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A REMARK ON UTILITY STREAMS
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We write down in this very short comment some ideas which occured to the author during
an email discussion with Kaushik Basu on the paper [BM05].

The author suggested to consider only finite sequences (which solves the embedding prob-
lem, as the resulting set is countable), and to compare sequences of unequal length by
repeating them until they have the same length, e.g. a sequence of length 2 will be re-
peated 3 times, and a sequence of legth 3 2 times, and the results will then be compared.

Note that the author discussed somewhat related problems in Section 2.2.7 of [Sch04].
Considering sums, and not only orders, to evaluate sequences is generally difficult, in the
sense that often no finite characterizations are possible - see again [Sch04].

We will write down now a few axioms, which seem reasonable, without discussion.

We have a domain X, and consider finite, non-empty sequences, noted σ etc., with values
in X, the set of these sequences will be denoted Σ. X has an order <, ≡ will express
equivalence wrt. this order, and we put restrictions on a resulting order ≺ on Σ, with
equivalence ≈ . ≤ and � etc. are defined in the obvious way.

Notation 1.1

For σ and σ′ of equal length, we write

σ ≤ σ′ iff all σi ≤ σ′

i,

σ < σ′ iff σ ≤ σ′ and for one i σi < σ′

i, and finally

σ << σ′ iff all σi < σ′

i.

The double use of ≤ and < will not pose any problem.
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{x} is the sequence of length 1.

Concatenation is noted ◦. For singletons, we may use simple juxtapposition.

σn is σ repeated n times.

Axiom 1.1

(1) Singletons:

(1.1) x < x′ → {x} ≺ {x′},

(1.2) x ≡ x′ → {x} ≈ {x′}

(essentially Pareto).

(2) concatenation:

(2.1) σ ◦ σ ≈ σ (this expresses essentially that the mean value is interesting),

(2.2) σ′ ≺ σ′′ → σ ◦ σ′ ≺ σ ◦ σ′′,

(2.3) σ′ ≈ σ′′ → σ ◦ σ′ ≈ σ ◦ σ′′.

(3) permutation:

σ ◦ σ′ ≈ σ′ ◦ σ

(essentially Anonymity).

Fact 1.1

These axioms allow to deduce:

(4) σ ≈ σ′ → σ ≈ σ ◦ σ′

(5) σ ≺ σ′ → σ ≺ σ ◦ σ′

(6) if there are i, j ≤ length(σ) = length(σ′), σi = σ′

j , σj = σ′

i, and σk = σ′

k for all other
k, then σ ≈ σ′ (real Anonymity)

(7) Weak Pareto:

(7.1) σ ≤ σ′ → σ � σ′,

(7.2) σ < σ′ → σ ≺ σ′,

(7.3) σ << σ′ → σ ≺ σ′.

and

(8) to compare sequences of different lengths, in the following sense: When ≺ and ≈ are
defined between σ′s of equal length, and Axioms 1-3 hold, then the relation ≺ (and ≈) is
determined for arbitrary sequences.
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Proof:

Elementary.

(4) by (2.1) and (2.3).

(5) by (2.1) and (2.2).

(6) Let e.g. σ be σ0 ◦ a ◦ σ1 ◦ b ◦ σ3, then ab ≈ ba by (3), so σ0 ◦ ab ≈ σ0 ◦ ba by (2.3) and
(3), so b ◦ σ0 ◦ a ≈ a ◦ σ0 ◦ b by (3), so b ◦ σ0 ◦ a ◦ σ1 ≈ a ◦ σ0 ◦ b ◦ σ1 by (2.3), etc.

(7) This follows from (1) and repeated use of (2.2) and (2.3).

(8) Let m := length(σ), n := length(σ′), then we obtain by using (2.1) once, and (2.3)
repeatedly, that σn ≈ σ and σ′m ≈ σ′, but σn and σ′m have the same length.
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