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Abstract

Let (Xi,j)16i,j<∞ be an infinite array of i.i.d. complex random variables,
with mean m = 0, variance σ

2 = 1, and say with finite fourth moment. The
famous circular law theorem states that the empirical spectral distribution
1
n(δλ1(X)+· · ·+δλn(X)) of X = (n−1/2

Xi,j)16i,j6n converges almost surely, as
n → ∞, to the uniform law over the unit disc {z ∈ C; |z| 6 1}. For now, most
efforts where focused on the improvement of moments hypotheses for the
centered case m = 0. Regarding the non-central case m 6= 0, Silverstein has
already observed that almost surely, the eigenvalue of X of largest module
goes to infinity as n → ∞, while the rest of the spectrum remains bounded.
We show that the circular law theorem remains valid when m 6= 0, by using
logarithmic potentials and bounds on extremal singular values.

AMS 2000 Mathematical Subject Classification: 60F15; 15A52; 62H99.

Keywords: Random matrices; Circle or Circular law; rank-one deformations; singular val-
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1 Introduction

For any square n × n matrix A with complex entries, let the complex eigenvalues
λ1(A), . . . , λn(A) of A be labeled so that

|λ1(A)| > · · · > |λn(A)|.

Similarly, we denote by s1(A) > · · · > sn(A) the singular values of A, i.e. the
eigenvalues of the positive semi-definite Hermitian matrix (AA∗)1/2. Namely,

sk(A) =
√

λk(AA∗)
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for every 1 6 k 6 n. In particular, we have the variational formulas

s1(A) = max
‖x‖

2
=1

‖Ax‖2 and sn(A) = min
‖x‖

2
=1

‖Ax‖2.

Notice that s1(A) = ‖A‖2 and sn(A) = ‖A−1‖−1
2 if A−1 exists. We always have

0 6 sn(A) 6 |λn(A)| 6 |λ1(A)| 6 s1(A). (1)

When A is a normal matrix, i.e. AA∗ = A∗A, then |λk(A)| = sk(A) for every
1 6 k 6 n. The empirical spectral distribution (ESD) of A is defined by

1

n

n∑

k=1

δλk(A).

The ESD of A is a discrete probability distribution on C with at most n
atoms. Let (Xn) be a sequence of random matrices, defined on the same probability
space, where Xn is an n × n matrix for each n. For every n, the ESD of Xn

is a random probability distribution on C. Here the distribution of the entries
of Xn may depend on n. Usually, the sequence (Xn) is constructed by setting
Xn = (Xi,j)16i,j6n where (Xi,j)16i,j<∞ is an infinite array of random variables. A
typical topic in random matrix theory is to ask about the almost sure convergence
as n → ∞ of the ESD of Xn to some non-random probability distribution on C,
called the limiting spectral distribution (LSD). In the present article, we will write
most of the time X instead of Xn, omitting the index n in the notation.

The spectral properties of large dimensional random matrices where explored
after the seminal works of the statistician Wishart in the 1930’s and of the physi-
cists Wigner and Dyson in the 1950’s. The reader may find recent accounts in1

[3], [20], [23], [5], [11], [30]. One of the most famous result regarding non-normal
random matrices is known as the circle (or circular) law theorem, illustrated by
figure 1. The version given below is taken from [24].

Theorem 1.1 (Circular law). Let (Xi,j)16i,j<∞ be an infinite array of i.i.d.
complex random variables of common law L, with mean m = 0, variance σ2 = 1,
and finite fourth moment. Then almost surely, the ESD of X = (n−1/2Xi,j)16i,j6n

tends, as n → ∞, to the uniform distribution on the unit disc D(0, 1) = {z ∈
C; |z| 6 1}.

The extension of theorem 1.1 to the case σ2 ∈ (0,∞) is immediate by rescaling.
The LSD is the uniform law on the unit disc of C, often referred as the circle or
circular law. If Z = re

√
−1θ is a complex random variable distributed according

1For the links with Voiculescu’s free probability theory, see for instance [20] and [7].
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to the uniform law on D(0, 2σ), then the module r and the argument θ of Z are
independent with joint law of density (r, θ) 7→ (4πσ2)−1 r I[0,2π](θ)I[0,2σ](r). Both
Re(Z) and Im(Z) follow the Wigner semi-circle law on R of density

x 7→ 1

2πσ2

√
4σ2 − x2 I[−2σ,+2σ](x).

More generally, for any angle α ∈ [0, 2π), the random variables Re(e
√
−1αZ) and

Im(e
√
−1αZ) follow the Wigner semi-circle law mentioned above. Additionally, if a

real random variable S follows the Wigner semi-circle law mentioned above, then
its square S2 follows the Marchenko-Pastur law on R+ of density

x 7→ 1

2πxσ2

√
(4σ2 − x)x I[0,4σ2](x).

The apparison of the circular law as a limiting spectral distribution of large
dimensional non-normal random matrices goes back at least to Dyson in the 1960’s.
The phenomenon was then studied by many authors, see [10] and [2] for a review.
Mehta considered in [22] the case of random matrices with i.i.d. entries following
the standard complex Gaussian by using the explicit expression of the density of
the spectrum provided by Ginibre [12]. The real Gaussian case is more “complex”
in a way and was investigated by Edelman [10] in the 1990’s. The universal case
was attacked by Girko [13] in 1984. However, Girko’s proof has been criticised by
Bai who pointed out mathematical gaps. In 1997 Bai [2] provided a rigorous proof
by using the Fourier-Stieltjes approach introduced by Girko, see also [5, ch. 10]
for an improved version. The reader may find a discussion on Girko’s contribution
in [2, 3] and [19, 18] for instance. More recently, following a suggestion made
by Khoruzhenko in 2001, Götze and Tikhomirov [19] used an alternative approach
based on logarithmic potentials, an idea already explored formally by Girko. Later,
Pan & Zhou in [24] used this method to provide the version of the circular law
theorem given above (theorem 1.1). Very recently, Tao & Vu [33] have shown that
the finite fourth moment condition can be relaxed for instance to a finite 2 + ε
moment where ε > 0. Götze and Tikhomirov have also a very similar improved
result in [18]. Actually, it is conjectured that theorem 1.1 is true under the sole
condition that L has finite positive variance. At the time of writing, this conjecture,
which is confirmed by numerical experiments, still remains an open problem for
mathematicians.

Both the Fourier-Stieltjes method and the logarithmic potential method reduce
the problem to the control of the singular values of the matrix X−zI where z ∈ C,
i.e. to the control of the spectra of the familly (H(z))z∈C of positive semi-definite
Hermitian matrices where H(z) = ((X − zI)(X − zI)∗)1/2. Namely, the Stieltjes
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transform Sn of the ESD µn of X is given by

Sn(z) =

∫

C

1

z′ − z
dµX(z′) =

1

n

n∑

k=1

1

λk(X) − z
=

1

n
Trace((X − zI)−1).

Since Sn is analytic on C except on a finite number of poles λ1(X), . . . , λn(X), the
function Re(Sn) fully determines the spectrum of X. We have

Re(Sn(z)) =
1

n

n∑

k=1

Re(λk(X) − z)

|λk(X) − z|2

= − 1

2n

n∑

k=1

∂Re(z)log(|λk(X) − z|2)

= ∂Re(z)Un(z),

where Un is the logarithmic potential of the ESD µn of X

Un(z) = −
∫

C

log |z − z′| dµn(z
′)

= −1

n

n∑

k=1

log |λk(X − zI)|

= −1

n
log |det(X − zI)|

= −1

n
log det(H(z))

= −
∫ ∞

0

log(x) dνn,z(x)

where νn,z is the ESD of H(z). The Fourier-Stieltjes approach used by Girko [13],
Bai [2], and more recently by Tao & Vu [33] is based on the convergence of the
Fourier transform of Re(Sn(z)) = ∂Re(z)Un(z), whereas the logarithmic potential
approach used by Götze and Tikhomirov [19] and Pan & Zhou [24] is based directly
on the convergence of the logarithmic potential Un(z). In both cases, one of the
main difficulty is the control of the extremal singular values of X − zI, which
correspond to the singularities at 0 and ∞ in the integral above involving νn,z.

While the largest singular value can be relatively easily bounded under mo-
ments hypotheses, the smallest singular value of random matrices is hard to bound,
and the reader may find some recent developments based on the Littlewood-Offord
problem in the works of Rudelson [27], Rudelson & Vershynin [28], Pan & Zhou
[24], Götze & Tikhomirov [18], Tao & Vu [33], and references therein. The bound
on the smallest singular value used in [19] is based on [27], whereas the one used
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in [24] and [18] improves the result of [28]. However, the one used in [33] is of
different nature. We need this bound since the preceding ones are not suitable for
the non-central case due to the norm of the deformation.

Notice that if X is an n × n random matrix with i.i.d. entries of absolutely
continuous distribution L, then almost surely, X is not normal, has distinct eigen-
values (and is hence diagonalizable), and is invertible. The situation is more
intricate when L has atoms, for instance when L is a purely discrete distribution,
and this contributes to make difficult the derivation of generic lower bounds on
smallest singular values.

Non-central case

Let A be some deterministic n × n complex matrix, and 1 be the n × n matrix
with all entries equal to 1. The rank one positive semi-definite symmetric matrix
1 has spectrum λ1(α1) = n and λ2(α1) = · · · = λn(α1) = 0. Following Andrew [1,
p. 167] or Silverstein [32], for every complex number α ∈ C, we have by denoting

Ã = A − α1 and r = s1(Ã),

{λ1(A), . . . , λn(A)} ⊂ D(0, r) ∪ D(nα, r)

where D(z, r) = {z′ ∈ C; |z − z′| 6 r}. Moreover, if |nα| > r then

{λ2(A), . . . , λn(A)} ⊂ D(0, r) and λ1(A) ∈ D(nα, r).

This spectrum localization follows from classical perturbation theory2, by seeing
A = Ã+ α1 as an additive perturbation of α1 by Ã. Now, let (Xi,j)16i,j<∞ be an
infinite array of i.i.d. complex random variables with common law L of mean m.
Define the random matrices

X = (n−1/2Xi,j)16i,j6n and X̃ = (n−1/2(Xi,j − m))16i,j6n.

We have X− X̃ = α1 where α = n−1/2m. Hence, if m 6= 0, the random matrix X
is an additive rank one deformation of the centered random matrix X̃. However,
the norm of this deformation does not collapse as n tends to infiniy, since

‖X − X̃‖2 = ‖α1‖2 = |m|√n −→
n→∞

∞. (2)

It is shown in [37, 6] that

E[|X1,1 − m|4] < ∞ ⇒ lim
n→∞

s1(X̃) = 2 a.s. (3)

2One can for example make use the Bauer-Fike theorem and the Gerschgorin theorem, see
for instance [36, p. 87-88], [17, th. 7.2.2 p. 321] and [21, ch. 6].
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whereas
E[|X1,1 − m|4] = ∞ ⇒ lim sup

n→∞
s1(X̃) = ∞ a.s. (4)

Thus, if L has finite fourth moment, then almost surely, for large enough n,

{λ2(X), . . . , λn(X)} ⊂ D(0, s1(X̃)) and λ1(X) ∈ D(m
√

n, s1(X̃)). (5)

This shows that the eigenvalue λ1(X) of largest module and the rest of the spec-
trum λ2(X), . . . , λn(X) localize on different discs when m 6= 0. Relaxing the
centering condition creates an isolated largest eigenvalue, which goes to infinity,
whereas the rest of the spectrum remains roughly near the centered unit disc. A
single eigenvalue plays no role in the asymptotic behavior of the ESD of X, due
to the empirical scaling 1/n. For that reason, one can expect that the circular law
theorem remains valid when m 6= 0, despite the fact that the largest eigenvalue
λ1(X) goes to infinity when n → ∞. This is confirmed by the following theorem,
which is our main result, illustrated by figure 2.

Theorem 1.2 (Circular law for non-central entries). Let (Xi,j)16i,j<∞ be an
infinite array of i.i.d. complex random variables of law L, with mean m, variance
σ2 = 1, and finite fourth moment. Then the ESD of X = (n−1/2Xi,j)16i,j6n tends,
as n → ∞, to the uniform distribution on the unit disc D(0, 1) = {z ∈ C; |z| 6 1}.

Note that Silverstein has shown in [32] that if L is real with mean m > 0,
variance σ2 = 1, and finite fourth moment E[|X1,1|4] < ∞, then almost surely,
λ1(X) is real for large enough n, and

λ1(X)
a.s.−→

n→∞
+∞ and s1(X)

a.s.−→
n→∞

+∞. (6)

Moreover, by denoting N (0, 1) the standard Gaussian on R

√
n
(
λ1(X) − m

√
n
) D−→

n→∞
N (0, 1).

These results can be easily adapted to the case where L is complex with mean
m 6= 0. For any complex number z ∈ C with |z| = 1, and any n× n matrix A, we
have sk(zA) = sk(A) whereas λk(zA) = zλk(A) for every 1 6 k 6 n.

Example 1.3 (Adjacency matrices of Erdős-Rényi random oriented graphs).
An oriented finite simple graph is a set of oriented edges (arrows) between a finite
number of vertices (points), with at most one arrow between two vertices. The ad-
jacency matrix of such a graph is defined by Ai,j = 1 if there is an arrow from i to
j and Ai,j = 0 otherwise. The random version corresponds to fix some parameter
p ∈ (0, 1), and to put an arrow between i and j with probability p, independently
for each couple (i, j). Let n be the number of vertices. By theorem 1.2, almost
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surely, the ESD of X = (p(1− p)n)−1/2A tends to the uniform distribution on the
unit disc D(0, 1) as n → ∞. Here L is the Bernoulli distribution pδ1 + (1 − p)δ0

and m = p and σ2 = p(1 − p). However, by (5), almost surely, the largest eigen-
value λ1(X) goes to +∞ at speed

√
np/(1 − p). One can drop the simple graph

hypothesis by allowing at most r arrows between two nodes. In that case, L is a
discrete probability distribution supported by {0, 1, . . . , r}.

The non-central version of the Marchenko-Pastur theorem can be easily de-
duced from the centered version by using the rank lemma 3.5. The same approach
works for the non-central version of the Wigner theorem, see [3] and [5, ch. 11].
Such rank lemmas are based on interlacing inequalities derived from variational
formulas for the eigenvalues of Hermitian matrices. In constrast, no such rank
lemmas or variational formulas exist for the eigenvalues of non-Hermitian matri-
ces. However, rank lemmas are of course available for the singular values. The
logarithmic potential approach used in the proof of the circular law theorem needs
the control of the extremal singular values, which is not provided by rank lemmas.

The spectrum of non-normal matrices is very sensitive to small perturbations,
even of finite rank. Let us recall a striking example taken from [5, p. 292]. Consider
the n × n matrices A and B defined by

A =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
...

0 0 0 0 · · · 1
0 0 0 0 · · · 0




and B =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
...

0 0 0 0 · · · 1
εn 0 0 0 · · · 0




where εn = n−α for some α > 0. We have rank(A − B) = 1 and ‖A −B‖2 = εn.

However, λk(A) = 0 while λk(B) = (εne
2(k−1)π

√
−1)1/n for every 1 6 k 6 n. In

particular, the ESD of A is δ0 while the ESD of B is supported on the centered
circle of radius ε

1/n
n of the complex plane. Moreover, ε

1/n
n → 1 and the LSD of B

is the uniform distribution on the unit circle of the complex plane!
In numerical analysis, the sensitivity of the spectrum is captured by the notion

of pseudo-spectrum [35]. If we denote by Λ(A) = {λ1(A), . . . , λn(A)} the spectrum
of A, then for any ε > 0, the (‖·‖2, ε)-pseudo-spectrum Λε(A) of A is given by

Λε(A) =
⋃

‖A−B‖
2
6ε

Λ(B) = {z ∈ C such that sn(A− zI) 6 ε}.

For a normal matrix, the pseudo-spectrum is just the ε-neighborhood of its spec-
trum. The pseudo-spectrum can be larger for non-normal matrices, due to the
possible big difference between singular values and eigenvalues. The continuity of
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the spectrum with respect to the matrix entries implies that Λε(A) → Λ(A) as
ε → 0, for any fixed n × n matrix A. However, this says nothing on the behavior
of Λεn

(A) as n → ∞ where A is the n × n truncation of an infinite table.

Outline

The proof of theorem 1.2 is given in the next section of this article. More precisely,
we show that theorem 1.1 implies theorem 1.2. The last section collects some
crucial tools used in the proof of theorem 1.2.

Extensions and open problems

We ignore if the method used by Ginibre [12] and Edelman [10] for the compu-
tation of the spectral density in the Gaussian centered case can be adapted to
the Gaussian non-central case. An additional log-linear term forbids some crucial
cancellations in the integral.

Tao & Vu [33] has shown that theorem 1.1 remains valid if one replaces the finite
fourth moment hypothesis E[|X1,1 − m|4] < ∞ by E[|X1,1 − m|2+ε] < ∞ for some
ε > 0. In our reduction to the centered case, the finite fourth moment hypothesis
is used to bound s1(X̃) via (3) and then λ1(X) via (5). Under the weaker moment
condition of Tao & Vu, one can hopefully use instead the probabilistic bound for
the condition number [33, cor. 2.10 p. 8]. Recall that the condition number of A
is κ(A) = ‖A‖2‖A−1‖2 = s1(A)/sn(A). However, the spectrum localization given
by (5) is not meaningful without the finite fourth moment condition.

One can also try to obtain a sparse version of the non-central circular law
theorem by using the techniques used for the centered case in [33] and [18]. Another
possible extension is to drop the identical distribution of the entries, as already
mentioned by Pan & Zhou [24] and Tao & Vu [33] for the centered case. See also
the discussion in section 10.8 of Bai-Silverstein’s book [5].

Rider [26, 25] has shown recently that when L is a centered complex Gaussian,
the fluctuation of the largest singular value is given by a Gumbel type extreme
distribution rather that by a Tracy-Widom distribution as for classical Hermi-
tian random matrices models. The asymptotic behavior (convergence and fluctu-
ations) of the extremal eigenvalues and singular values remains untouched when
L is generic. It seems heuristically that the non-Hermitian nature of the matrices
gives more space to the spectrum, which can thus uncorrelate as n → ∞ and
finally behave roughly like i.i.d. random variables. Quoting Girko [14], “if all
entries of a random matrix which lie on the main diagonal and above are inde-
pendent and belong to the domain of attraction of an infinitely divisible law then,
under some conditions, the normalized real and imaginary parts of eigenvalues be-
have like some order statistics when s, n tend to infinity”. Note that it has been
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shown by Capitaine & Donati-Martin & Féral [9] that the fluctuations of λ1 are
non-universal in certain Hermitian models with low rank deformation. A related
natural question for non-central entries is to ask about the asymptotic behavior
of the second largest eigenvalue λ2(X) or singular value s2(X) in the case where
m 6= 0, the behavior of λ1(X) and s1(X) being given already by (5) (see [32] for
more details). The behavior of the subdominant eigenvalue λ2 of certain random
matrices is considered in [15, 16]. The study of the asymptotic behavior of sn(X)
and λn(X) is notoriously more difficult than the study of the asymptotic behavior
of s1(X) and λ1(X). Another interesting question is the asymptotic behavior of
the eigenvectors, as in [4].

Notations and conventions

Matrices names are written in bold faced upper case letters. The identity matrix
is denoted I. The notation A∗ = A⊤ stands for the conjugate transpose of A.
The notation 1 stands for a matrix with all entries equal to 1. The real and
imaginary parts of the complex number z are written Re(z) and Im(z), and in
particular zz = |z|2 = Re(z)2 + Im(z)2. The letter i is used for integer indexing
and is never used for

√
−1. The letter m is used to denote a mean and is never

used for indexing. The symbol E denotes the mathematical expectation. If Z
is a complex random variable of mean m = E[Z] ∈ C, we define its variance by
σ2 = E[|Z − m|2] = E[|Z|2] − |m|2, which is the trace of the covariance matrix
of Z viewed as a random vector of R

2. The random variables are defined on a
probability space (Ω,A, P), and the notation “a.s.” stands for “P-almost-surely”.

2 Proof of theorem 1.2

This section is devoted to the proof that theorem 1.1 implies theorem 1.2. We will
adopt the logarithmic potential approach. Lower bounds for the smallest singular
value of X− zI are crucial. The ones used by Götze & Tikhomirov [19, 18] and by
Pan & Zhou [24] do not allow to deal with our non-central random matrices, due
to the norm of the deformation (2). We will circumvent this difficulty by using
instead the polynomial-polynomial bounds obtained recently by Tao & Vu [33].

In this section, X is the n × n random matrix of theorem 1.2, and we assume
from now that m 6= 0. The ESD of X is denoted

µn =
1

n
(δλ1(X) + · · · + δλn(X)).

We also define, for every complex number z ∈ C,

νn,z =
1

n
(δs1(X−zI) + · · ·+ δsn(X−zI)),

9



which is the ESD of the positive semi-definite Hermitian matrix

H(z) =
√

(X − zI)(X − zI)∗.

The logarithmic potential Un of the ESD µn of X is given by (see section 3.1)

Un(z) = −
∫

C

log |z − z′| dµn(z
′)

= −1

n
log |det(X − zI)|

= −
∫ ∞

0

log(x) dνn,z(x).

Define the n × n random matrix X̃ as in (5) by

X̃ = X− n−1/2m1 = n−1/2(Xi,j − m)16i,j6n

where 1 is the n × n matrix with all entries equal to 1. Define also similarly

µ̃n =
1

n
(δλ1(X̃) + · · ·+ δλn(X̃))

and

ν̃n,z =
1

n
(δs1(X̃−zI) + · · · + δsn(X̃−zI))

and

Ũn(z) = −
∫

C

log |z − z′| dµ̃n(z
′)

= −1

n
log

∣∣∣det(X̃ − zI)
∣∣∣

= −
∫ ∞

0

log(x) dν̃n,z(x).

Let µ be the circular law, i.e the uniform law on D(0, 1), and let U be its logarithmic

potential (see [19] and [24]). We consider first the behavior of Ũn. By (1) and (3),

|λ1(X̃)| 6 s1(X̃)
a.s.−→

n→∞
2 < ∞.

Thus, almost surely, the sequence of probability distributions (µ̃n) are supported
in a common compact subset of C. Since by the centered circular law (theorem
1.1), µn → µ weakly as n → ∞, the Lower Envelope Theorem 3.3 gives

lim inf
n→∞

Ũn(z) = U(z)

10



for quasi-every z ∈ C. Set now

∆n(z) := Un(z) − Ũn(z) =

∫ ∞

0

log(x) dνn,z(x) −
∫ ∞

0

log(x) dν̃n,z(x).

Let us denote by Fn,z and F̃n,z the cumulative distribution functions of νn,z and
ν̃n,z respectively defined by

Fn,z(x) = νn,z((−∞, x]) and F̃n,z(x) = ν̃n,z((−∞, x])

for every x ∈ R. Let (αn) and (βn) be as in lemma 2.1 below. By an integration
by parts (lemma 3.1), almost surely, for every z ∈ C and large enough n,

∆n =

∫ βn

αn

log(x)(dνn,z(x) − dν̃n,z(x)) =

∫ βn

αn

1

x
(Fn,z(x) − F̃n,z(x)) dx

and hence
|∆n| 6 (log(βn) − log(αn))

∥∥∥Fn,z − F̃n,z

∥∥∥
∞

.

Now, the Bai-Thomson rank Lemma 3.5 gives

∥∥∥Fn,z − F̃n,z

∥∥∥
∞

6
1

n
rank(X− X̃) =

1

n
rank(n−1/2m1) =

1

n

and therefore, almost surely, for every z ∈ C, and for large enough n,

|∆n| 6
1

n
(log(βn) − log(αn)) −→

n→∞
0.

Consequently, almost surely, for quasi-every z ∈ C,

lim inf
n→∞

Un(z) = lim inf
n→∞

Ũn(z) = U(z). (7)

The probability distributions (µn) are not supported in a common compact set,
due to the behavior of the atom an = λ1(X) in µn. One can however make use of
(7) with theorem 3.2. Since m 6= 0, (5) gives |an| → ∞ a.s. and

max(|λ2(X)|, . . . , |λn(X)|) 6 s1(X̃) → 2 < ∞ a.s.

Additionally, pn log |an| → 0 a.s. Finally, theorem 3.2 used with pn = 1/n implies
that almost surely, µn → µ weakly as n → ∞. This achieves the proof of theorem
1.2.
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Lemma 2.1. Almost surely, for every z ∈ C, there exist real numbers α, β and
positive real numbers cα > 0 and cβ > 0 such that for large enough n,

αn := cαnα
6 min(sn(X− zI), sn(X̃ − zI))

and
βn := cβnβ

> max(s1(X− zI), s1(X̃− zI)).

Proof. First, by (3), almost surely, s1(X̃) → 2 as n → ∞. Consequently, almost
surely, for every z ∈ C,

s1(X̃ − zI) 6 s1(X̃) + s1(zI) = s1(X̃) + |z|2 = Oz(1)

and also almost surely, for every z ∈ C,

s1(X− zI) 6 s1(X̃+ zI)+ s1(n
−1/2m1) = s1(X̃+ zI)+n1/2|m| = Oz(1)+O(n1/2).

On the other hand, by the Tao-Vu theorem 3.6 and the Borel-Cantelli lemma,
there exist B > 0 and C2 > 0 such that for every z ∈ C, almost surely,

min(sn(X − zI), sn(X̃− zI)) > C2 nB

for large enough n. Since sn(·) is continuous, it is locally uniformly continous, and
one can then commute the universal quantifiers on z and ω.

Remark 2.2. Since m 6= 0, we have for every z ∈ C, by using (1) and (5),

s1(X− zI) > |λ1(X − zI)| a.s.−→
n→∞

+∞

Thompson’s interlacing inequalities (8) and (3) give

s2(X − zI) 6 s1(X̃ − zI) 6 s1(X̃) + s1(zI) = s1(X̃) + |z|2 a.s.−→
n→∞

2 + |z|2 < ∞.

3 Tools

This section gathers some tools used in our proof of the non-central version of the
circular law theorem (theorem 1.2). The following lemma is a special case of the
integration by parts formula for the Lebesgue-Stieltjes integral (with atoms).

Lemma 3.1 (Integration by parts). If a1, . . . , an, b1, . . . , bn ∈ [α, β] ⊂ R, and
Fµ and Fν are the cumulative distribution functions of µ = 1

n
(δa1

+ · · ·+ δan
) and

ν = 1
n
(δb1 + · · ·+ δbn

) respectively, then for any smooth f : [α, β] → R,

∫ β

α

f(x) dµ(x) −
∫ β

α

f(x) dν(x) =

∫ β

α

f ′(x)(Fµ(x) − Fν(x)) dx.

12



In particular, when f is non decreasing,

∣∣∣∣
∫ β

α

f(x) dµ(x) −
∫ β

α

f(x) dν(x)

∣∣∣∣ 6 (f(β) − f(α))‖Fµ − Fν‖∞.

Proof. One can assume by continuity that a1, . . . , an, b1, . . . , bn are all different.
We reorder a1, . . . , an, b1, . . . , bn into c1 6 · · · 6 c2n. For every 1 6 k 6 2n, set
εk = +1 if ck ∈ {a1, . . . , an} and εk = −1 if ck ∈ {b1, . . . , bn}. We have

∫ β

α

f(x) dµ(x) −
∫ β

α

f(x) dν(x) =
1

n

n∑

k=1

(f(ai) − f(bi)) =
1

n

2n∑

k=1

εkf(ck).

By an Abel transform, we get by denoting Sk = ε1 + · · · + εk,

2n∑

k=1

εkf(ck) = −
2n−1∑

k=1

Sk(f(ck+1) − f(ck)) + S2nf(c2n).

Since Fµ − Fν is constant and equal to Sk on [ck, ck+1[,

Sk(f(ck+1) − f(ck)) =

∫ ck+1

ck

f ′(x)(Fµ(x) − Fν(x)) dx.

It remains to notice that S2n = Fµ(c2n) − Fν(c2n) = 0.

3.1 Logarithmic potential tools

We give here some logarithmic potentials tools, already used by Götze & Tikhomirov
[19] and Pan & Zhou [24] in order to prove centered versions of the circular law
theorem, following a suggestion made by Khoruzhenko.

1. The logarithmic potential Uµ of a probability measure µ on C is the function
defined for every z ∈ C by

Uµ(z) = −
∫

C

log |z − z′| dµ(z′).

2. The logarithmic energy3 E(µ) of a probability distribution µ on C is

E(µ) =

∫

C

Uµ(z) dµ(z) = −
∫

C

∫

C

log |z − z′| dµ(z) dµ(z′).

3Up to a sign, it is the free entropy in Voiculescu’s free probability theory, see [20, sec. 5.3].
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3. The energy E(K) of a compact subset K of C is

E(K) = inf{E(µ); µ is a probability distribution supported in K}

4. The logarithmic capacity of a compact subset K of C is defined by

Cap(K) = e−E(K).

5. The capacity of a Borel subset B of C is defined by

Cap(B) = sup{Cap(K); K is a compact subset of C included in B}.

If Cap(B) = 0 then B has zero Lebesgue measure. A property is said to hold
quasi-everywhere on B if the set where it does not hold has zero capacity.

Theorem 3.2. Let (νn) be a sequence of probability distributions on C with support
in a common compact subset of C, (an) be a sequence of complex numbers such
that |an| → +∞, and (pn) be a sequence of real numbers in [0, 1] such that pn → 0.
Define µn = (1 − pn)νn + pnδan

. If pn log |an| → 0 and lim infn→∞ Uµn
= Uµ

quasi-everywhere on C for some compactly supported probability distribution µ on
C, then µn → µ and νn → µ weakly as n → ∞.

Proof. We have for every fixed z ∈ C and large enough n,

Uµn
(z) = −pn log |z − an| + (1 − pn)Uνn

(z).

By hypothesis, we have for every fixed z ∈ C and large enough n,

pn log |z − an| = pn log |an| + pn log

∣∣∣∣
z

an
− 1

∣∣∣∣ → 0.

Consequently, lim infn→∞ Uνn
= lim infn→∞ Uµn

= Uµ quasi-everywhere on C. The
sequence (νn) is tight (i.e. weakly retatively compact) since it is supported in a
common compact subset of C. Let µnk

→ η be a weakly converging subsequence,
to some probability distribution η (necessarily supported in the same compact sub-
set). By the Lower Envelope Theorem 3.3, lim infn→∞ Uνn

= Uη quasi-everywhere
in C. In particular, Uµ = Uη quasi-everywhere in C, and thus almost everywhere
for the Lebesgue measure. Now, by the Unicity Theorem 3.4, we get η = µ.
Therefore, µ is the unique weak adherence value of (νn). By a standard theorem
of Prohorov [8], the set of probability distributions on a compact space equipped
with the weak topology is metrizable and compact. In follows then that νn → µ
weakly. Since pn → 0, we get also that µn = (1 − pn)νn + pnδan

→ µ weakly.
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Theorems 3.3 and 3.4 can be found in [29, th. 6.9 p. 73 and cor. 2.2 p. 98].

Theorem 3.3 (Lower Envelope Theorem). Let (µn) be a sequence of probabil-
ity distributions on C with support in a common compact subset of C. If µn → µ
weakly as n → ∞, then lim infn→∞ Uµn

= Uµ quasi-everywhere on C.

Theorem 3.4 (Unicity Theorem). If µ and ν are two compactly supported
probability distributions on C and if their logarithmic potential Uµ and Uν coincide
almost everywhere with respect to the Lebesgue measure on R2, then µ = ν.

3.2 Singular values tools

For an n × n Hermitian matrix H, we denote by FH : R → [0, 1] the cumulative
distribution function of the ESD µH of H defined by

FH(x) = µH((−∞, x]) =
1

n
card{k ∈ {1, . . . , n} s.t. λk(H) − x 6 0}

for any x ∈ R. The following lemma, due to Bai, shows that the rank of the
deformation controls the effect on singular values.

Lemma 3.5 (Rank inequality). For any n × m complex matrices A and B,

∥∥F√
AA∗ − F√

BB∗

∥∥
∞ 6

1

n
rank(A −B).

See [3, Lemma 2.6 page 621] or [5, Theorem 11.43 page 362] for a proof based
on interlacing inequalities derived from the Courant-Fischer min-max variational
formulas for singular values. Bai states this lemma with FAA∗ and FBB∗ instead
of F√

AA∗ and F√
BB∗ but the proof are identical since

√· is non decreasing. The
rank lemma 3.5 appears actually in a different form in the article [34, Theorem 3
page 76] published in 1976 by Thompson, who showed that for any n×n complex
matrices A and B with rank(A − B) 6 k,

si+k(A) 6 si(B) 6 si−k(A) (8)

for any 1 6 i 6 n, where sr = +∞ if r 6 0 and sr = 0 if r > n + 1. In particular,

[sn−k(B) , sk+1(B)] ⊂ [sn(A) , s1(A)].

Conversely, Thompson showed additionally that any couple of sequences of non
negative real numbers which satisfy to the interlacing inequalities (8) are the sin-
gular values of two respective matrices A and B with rank(A− B) 6 k.

It is worthwhile to mention that the Bai-Thompson inequalities give neither
an upper bound for the largest singular values s1(B), . . . , sk(B) nor a lower bound
for the smallest singular values sn−k+1(B), . . . , sn(B), even in the case k = 1.
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The following theorem is nothing else but Theorem 2.1 by Tao & Vu in [33, p.
6]. It gives a probabilistic polynomial bound for the smallest singular value of a
random matrix deformed by a deterministic matrix.

Theorem 3.6 (Polynomial bounds for smallest singular values). Let L be a
probability distribution on C with finite and non-zero variance. For every constants
A > 0 and C1 > 0, there exists constants B > 0 and C2 > 0 such that for every
n× n random matrix X with i.i.d. entries of law L and every n× n deterministic
matrix C with s1(C) 6 nC1 , we have

P(sn(X + C) 6 n−B) 6 C2n
−A. (9)

Notice that in theorem 3.6, the probability distribution L in not necessarily
centered. We make use of this theorem in our proof of the non-central version of
the circular theorem (theorem 1.2), with L of mean m ∈ C and C = −zI.

Remark 3.7 (The matrix inverse of a low rank deformation). Concerning
the behavior of the smallest eigenvalue and singular value under a rank 1 deforma-
tion, it is natural to ask about the expression of the inverse of the deformed matrix.
The Sherman-Morrison formula [31] states that if A is an n× n invertible matrix
and if u and v are two column n-vectors such that 1 + v⊤A−1u 6= 0, then the rank
1 deformation A + uv⊤ of A is invertible and

(A + uv⊤)−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u
.

In particular, it shows that the inverse of a rank one deformation is a rank one
deformation of the inverse. In the same spirit, we have under the same assump-
tions

det(A + uv⊤) = (1 + v⊤A−1u) det(A).

Unfortunately, this gives, to the author knowledge, nothing really useful for the con-
trol of logarithmic potentials in the non-central case. The Sherman-Morrison for-
mula is a particular case of the Woodbury formula which states that if A,C,U,V
are matrices of suitable dimensions then

(A + UCV⊤)−1 = A−1 − A−1U(C−1 + V⊤A−1U)−1V⊤A−1.

In the same spirit, and under the same assumptions,

det(A + UCV⊤) = det(C−1 + V⊤A−1U) det(C) det(A).
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Figure 1: The spectrum of a single realization of X. Here n = 500 and L is a
standard Gaussian law N (0, 1) of mean m = 0 and variance σ2 = 1. The plot
illustrate well the circular law theorem in the central case m = 0 (theorem 1.1).
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Figure 2: The typical behavior of the non-central case. The graphic shows the
spectrum of a single realization of X, in the case where n = 100 and L is the
Gaussian distribution N (1, 1) of mean m = 1 and variance σ2 = 1. The plot is
in accordance with (5), which gives λ1(X) ≈ m

√
n = 10, whereas the rest of the

spectrum remains localized near the unit disc. The largest eigenvalue λ1(X) has
weight 1/n → 0 in the ESD of X, which explains why the non-central circular
theorem is possible (theorem 1.2).

19
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Unité de Physiologie et Toxicologie Expérimentales (UMR INRA 181)
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