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Abstract

Let (Xjk)j,k>1 be an infinite array of i.i.d. complex random variables, with
mean 0 and variance 1. Let λn,1, . . . , λn,n be the eigenvalues of ( 1√

n
Xjk)16j,k6n.

The strong circular law theorem states that with probability one, the empir-
ical spectral distribution 1

n
(δλn,1

+ · · · + δλn,n
) converges weakly as n → ∞

to the uniform law over the unit disc {z ∈ C; |z| 6 1}. In this short note,
we provide an elementary argument that allows to add a deterministic matrix
M to (Xjk)16j,k6n provided that Tr(MM∗) = O(n2) and rank(M) = O(nα)
with α < 1. Conveniently, the argument is similar to the one used for the
non–central version of Wigner’s and Marchenko-Pastur theorems.
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1 Introduction

For any square n × n matrix A with complex entries, let the complex eigenvalues
λ1(A), . . . , λn(A) of A be labeled so that |λ1(A)| > · · · > |λn(A)|. The empirical
spectral distribution of A is the discrete probability measure µA := 1

n

∑n

k=1 δλk(A).
We denote by s1(A) > · · · > sn(A) the singular values of A, i.e. the eigenvalues
of the positive semi-definite Hermitian matrix

√
AA∗ where A∗ is the conjugate–

transpose of A. The operator norm is s1(A) = max‖x‖
2
=1 ‖Ax‖2 and the square

Hilbert-Schmidt norm is ‖A‖2 := s1(A)2+· · ·+sn(A)2 = Tr(AA∗) =
∑n

j,k=1 |Aj,k|2.
Weyl’s inequality |λ1(A)|2+ · · ·+ |λn(A)|2 6 s1(A)2+ · · ·+ sn(A)2 ensures that the
second moment of µA is always bounded above by 1

n
‖A‖2. The following result was

recently obtained by Tao and Vu [19, Corollary 1.15].

Theorem 1.1 (Circular law for central random matrices). Let (Xjk)j,k>1 be i.i.d.
complex random variables. Let (Mjk)j,k>1 be deterministic complex numbers. For
every integer n > 1, set Xn = (Xjk)16j,k6n and Mn = (Mjk)16j,k6n. If

• E[|X1,1|2] = 1 and E[X1,1] = 0

• ‖Mn‖2 = O(n2) and rank(Mn) = O(nα) for some α < 1
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then with probability one, µ 1√
n
(Xn+Mn) tends weakly as n → ∞ to the uniform dis-

tribution on the unit disc {z ∈ C; |z| 6 1} (known as the circular law).

The aim of this note is to provide an alternative and elementary argument which
reduces theorem 1.1 to the central case where Mn ≡ 0 for every n. Conveniently, the
approach is close in spirit to the one used by Bai [3] for the derivation of Wigner’s
and Marchenko-Pastur theorems for non–central random matrices.

This note was motivated by the study of random Markov matrices, including the
Dirichlet Markov Ensemble [8, 7], for which a circular law theorem is conjectured.
The initial version of this note was written before the apparition of [19], and provided
for the first time a non–central version of the circular law theorem. The initial version
was based on potential theoretic tools. For convenience, the present version makes
use instead of the replacement principle borrowed from [19].

Theorem 1.1 belongs to a sequence of works by many authors, including Mehta
[13], Girko [10], Silverstein [12], Bai [2], Edelman [9] Śniady [17], Bai and Silverstein
[4], Pan and Zhou [14], Götze and Tikhomirov [11], and Tao and Vu [18].

Remark 1.2 (Constant case). Consider the case where the entries of Mn are all
equal to 1 in theorem 1.1. We have then rank(Mn) = 1 and s1(Mn) = n. Suppose
additionally that X1,1 has finite fourth moment. Then, by Bai and Yin theorem [5],
with probability one, limn→∞ s1(

1√
n
Xn) = 2, and thus 1√

n
(Xn + Mn) is a random

bounded perturbation of the rank one symmetric matrix 1√
n
Mn which has spectrum

λn(Mn) = · · · = λ2(Mn) = 0 and λ1(Mn) =
√
n.

From this observation, Silverstein [16] has shown, via perturbation techniques such
as Bauer-Fike and Gerschgorin theorems, that with probability one,
∣

∣

∣

∣

λ2

(

1√
n
(Xn +Mn)

)
∣

∣

∣

∣

6 2 + o(1) and

∣

∣

∣

∣

λ1

(

1√
n
(Xn +Mn)

)

−
√
n

∣

∣

∣

∣

6 2 + o(1).

See also the work of Andrew [1]. Also, with probability one, as n → ∞, the spectral
radius |λ1(

1√
n
(Xn +Mn))| blows up while µ 1√

n
(Xn+Mn) remains weakly localized.

2 Reduction to the central case

In order to show that theorem 1.1 reduces to the central case where Mn ≡ 0 for
every n > 1, it suffices to check the assumptions of the replacement principle of
theorem 3.1 with An := 1√

n
Xn and Bn := 1√

n
(Xn+Mn). By the strong law of large

numbers and the assumption on ‖Mn‖, with probability one,

1

n
‖An‖2 +

1

n
‖Bn‖2 = O(1).

Next, by theorem (3.4) and the first Borel-Cantelli lemma, for all z ∈ C, with
probability one, the random matrices An− zIn and Bn− zIn are invertible for large
enough n. Let us define, for large enough n, the quantity

∆n,z :=
1

n
log |det (An − zIn)| −

1

n
log |det (Bn − zIn)|.
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If we set µn,z := µ√
(An−zIn)(An−zIn)∗

and νn,z := µ√
(Bn−zIn)(Bn−zIn)∗

then

∆n,z =

∫ ∞

0

log(t) d(µn,z − νn,z)(t).

By the strong law of large numbers and the assumption on ‖Mn‖, for all z ∈ C,
with probability one, there exists a > 0 such that

max(s1(An − zIn), s1(Bn − zIn)) 6 na

for large enough n. On the other hand, by theorem (3.4) and the first Borel-Cantelli
lemma, for all z ∈ C, with probability one, there exists b > 0 such that

min(sn(An − zIn), sn(Bn − zIn)) > n−b

for large enough n. Therefore, with αn := n−b and βn := na, and large enough n,

∆n,z =

∫ βn

αn

log(t) d(µn,z − νn,z)(t).

Let Fn,z and Gn,z be the cumulative distribution functions of the real probability
measures µn,z and νn,z. By lemma 3.3 and the assumption on rank(Mn), for almost
all z ∈ C, with probability one, there exists ε > 0 such that

‖Fn,z −Gn,z‖∞ = O(n−ε).

Therefore, by lemma 3.2, we obtain, for almost all z ∈ C, with probability one,

|∆n,z| 6 (log(βn)− log(αn))‖Fn,z −Gn,z‖∞ = o(1).

3 Tools

This section gathers some tools used in our proof of theorem 1.1. By Green’s theo-
rem, for any complex polynomial P and smooth compactly supported f : C → R,

∫

C

f dµ =
1

2π

∫

C

∆f log |P | dxdy

where µ := δλ1
+ · · ·+ δλn

is the counting measure of the roots λ1, . . . , λn of P in C.
Used for characteristic polynomials of random matrices, this identity provides, via
dominated convergence arguments, the following theorem, see [19, Theorem 2.1].

Theorem 3.1 (Replacement principle). Let (An)n>1 and (Bn)n>1 be two sequences
of complex random matrices where An,Bn are n× n, without any assumptions. If

• with probability one 1
n
‖An‖2 + 1

n
‖Bn‖2 = O(1)

• for almost all z ∈ C, with probability one, the random matrices An − zIn and
Bn − zIn are invertible for large enough n

3



• for almost all z ∈ C, with probability one,

lim
n→∞

(

1

n
log |det (An − zIn)| −

1

n
log |det (Bn − zIn)|

)

= 0

then with probability one, µAn
− µBn

tends weakly to zero as n → ∞.

The following lemma is a special case of the integration by parts formula for the
Lebesgue-Stieltjes integral (with atoms). We give a short proof for convenience.

Lemma 3.2 (Integration by parts). If a1, . . . , an, b1, . . . , bn ∈ [α, β] ⊂ R, and Fµ

and Fν are the cumulative distribution functions of µ = 1
n
(δa1 + · · · + δan) and

ν = 1
n
(δb1 + · · ·+ δbn) respectively, then for any smooth f : [α, β] → R,

∫ β

α

f(x) dµ(x)−
∫ β

α

f(x) dν(x) =

∫ β

α

f ′(x)(Fµ(x)− Fν(x)) dx.

In particular, when f is non decreasing,
∣

∣

∣

∣

∫ β

α

f(x) dµ(x)−
∫ β

α

f(x) dν(x)

∣

∣

∣

∣

6 (f(β)− f(α))‖Fµ − Fν‖∞.

Proof. One can assume by continuity that a1, . . . , an, b1, . . . , bn are all different. We
reorder a1, . . . , an, b1, . . . , bn into c1 6 · · · 6 c2n. For every 1 6 k 6 2n, set εk = +1
if ck ∈ {a1, . . . , an} and εk = −1 if ck ∈ {b1, . . . , bn}. We have

∫ β

α

f(x) dµ(x)−
∫ β

α

f(x) dν(x) =
1

n

n
∑

k=1

(f(ai)− f(bi)) =
1

n

2n
∑

k=1

εkf(ck).

By an Abel transform, we get by denoting Sk = ε1 + · · ·+ εk,

2n
∑

k=1

εkf(ck) = −
2n−1
∑

k=1

Sk(f(ck+1)− f(ck)) + S2nf(c2n).

Since Fµ − Fν is constant and equal to Sk on [ck, ck+1[,

Sk(f(ck+1)− f(ck)) =

∫ ck+1

ck

f ′(x)(Fµ(x)− Fν(x)) dx.

It remains to notice that S2n = Fµ(c2n)− Fν(c2n) = 0.

The following lemma is a direct consequence of interlacing inequalities for singu-
lar values obtained by Thompson [20] in 1976. It was also obtained by Bai [3]
and generalized by Benaych-Georges and Rao [6]. It is worthwhile to mention
that it gives neither an upper bound for s1(B), . . . , sk(B) nor a lower bound for
sn−k+1(B), . . . , sn(B) where k := rank(A−B), even in the case k = 1.

Lemma 3.3 (Rank inequality). Let A and B be two n×m complex matrices. Let
F√

AA∗ , F√
BB∗ be the cumulative distribution functions of µ√

AA∗ and µ√
BB∗. Then

∥

∥F√
AA∗ − F√

BB∗

∥

∥

∞ 6
1

n
rank(A−B).
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The following theorem is due to Tao and Vu [18, Theorem 2.1], and is inspired
from the work of Rudelson and Vershynin [15].

Theorem 3.4 (Polynomial bounds for smallest singular values). Let L be a probabil-
ity distribution on C with finite and non–zero variance. For every constants A > 0
and C1 > 0, there exists constants B > 0 and C2 > 0 such that for every n × n

random matrix X with i.i.d. entries of law L and every n× n deterministic matrix
C with s1(C) 6 nC1, we have

P(sn(X+C) 6 n−B) 6 C2n
−A.
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