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Introduction

For any square n × n matrix A with complex entries, let the complex eigenvalues λ 1 (A), . . . , λ n (A) of A be labeled so that |λ 1 (A)| • • • |λ n (A)|. The empirical spectral distribution of A is the discrete probability measure µ A := 1 n n k=1 δ λ k (A) . We denote by s 1 (A)

• • • s n (A) the singular values of A, i.e. the eigenvalues of the positive semi-definite Hermitian matrix √ AA * where A * is the conjugatetranspose of A. The operator norm is s 1 (A) = max x 2 =1 Ax 2 and the square Hilbert-Schmidt norm is 2 ensures that the second moment of µ A is always bounded above by 1 n A 2 . The following result was recently obtained by Tao and Vu [START_REF]Random matrices: Universality of ESDs and the circular law[END_REF]Corollary 1.15]. Theorem 1.1 (Circular law for central random matrices). Let (X jk ) j,k 1 be i.i.d. complex random variables. Let (M jk ) j,k 1 be deterministic complex numbers. For every integer n 1, set X n = (X jk ) 1 j,k n and

A 2 := s 1 (A) 2 +• • •+s n (A) 2 = Tr(AA * ) = n j,k=1 |A j,k | 2 . Weyl's inequality |λ 1 (A)| 2 + • • • + |λ n (A)| 2 s 1 (A) 2 + • • • + s n (A)
M n = (M jk ) 1 j,k n . If • E[|X 1,1 | 2 ] = 1 and E[X 1,1 ] = 0 • M n 2 = O(n 2 ) and rank(M n ) = O(n α ) for some α < 1
then with probability one, µ 1 √ n (Xn+Mn) tends weakly as n → ∞ to the uniform distribution on the unit disc {z ∈ C; |z| 1} (known as the circular law).

The aim of this note is to provide an alternative and elementary argument which reduces theorem 1.1 to the central case where M n ≡ 0 for every n. Conveniently, the approach is close in spirit to the one used by Bai [START_REF]Methodologies in spectral analysis of large-dimensional random matrices, a review[END_REF] for the derivation of Wigner's and Marchenko-Pastur theorems for non-central random matrices.

This note was motivated by the study of random Markov matrices, including the Dirichlet Markov Ensemble [START_REF]The Dirichlet Markov Ensemble[END_REF][START_REF] Chafaï | Aspects of large random Markov kernels[END_REF], for which a circular law theorem is conjectured. The initial version of this note was written before the apparition of [START_REF]Random matrices: Universality of ESDs and the circular law[END_REF], and provided for the first time a non-central version of the circular law theorem. The initial version was based on potential theoretic tools. For convenience, the present version makes use instead of the replacement principle borrowed from [START_REF]Random matrices: Universality of ESDs and the circular law[END_REF].

Theorem 1.1 belongs to a sequence of works by many authors, including Mehta [START_REF] Mehta | Random matrices and the statistical theory of energy levels[END_REF], Girko [START_REF] Girko | The circular law[END_REF], Silverstein [START_REF] Hwang | A brief survey on the spectral radius and the spectral distribution of large random matrices with i.i.d. entries[END_REF], Bai [START_REF] Bai | Circular law[END_REF], Edelman [START_REF] Edelman | The probability that a random real Gaussian matrix has k real eigenvalues, related distributions, and the circular law[END_REF] Śniady [START_REF] Śniady | Random regularization of Brown spectral measure[END_REF], Bai and Silverstein [START_REF] Bai | Spectral Analysis of Large Dimensional Random Matrices[END_REF], Pan and Zhou [START_REF] Pan | Circular law, extreme singular values and potential theory[END_REF], Götze and Tikhomirov [START_REF] Götze | The Circular Law for Random Matrices[END_REF], and Tao and Vu [START_REF] Tao | Random matrices: the circular law[END_REF]. Remark 1.2 (Constant case). Consider the case where the entries of M n are all equal to 1 in theorem 1.1. We have then rank(M n ) = 1 and s 1 (M n ) = n. Suppose additionally that X 1,1 has finite fourth moment. Then, by Bai and Yin theorem [START_REF] Bai | Limit of the smallest eigenvalue of a large-dimensional sample covariance matrix[END_REF], with probability one,

lim n→∞ s 1 ( 1 √ n X n ) = 2, and thus 1 √ n (X n + M n ) is a random bounded perturbation of the rank one symmetric matrix 1 √ n M n which has spectrum λ n (M n ) = • • • = λ 2 (M n ) = 0 and λ 1 (M n ) = √ n.
From this observation, Silverstein [START_REF] Silverstein | The spectral radii and norms of large-dimensional non-central random matrices[END_REF] has shown, via perturbation techniques such as Bauer-Fike and Gerschgorin theorems, that with probability one,

λ 2 1 √ n (X n + M n ) 2 + o(1) and λ 1 1 √ n (X n + M n ) - √ n 2 + o(1).
See also the work of Andrew [START_REF] Andrew | Eigenvalues and singular values of certain random matrices[END_REF]. Also, with probability one, as n → ∞, the spectral radius

|λ 1 ( 1 √ n (X n + M n ))| blows up while µ 1 √ n (Xn+Mn) remains weakly localized.
2 Reduction to the central case

In order to show that theorem 1.1 reduces to the central case where M n ≡ 0 for every n 1, it suffices to check the assumptions of the replacement principle of theorem 3.1 with

A n := 1 √ n X n and B n := 1 √ n (X n + M n ).
By the strong law of large numbers and the assumption on M n , with probability one,

1 n A n 2 + 1 n B n 2 = O(1).
Next, by theorem (3.4) and the first Borel-Cantelli lemma, for all z ∈ C, with probability one, the random matrices A n -zI n and B n -zI n are invertible for large enough n. Let us define, for large enough n, the quantity

∆ n,z := 1 n log |det (A n -zI n )| - 1 n log |det (B n -zI n )|.
If we set µ n,z := µ √ (An-zIn)(An-zIn) * and ν n,z := µ √ (Bn-zIn)(Bn-zIn) * then

∆ n,z = ∞ 0 log(t) d(µ n,z -ν n,z )(t).
By the strong law of large numbers and the assumption on M n , for all z ∈ C, with probability one, there exists a > 0 such that max(s

1 (A n -zI n ), s 1 (B n -zI n )) n a
for large enough n. On the other hand, by theorem (3.4) and the first Borel-Cantelli lemma, for all z ∈ C, with probability one, there exists b > 0 such that

min(s n (A n -zI n ), s n (B n -zI n )) n -b
for large enough n. Therefore, with α n := n -b and β n := n a , and large enough n,

∆ n,z = βn αn log(t) d(µ n,z -ν n,z )(t).
Let F n,z and G n,z be the cumulative distribution functions of the real probability measures µ n,z and ν n,z . By lemma 3.3 and the assumption on rank(M n ), for almost all z ∈ C, with probability one, there exists ε > 0 such that

F n,z -G n,z ∞ = O(n -ε ).
Therefore, by lemma 3.2, we obtain, for almost all z ∈ C, with probability one,

|∆ n,z | (log(β n ) -log(α n )) F n,z -G n,z ∞ = o(1).

Tools

This section gathers some tools used in our proof of theorem 1.1. By Green's theorem, for any complex polynomial P and smooth compactly supported f :

C → R, C f dµ = 1 2π C ∆f log |P | dxdy where µ := δ λ 1 + • • • + δ λn is the counting measure of the roots λ 1 , . . . , λ n of P in C.
Used for characteristic polynomials of random matrices, this identity provides, via dominated convergence arguments, the following theorem, see [START_REF]Random matrices: Universality of ESDs and the circular law[END_REF]Theorem 2.1].

Theorem 3.1 (Replacement principle). Let (A n ) n 1 and (B n ) n 1 be two sequences of complex random matrices where A n , B n are n × n, without any assumptions. If

• with probability one

1 n A n 2 + 1 n B n 2 = O(1)
• for almost all z ∈ C, with probability one, the random matrices A n -zI n and B n -zI n are invertible for large enough n

• for almost all z ∈ C, with probability one,

lim n→∞ 1 n log |det (A n -zI n )| - 1 n log |det (B n -zI n )| = 0
then with probability one, µ Anµ Bn tends weakly to zero as n → ∞.

The following lemma is a special case of the integration by parts formula for the Lebesgue-Stieltjes integral (with atoms). We give a short proof for convenience. 

(δ a 1 + • • • + δ an ) and ν = 1 n (δ b 1 + • • • + δ bn ) respectively, then for any smooth f : [α, β] → R, β α f (x) dµ(x) - β α f (x) dν(x) = β α f ′ (x)(F µ (x) -F ν (x)) dx.
In particular, when f is non decreasing,

β α f (x) dµ(x) - β α f (x) dν(x) (f (β) -f (α)) F µ -F ν ∞ .
Proof. One can assume by continuity that a 1 , . . . , a n , b 1 , . . . , b n are all different. We reorder a

1 , . . . , a n , b 1 , . . . , b n into c 1 • • • c 2n . For every 1 k 2n, set ε k = +1 if c k ∈ {a 1 , . . . , a n } and ε k = -1 if c k ∈ {b 1 , . . . , b n }. We have β α f (x) dµ(x) - β α f (x) dν(x) = 1 n n k=1 (f (a i ) -f (b i )) = 1 n 2n k=1 ε k f (c k ).
By an Abel transform, we get by denoting

S k = ε 1 + • • • + ε k , 2n k=1 ε k f (c k ) = - 2n-1 k=1 S k (f (c k+1 ) -f (c k )) + S 2n f (c 2n ). Since F µ -F ν is constant and equal to S k on [c k , c k+1 [, S k (f (c k+1 ) -f (c k )) = c k+1 c k f ′ (x)(F µ (x) -F ν (x)) dx.
It remains to notice that S 2n = F µ (c 2n ) -F ν (c 2n ) = 0.

The following lemma is a direct consequence of interlacing inequalities for singular values obtained by Thompson [START_REF] Thompson | The behavior of eigenvalues and singular values under perturbations of restricted rank[END_REF] in 1976. It was also obtained by Bai [START_REF]Methodologies in spectral analysis of large-dimensional random matrices, a review[END_REF] and generalized by Benaych-Georges and Rao [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF]. It is worthwhile to mention that it gives neither an upper bound for s 1 (B), . . . , s k (B) nor a lower bound for s n-k+1 (B), . . . , s n (B) where k := rank(A -B), even in the case k = 1. 

Lemma 3 . 2 (

 32 Integration by parts). If a 1 , . . . , a n , b 1 , . . . , b n ∈ [α, β] ⊂ R, and F µ and F ν are the cumulative distribution functions of µ = 1 n

Lemma 3 . 3 (

 33 Rank inequality).Let A and B be two n × m complex matrices. Let F √ AA * , F √ BB * be the cumulative distribution functions of µ √ AA * and µ √ BB * . ThenF √ AA * -F √ BB * ∞ 1 n rank(A -B).
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The following theorem is due to Tao and Vu [START_REF] Tao | Random matrices: the circular law[END_REF]Theorem 2.1], and is inspired from the work of Rudelson and Vershynin [START_REF] Rudelson | The Littlewood-Offord problem and invertibility of random matrices[END_REF]. Theorem 3.4 (Polynomial bounds for smallest singular values). Let L be a probability distribution on C with finite and non-zero variance. For every constants A > 0 and C 1 > 0, there exists constants B > 0 and C 2 > 0 such that for every n × n random matrix X with i.i.d. entries of law L and every n × n deterministic matrix C with s 1 (C) n C 1 , we have P(s n (X + C) n -B ) C 2 n -A .