+1 and note that
from (6) the function that has to be minimized can be rewritten as

K(Σ, T1, . . . , TN) =
1

N

∑

i

E
(
T ′

iΣ
−1Ti|Yi, mk,Σk

)
+ log |Σ|. (7)

For the jth column of Σ we set A = Σ−j,−j, B = Σ−j,j, C = Σj,j and S = C−B′A−1B
so that we can now write (7) as

K(Σ, T1, . . . , TN ) = K(A,U1, . . . , UN) +K(S, V1 − B′A−1U1, . . . , VN − B′A−1UN )

where Vi is the jth component of Ti and Ui is obtained by removing the jth component of
Ti. Therefore, if A is fixed, the partial optimization of K(Σ, T1, . . . , TN) with respect to
(B, S) can be reduced to the global optimization of

K(S, V1 −B′A−1U1 , . . . , VN − B′A−1UN ) =
1

NS

∑

i

E
((
Vi −B′A−1Ui

)2 |Yi, mk,Σk

)
+ log(S)

which is a standard least-squares problem. The optimization with respect to B and S
leads to

Bopt =

[
∑

i

E
((

(A−1Ui)(A
−1Ui)

′
)
|Yi, mk,Σk

)
]
−1∑

i

E
(
ViA

−1Ui|Yi, mk,Σk

)
(8)

= A

[
∑

i

E (UiU
′

i |Yi, mk,Σk)

]
−1∑

i

E (ViUi|Yi, mk,Σk) . (9)

and

Sopt =
1

N

∑

i

E
((
Vi − B′

optA
−1Ui

)2 |Yi, mk,Σk

)
. (10)

The vector B = Σ−j,j may contain some PPZ. These components are not optimized and
are thus left at zero. This only decreases the dimension of the optimization problem. We
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deduce that after this step on the jth column of Σ, C = Σj,j and B = Σ−j,j must be
respectively updated with

Σnew
j,j = Sopt +B′

opt (Σ−j,−j)
−1Bopt and Σnew

−j,j = Bopt.

The striking property of this step is that it allows us to move within S+
q without affecting

the prescribed null components of Σ: A = Σ−j,−j and the null components of B = Σ−j,j

are left unchanged. Since Σ is assumed positive definite C = Σj,j cannot be zero.
As already mentioned, iterations of these steps converge to a local maximum of

K(Σ, T1, . . . , TN), see for instance [4].

5 The cortisol data set

In this section, we use a practical example to illustrate the implementation of an EM
algorithm coupled with the ICF algorithm. In order to explore the endocrine function of
horse, a sample of horses (N = 30) was given eight doses of ACTH by intravenous route.
The ACTH stimulates the adrenal gland that produces cortisol. The concentration profiles
of cortisol in plasma were summarized by the maximal concentration reached after the
ACTH administration (see Figure 1).

The seven doses of ACTH given to each animal were (in mg/kg)

0.005, 0.01, 0.1, 0.5, 1, 2, 10.

The production of cortisol is modelled as

Yij =

(
X1i +

X2id
X3i

j

XX3i

4i + dX3i

j

)
(1 + σεij) , 1 ≤ j ≤ 7, 1 ≤ i ≤ 30, (11)

where Yij is the maximal cortisol concentration observed in the ith horse after adminis-
tration of a dose dj of ACTH, X ′

i = (Xi1, . . . , Xi4) is a random vector that contains the
individual parameters for the ith animal. We assume that the random vectors Xi are inde-
pendent and identically distributed N (m,Σ) and that the residual terms ε′i = (εi1, . . . , εi7)
are independent and identically distributed N (0, I7). Moreover, the Xi’s and εi’s are as-
sumed to be mutually independent. In this example, p = 4, θ = σ2 and

g(X, θ) = σdiag

(
X1 +

X2d
X3

j

XX3

4i + dX3

j

)

j=1...7

.

According to the kineticist, the correlations between Xi1 and Xi4 and Xi3 and Xi4 should
be zero and thus Σ has the following structure

Σ =





. . . 0

. . . .

. . . 0
0 . 0 .



 .

In some problems, no a priori information is available for the possible zero correlation
between the components ofXi. The method of multiple testing of correlation, as described
in Drton and Perlman [10], may be used in such cases to reveal the structure of Σ.

8



The estimation of model parameters requires evaluation of the conditional expecta-
tions of functions such as E (f(Xi, Yi)|Yi,Σk, mk, σ

2
k) . A standard approach is to use a

stochastic version of EM that consists of the simulation of a Markov Chain (X
(l)
i )l with

P (.|Yi,Σk, mk, σ
2
k) as unique stationary distribution by using a Metropolis-Hastings algo-

rithm and the approximation of the conditional expectation by

E
(
f(Xi, Yi)|Yi,Σk, mk, σ

2
k

)
≈ 1

L

l∑

l=1

f(X
(l)
i , Yi).

For the analysis of the cortisol data we chose L = 500. We simulated the Markov chain
with the Metropolis-Hastings algorithm with N (mk,Σk) as the proposal distribution. In
this case, the acceptance probability of the Metropolis-Hastings algorithm reduces to

min

(
φ (g−1(X, σ2

k)(Y − F (X))) |g(x(l), σ2
k)|

|g(X, σ2
k)|φ (g−1(x(l), σ2

k)(Y − F (x(l))))
, 1

)

which only depends on the conditional distribution of the observation.
The algorithm to estimate the model parameters can be summarized in the following

scheme:

1. Start from some initial guess Σ0, m0, σ
2
0 and set k = 0 ;

2. Compute mk+1 from (3) and

σ2
k+1 =

1

N

∑

i

E
(
(Yi − F (Xi))

′C−1(Xi)(Yi − F (Xi))|Yi, mk,Σk, σ
2
k

)
,

where C−1(Xi) is a diagonal matrix whose jth term is (1/(F (Xi))j)
2.

3. Set Σ
(0)
k = Σk and and set l = 0

4. for j:=1 to q = 4
increment l

compute Σ
(l+1)
j,j = Sopt +B′

opt

(
Σ

(l)
−j,−j

)
−1

Bopt and Σ
(l+1)
−j,j = Bopt where Sopt and Bopt

are respectively defined by (10) and (8) ;

5. if Σ
(l−4)
k and Σ

(l)
k are not close enough go to step 4. Otherwise set Σk+1 = Σ

(l)
k ;

6. Stop if (Σk, mk, σ
2
k) and

(
Σk+1, mk+1, σ

2
k+1

)
are close enough. Otherwise increment

k and go to step 2.

For standard EM algorithms, i.e. when no constraint is imposed on the structure of Σ,
steps 3), 4) and 5) of the previous algorithm should be replaced by the update of Σk

according to equation (5).
It is well known that standard EM algorithms go quickly to a stationary point of the

likelihood during the first iterations and then take time to converge. Since for stochas-
tic EM algorithms the criterion being optimized changes randomly at each iteration, it
is somewhat difficult to achieve and check convergence even when the length L of the
simulated Markov Chain is large. Improvements have been proposed to overcome these
problems. In particular Kuhn and Lavielle [13] suggested updates of the following form :






Σnew = (1 − γk)Σk + γkΣk+1

mnew = (1 − γk)mk + γkmk+1

σ2
new = (1 − γk)kσ

2
k + γkσ

2
k+1,

9



where (γk)k is a decreasing sequence of positive numbers,
(
Σk+1, mk+1, σ

2
k+1

)
is defined as

in the previous algorithm and (Σnew, mnew, σ
2
new) is the update of (Σk, mk, σ

2
k). Note that

this update scheme forces the algorithm to converge and preserves the PPZ as well as the
positive definiteness of Σ.

The sequence (γk)k should satisfy
∑

k γk = +∞ and
∑

k γ
2
k < +∞. These two con-

ditions are fulfilled when γk = a/kb with a > 0 and b ∈ (0, 1). Choosing γk = a/k
speeds-up convergence of the algorithm but the choice of a has to be made sample by
sample. Choosing the same a for all samples can lead to poor estimations. As practical
advice, we suggest choosing γk = 1/k0.8. The algorithm takes more time to converge but
a fine tuning of a is unnecessary.

A well known drawback of the EM algorithm is that it does not produce standard errors
as a by-product. We implemented the method proposed by Jamshidian and Jennrich
[12]. This method relies on numerical derivation and seems well-suited to the method we
propose. Even if standard errors are helpful for comparing the results obtained with these
two models, the Fisher information matrix gives pertinent quantitative information only
when the sample size is large enough. However, N = 30 is probably not a large sample
size. In the next section we use simulations to weight the performance of the estimation
proposed for the cortisol data.

The estimation of the model parameters for the cortisol data requires some initial
estimates to be provided. Thanks to the model parametrization, we can directly read rea-
sonable values for m0 on Figure 1. Since the four components of X respectively represent
the basal value of cortisol, the maximal increase, the “slope” of the sigmoid and the ACTH
dose for which half the maximal increase is obtained we roughly get m0 = (50, 70, 1, 0.1).
We initialize Σ with the following diagonal matrix: Σ0 = Diag (0.01m2

0). Finally, for this
heteroscedastic model, σ can be interpreted as the coefficient of variation of the cortisol
for a given dose. We set it at 20% that is σ2

0 = 0.22. We estimated Σ with EM alone (no
constraint was imposed) and with EM+ICF that preserves the PPZ. In this example, the
algorithm seems to converge in less than 400 iterations. We implemented this algorithm
in C++ with a matrix library. Estimates of the parameters obtained with EM alone were:

Σ̂ =





21.25(7.90)
6.28 4.25(1.05)
0.13 0.33 0.047(0.0071)
0.015 0.000867 −0.000267 0.0000213(0.000016)



 ,

The figures between brackets are the standard errors for the variances. We have chosen to
give only some standard errors to lighten the presentation. m̂ = (50.03, 69.81, 1.78, 0.0845),

se (m̂) = (0.87, 1.84, 0.085, 0.0069) , σ̂2 = 0.0145 and logL(Σ̂, m̂, σ̂2) = −750.25. Esti-
mates of the parameters obtained with the EM+ICF algorithm were:

Σ̂ =





19.50(7.85)
−4.66 2.33(1.12)
−0.29 −0.095 0.058(0.0063)

0 −0.0024 0 0.0000144(0.000012)



 ,

m̂ = (48.84, 71.46, 1.47, 0.0840), se (m̂) = (0.82, 1.81, 0.084, 0.0071) and σ̂2 = 0.0151

and logL(Σ̂, m̂, σ̂2) = −754.23. We can see that these likelihoods are about the same and
a likelihood ratio test would not reject the PPZ proposed by the kineticist. The resid-
ual variance estimates are also very close. Surprisingly, there are quite large differences
between the estimates of the third component of m and the non null components of Σ.
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Remark 2 (Modelling). The general problem of mean and variance modelling for longi-
tudinal data is delicate, and several choices are possible, see for instance [8], [21], [16, 17],
[25], and [3]. Our model (11) belongs to a standard family of models in PK/PD and was
chosen with the kineticist. This relatively simple model is heteroscedastic with a constant
coefficient of variation. An examination of the “individual” residuals shows that they are
centered, which is quite satisfactory.

6 Simulations

The aim of this section is to quantify the potential benefit of directly estimating a variance
matrix with PPZ. We simulated 100 data sets using model (11) with parameters close to
the estimate found in the cortisol data analysis : N = 30,m′ = (50, 70, 1.5, 0.08),

σ2 = 0.015 and Σ =





20
−4.5 2.5
−0.3 −0.1 0.05

0 −2 × 10−3 0 10−5



 .

Both EM and EM+ICF estimates were calculated. Results are given in Table 1.
As expected, the standard errors given in the example are smaller than those of Table

1. For such sample sizes, which are often encountered in practice, asymptotic statistics
should be interpreted with care.

The mean parameter m seems to be well estimated. At least on these simulations, the
Σ structure influences the estimation ofm. However, we notice that the estimates obtained
with EM+ICF have a smaller standard error and mean quadratic error (M.Q.E.) than
those obtained without any constraint. On the whole EM+ICF also gives estimates with
lower bias. This suggests that the mean and variance estimations are heavily dependent.
This sheds light on approaches, such as the ‘zero forced” method, that rely on estimating
the full variance matrix first and modify it by forcing the PPZ: since all the non zero entries
are estimated with the assumption that the variance matrix does not have prescribed
zeros, they could be poorly estimated. This is consistent with the results obtained by Ye
and Pan [23] who concluded, in a different context, that misspecification of the working
variance structure could lead to a large loss in efficiency of the estimators of the mean
parameters.

Likelihood ratio tests were performed to test

{
H0 : Σ ∈ S+

4 (π)
H1 : Σ ∈ S+

4

for π = {(1, 4); (3, 4)}. Note that whatever the value of π, H0 is not on the boundary
of S+

4 . Consequently, the likelihood ratio statistics follow asymptotically a Chi-square
distribution under H0. Since the data have been simulated under H0, the P-values dis-
tribution should be close to a uniform law on (0, 1) at least for large N . The Q-Qplot
of the P-Values is represented in Figure 2. This figure shows that the P-Values are not
distributed according to a uniform distribution and thus the distribution of the likelihood
ratio statistics is not close to a χ2 distribution. Consequently, N = 30 is probably not
large enough to trust asymptotic statistics.

11



7 Conclusion

We have proposed a method for the estimation of the variance matrix with PPZ in nonlin-
ear mixed effects models. This method, which consists of coupling an ICF like algorithm
with an EM like algorithm gives more efficient estimates than standard EM that ignore
the PPZ. For the sake of simplicity, we have only presented the estimation algorithm for
independent and identically distributed observations. Extension to different numbers of
observations per individual is straightforward. We also restricted our study to models
with Gaussian ε. More general models in which the distribution of ε is not Gaussian and
depends on a parameter θ2 can also be considered. This simply requires the Metropolis-
Hastings chain to be chosen accordingly. We deliberately chose to show in section 2 a
columnwise ICF implementation that can be extended using theorem 1 to blocks of Σ.

Of course, our approach can be adapted without much effort to many versions of
EM and many alternatives to ICF. For pedagogical reasons, we presented our EM+ICF
coupling on a low dimensional example. The method of course is particularly suited to
large variance matrices with a high percentage of prescribed zero entries.
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EM EM+ICF
True value Mean S.E.

√
M.Q.E. Mean S.E.

√
M.Q.E.

Σ11 20 17.3 10.74 11.07 18.88 9.09 9.16
Σ12 -4.5 -3.64 3.16 3.28 -4.1 2.39 2.42
Σ22 2.5 2.27 1.48 1.5 2.74 1.25 1.28
Σ13 × 102 -30 -8.04 86.53 89.27 -12.27 39.85 43.62
Σ23 × 102 -10 -7.57 19.95 20.1 -10.66 14.65 14.66
Σ33 × 103 50 74.36 95.6 98.66 73.67 65.71 69.85
Σ14 × 104 0 -7 91.62 91.89 0 0 0
Σ24 × 104 -20 49.78 306.23 314.08 104.01 204.02 238.76
Σ34 × 105 0 -43.69 63.29 76.9 0 0 0
Σ44 × 106 10 17.84 14.15 16.18 18.57 13.68 16.15
m1 50 51.18 1.38 1.82 48.96 1.23 1.61
m2 70 70.73 2.60 2.70 69.52 2.44 2.48
m3 1.5 1.54 0.22 0.22 1.49 0.21 0.22
m4 × 103 80 91.44 4.08 12.15 90.06 3.87 10.78
σ2 × 103 15 15.91 1.77 1.99 14.07 1.57 1.82
log like. -749.32 11.39 -751.54 11.68

Table 1: Empirical mean, standard error and square root of mean-quadratic-error of
the estimates (M.Q.E.) obtained with EM and EM+ICF. The Mean Quadratic-Error is
defined as bias2+ Variance.
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Figure 1: Maximum cortisol concentrations observed after IV administrations of ACTH
in 30 horses.
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Figure 2: The Q-Q plot of the P-values of the likelihood ratio test versus the uniform
distribution on (0, 1).
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