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Abstract

We systematically study the effect of the J
2 tensor terms in the Skyrme energy functional on

properties of spherical nuclei. We build a set of 36 parameterizations covering a wide range of

the corresponding parameter space. We analyze the impact of the tensor terms on the evolution

of single-particle-level splittings along chains of semi-magic nuclei in spherical calculations. We

find that positive values of the coupling constants of proton-neutron and like-particle tensor

terms allow for a qualitative description of the evolution of neutron and proton single-particle

level splittings in chains of Ca, Ni and Sn isotopes.
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The tensor force has been identified very early as an important part of the nucleon-
nucleon interaction, and its effects, e.g. the specific correlations it generates and their
importance for the binding of nuclear systems, have been studied in infinite and few-body
systems. However, it is only recently that energy density functional (EDF) practition-
ers have renewed their interest in the various “tensor terms” occuring in the nuclear
EDF [1,2,3,4,5,6,7]. We attempt in this contribution to sketch a systematic study of the
variation of tensor-term parameters and constrain their values [8].
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In spherical symmetry, a zero-range tensor force added on top of the usual Skyrme
effective vertex [9] contributes to the EDF through terms proportional to J

2 [10,11] where
J is the spin-orbit current density vector, here defined through its radial component:

Jq(r) =
1

4πr3

∑

n,j,ℓ

(2j + 1) v2
njℓ

[

j(j + 1) − ℓ(ℓ+ 1) − 3
4

]

ψ2
njℓ(r). (1)

The resulting total spin-orbit field for neutrons reads (invert n and p for protons)

Wn(r) =
W0

2

(

2∇ρn + ∇ρp) + αJn + β Jp , (2)

where the first term comes from the zero-range spin-orbit vertex and the two others from
the tensor vertex. When the functional is derived from such a Skyrme-tensor vertex the
coupling parameters α and β can be chosen independently of the more standard force
or functional parameters. In order to study their effects, we build a series of parameter-
izations, for each of which (α, β) are fixed and all other parameters are fitted according
to a protocol [8] similar to the one used for the construction of the Saclay-Lyon param-
eterizations. They are labelled TIJ , with indices I and J related to α and β through
α = 60 (J − 2)MeV fm5 and β = 60 (I − 2)MeV fm5.

Tensor terms alter the strength and shape of the spin-orbit potential, Eq. (2), when J

varies due to the filling of a single-particle state. The tensor contribution to Wq(r) thus
depends on details of the relative placement of the levels, and is subject to much sharper
relative variations than the spin-orbit contribution. As such, it can be constrained by
examining the variation of the relative placement of single-particle states in a series of
nuclei differing by the filling of levels which significantly contribute to J .

The first example, displayed on the left panel of Fig. 1, is the tin chain, along which
the h11/2 neutron level is filled (between N = 64 and 82) yielding a large contribution to
Jn and thus to the proton spin-orbit field due to the β Jn · Jp coupling. This has been
previously identified as a possible source of the change of slope (as a function of N) in
the spacing of proton 1g7/2 and 1h11/2 levels [12]. The spacing of 2d5/2 and 1g7/2 levels
is affected in a similar way. We can reproduce the magnitude of the single-particle-level
spacing shifts by setting the np-coupling β to 120 MeV fm5, however, the effect appears
to occur at too large a neutron number, owing to the incorrect placement of the neutron
1h11/2 level relative to the 3s1/2 and 2d3/2 ones.

The neutron-neutron coupling can be constrained by examining the spacings of neutron
levels in nuclei of the same isotopic chain. In the Ca chain, for example, the filling of the
1f7/2 level between 40Ca and 48Ca affects the splitting of the neutron 1d shell, yielding a
shift of the 1d3/2 relative to the 2s1/2 one. Similarly, the filling of the 1f5/2 level between
56Ni and 68Ni acts on the 2p and 1f states and produces a relative shift of the 1f5/2 and
2p1/2 levels. The right panel of Fig. 1 displays the evolution of level splittings related to
the latter effects, as a function of the like-particle coupling constant α:

δCa =
(

ε
48Ca
1d3/2

− ε
48Ca
2s1/2

)

−

(

ε
40Ca
1d3/2

− ε
40Ca
2s1/2

)

, (3)

δNi =
(

ε
68Ni
1f5/2

− ε
68Ni
2p1/2

)

−

(

ε
56Ni
1f5/2

− ε
56Ni
2p1/2

)

. (4)

The two cases are consistent with each other, as a satisfactory comparison to experiment
is obtained for values in the range α ≃ 120 − 150 MeV fm5.
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Fig. 1. Incidence of a variation of J
2 coupling constants on single-particle level shifts. Left panel:

Distance of the proton 1h11/2 and 1g7/2 levels (top) and of the proton 2d5/2 and 1g7/2 levels (bottom),
for the chain of tin isotopes. Right panel: Shift of the distance between the neutron 1d3/2 and 2s1/2

levels when going from 40Ca to 48Ca, Eq. (3) (top) and of the neutron 1f5/2 and 2p1/2 levels when going
from 56Ni to 68Ni, Eq. (4) (bottom).

To conclude, we have constrained the tensor-term parameters, yielding α ∼ β ∼

120MeV fm5. However, the addition of these terms does not provide a global improve-
ment of single-particle spectra, as has been expected from more limited studies, and even
deteriorates some aspects of single-particle spectra in doubly-magic nuclei [8]. Comple-
mentary work on the central and spin-orbit parts should thus be performed.
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