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N
CABSTRACT ®i(A,%,Yi,z) : coordinate frame attached to ti@ prismatic
O This paper presents a sensitivity analysis of the Ortheglid joint.

O\ 3-DOF translational Parallel Kinematic Machine. Two com- p=[Px Py pZ}T . vector of the Cartesian coordinates of the
ijementary methods are developed to analyze its sengiiivits end-effector, expressed #f,.

—glimensional and angular variations. First, a linkage kiaten 5p = [5px 5py 5pz}T . position error of the end-effector, ex-
nalysis method is used to have a rough idea of the influence = pressed iy,

Ff? the dimensional variations on the location of the en@ifir. 50 — [59)( 56, 592]T  orientation error of the end-effector, ex-

pressed irgy,.
pi : displacement of thé" prismatic joint.
dp; : displacement error of th&' prismatic joint.
Li : theoretical length of thé" parallelogram.
g : distance between poin@andA;.
ri : distance between poinBsandC;.
di : theoretical width of thé" parallelogram.
3L; : variation in the length of th#" parallelogram.
dLij : variation in the length of linig;;C;;.
ob; : variation in the length of liniB;1 B;».
oc; : variation in the length of linlCi1Cio.
ol; : parallelism error of link®;1Bj2 andCi1Ci5.
om : parallelism error of link®;1Ci1 andB;>Ci».
w;i : direction of linksB;;1Ci1 andB;>Ciz.
ow; : variation in the direction of link8;1Ci; andB;2Ci».
0g : sum of the position errors of poings, B;, G.
CNOMENCLATURE ) ) 30ai = | 3Baix dBaiy 66AiZ}T : angular variation in the direction
CXp(0,x,y,2) : reference coordinate frame centere@®athe in- of theit" prismatic joint
—L tersection between the directions of the three actuates pri 56 — [ 80 50m 50T - | iation b 55
matic joints. Bi = [ 96Bix 0BBiy 3Bsiz| : angular variation betwee 1B;;

- . - h - - - .
Cp(P.X,Y,Z) : coordinate frame attached to the end-effector. and the direction of trT‘é prismatic joint.
30ci = [ 36cix 86ciy dciz]  : angular variation between the

end-effector an@€;i1Ci».

, T . . .
*IRCCyN: UMR P 6597 CNRS Ecole Centrale de Nantes, Universite de  OYi = [5Vix dyiy 5Viz] sum of the orientation errors of tH&
Nantes Ecole des Mines de Nantes

esides, this method shows that variations in the desiganper
ers of the same type from one leg to the other have the same in-
Ifluence on the end-effector. However, this method does ket ta
«—ihto account the variations in the parallelograms. Thusffarel
ntial vector method is used to study the influence of the dime
ional and angular variations in the parts of the manipulato
-(—,SEe position and orientation of the end-effector, and paldirly
< the influence of the variations in the parallelograms.
@ Itturns out that the kinematic isotropic configuration of th
rmanipulator is the least sensitive one to its dimensiondlam
lar variations. On the contrary, the closest configuratio its
Lrg:-r:ematic singular configurations are the most sensitivesdno
eometrical variations.
eywords. Parallel Kinematic Machine, Sensitivity Analysis,
inematic Analysis, Kinematic Singularity.
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parallelogram with respect to th€ prismatic joint and the ential vector method is used to study the influence of the dime

end-effector. sional and angular variations in the parts of the manipulated
DOF : degree-of-freedom. particularly variations in the parallelograms, on the fiosiand
PKM : parallel kinematic machine. the orientation of its end-effector.

In the isotropic kinematic configuration, the end-effeabr
the manipulator is located at the intersection between ittee-d
1 Introduction tions of its three actuated prismatic joints, and the cooditum-
For two decades, parallel manipulators have attracted the per of its kinematic Jacobian matrix is equal to or[¢, [8].slt i
attention of more and more researchers who consider them asshown that this configuration is the least sensitive one @ ge
valuable alternative design for robotic mechanisms. Atedta  metrical variations, contrary to the closest configuratiam its
by numerous authors, conventional serial kinematic ma&shin  kinematic singular configurations, which are the most siesi
have already reached their dynamic performance limitscivhi  to geometrical variations.
are bounded by high stiffness of the machine components re-
quired to support sequential joints, links and actuatorbus]

while having good operating characteristics (large woaksp 2 Manipulator Geometry
high flexibility and manoeuvrability), serial manipulasonave The kinematic architecture of the Orthoglide is shown in
disadvantages of low rigidity and low power. Conversely-pa Fig.ﬂ. It consists of three identical parallel chains that far-
allel kinematic machines (PKM) offer essential advantames mally described aPRRRR whereP, R andP; denote the pris-
their serial counterparts (lower moving masses, higheditig matic, revolute, and parallelogram joints respectivelye mech-
and payload-to-weight ratio, higher natural frequenchbeter anism input is made up of three actuated orthogonal prismati
accuracy, simpler modular mechanical construction, pdggi joints. The output body (with a tool mounting flange) is con-
to locate actuators on the fixed base). nected to the prismatic joints through a set of three kinemat
However, PKM are not necessarily more accurate than their chains. Inside each chain, one parallelogram is used ard ot
serial counterparts. Indeed, even if the dimensional tiana ented in a manner that the output body is restricted to taansl

can be compensated with PKM, they can also be amplified con- tional movements only.
trary to with their serial counterparts| [1]. Wang et El $Rjdied
the effect of manufacturing tolerances on the accuracy téa-S
art platform. Kim et al. [[3] used a forward error bound anislys
to find the error bound of the end-effector of a Stewart platfo
when the error bounds of the joints are given, and an inveree e
bound analysis to determine those of the joints for the géareor
bound of the end-effector. Kim and Tsﬂ [4] studied the dftdc
misalignment of linear actuators of a 3-DOF translatioreabp
lel manipulator on the motion of its moving platform. Han ket a
[E] used a kinematic sensitivity analysis method to exptaim
gross motions of a 3-UPU parallel mechanism, and they showed
that it is highly sensitive to certain minute clearancesn Ea
al. [[] analyzed the sensitivity of the 3-PRS parallel kirmgin
spindle platform of a serial-parallel machine tool

This paper aims at analyzing the sensitivity of the Orthaeyli
to its dimensional and angular variations. The Orthoglgla i
three degree-of-freedom (DOF) translational PKM develdpe
Chablat and Wengeﬂ[?]. A small-scale prototype of this mpani
ulator was built at IRCCyN.

Here, the sensitivity of the Orthoglide is studied by medns o
two complementary methods. First, a linkage kinematicyais
is used to have a rough idea of the influence of the dimensional
variations to its end-effector and to show that the varietin
design parameters of the same type from one leg to another one  The small-scale prototype of the Orthoglide is designeti suc
have the same influence on the location of the end-effectier. A thatits prescribed performances are Cartesian velocityZi/s
though this method is compact, it cannot be used to know the and an acceleration of 17 m/sThe desired payload is 4 kg (spin-
influence of the variations in the parallelograms. Thus fi@di dle, tool, included). The size of its prescribed cubic wpdce,

Figure 1. Basic kinematic architecture of the Orthoglide
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Cu, is 200x 200x 200 mm, where the velocity transmission fac-

tors are bounded betweerf2land 2. The three legs are sup-

posed to be identical. According g [7], the nominal lengths

and widthsd;, of the parallelograms, and the nominal distances,

ri, between point€; and the end-effectdP are identical,i.e..

L=L; =Ly =L3=231058 mm,d = d; = dy = d3 = 80 mm,

r=ri=ro=r3=31mm.

As depicted in Fid]Z*Ql and Q, vertices ofCy, are de- Figure 3. Morphology of the jth leg of the Orthoglide

fined at the intersection between the Cartesian workspagedbo

ary and the axix =y = zexpressed in the reference coordinate

frame®y. Q1 andQ; are the closest points to the singularity sur- o have a rough idea of the influence of the dimensional vari

faces. Their Cartesian coordinates, expresseghjrare equalto  atjons to its end-effector. Although this method is compiéct

(-73.21,-73.21,-73.21) and (126.79,126.79,126.79gets/ely. cannot be used to know the influence of the variations in the pa
allelograms. Thus, a differential vector method is usedudys
the influence of the dimensional and angular variations @ th
parts of the manipulator, and particularly variations ia garal-
lelograms, on the position and the orientation of its erfdetdr.

3.1 Linkage Kinematic Analysis

This method aims at computing the sensitivity coefficients
of the position of the end-effectol, to the design parameters
of the manipulator. First, three implicit functions depict the
kinematic of the manipulator are obtained. A relation betwe
the variations in the position ¢f and the variations in the design
parameters follows from these functions. Finally a serigiti
0, matrix, which gathers the sensitivity coefficients Rf follows
<dl = _ from the previous relation written in matrix form.

: E g 3.1.1 Formulation Figure[ir depicts the design param-
! y K ! X ! S eters taken into account. Poirs, Ay, andAgz are the bases of
| - lZ U v the prismatic joints. Their Cartesian coordinates, exg@ésn
Cartesian / - ! - Ry, areay, ap, andag, respectively.
workspace NG \‘_Q‘z'/,"
C. alz[falOO]T;azz[OfaZO]T;a3:[007a3}T

Figure 2. Cartesian workspace, Cy, points Q1 and Q2
whereg; is the distance between poims and O, the origin of
Rp. PointsB,, B, andBg are the links between the prismatic and
The parts of the manipulator are supposed to be rigid-bodies Parallelogram joints. Their Cartesian coordinates, esged in

and there is no joint clearances. itsleg is depicted in Fig]3 Rp are:
and is made up of one prismatic joint, one parallelogram, and

three revolute joints, which generate one DOF each. Acogrdi —a1+p1 Doy by

to Karouia et al. [[9], the manipulator is isostatic becatséegs by = bay b= | —ax+p2|.bz= bay
are identical and have five DOF each. Thus, the results adutain b1, by, —ag+ps3
by the sensitivity analysis methods used in this paper aanme

ingful.

wherep; is the displacement of thi&' prismatic joint. b1y and
by, are the position errors of poil; according toy andz axes.

3 Sensitivity Analysis box andby; are the position errors of poiB according tox and
Two complementary methods are used to study the sensitiv- z axes.bzx andbsy are the position errors of poiz according
ity of the Orthoglide. First, a linkage kinematic analysisised to x andy axes. These errors result from the orientation error:
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of the directions of the prismatic actuated joints. The €sian
coordinates o€, Cp, andCs, expressed iRy, are the following:

1= [ 00]"s 62— (00, 120]": 3= [00p,—1s]"

wherep = [ px py pz] T is the vector of the Cartesian coordinates
of the end-effectoP, expressed iy,

The expressions of the nominal lengths of the parallelo-
grams follow from eql]l).

Li=|c—bill2,1=1,23 )

wherel,; is the nominal length of thé" parallelogram angl. | » is
the Euclidean norm. Three implicit functions follow from.@
and are given by the following equations:

Fi = (—r1+ px+a1—p1)?+ (py—by)? + (pz—b1)2 — L3 =0
Fo = (px—b2)?+ (—r2+ py+a2—p2)? + (p,— b)2 —L3=0
Fs = (Px—bs)?+ (py—bay)® + (—r3+ p,+ag— p3)’ —L5=0

By differentiating functiond~;, F», andFs, with respect to
the design parameters of the manipulator and the posititmeof
end-effector, we obtain a relation between the positiorirgr
of the end-effectodp, and the variations in the design parame-
ters,oq;.

with
Ai = [0Fi/dpx 0Fi/apy 0F /ap, ]
Bi = [0F:/da; 0F; /by 0F; /by, OF; /dpi OF; /dL; OF; /ri]
3p = [3px dpy 3p;]"
8 = [ Ba; Shi dki dp; 8L ri ]

whereda;, dh;, 8k;, op;j, dL;, anddr;, depict the variations ia;,
hi, ki, pi, Li, andri, respectively withthy = b1y, k1 = b1z, ho = by,
ko = Doz, ha = by, k3 = bay.

Integrating the three loops of eﬂ.(Z) together and sepayati
the position parameters and design parameters to diffsiges
yields the following simplified matrix form:

Adp+B3q=0 3)

with
A = [ATAJAT]T e RS
B 0 0
B=| 0By 0
0 0 Bs
dq = [&q] 3q) 6q§}T € R181

] c R3><18

Equation ﬂB) takes into account the coupling effect of the
three independent structure loops. Accordingﬂo/[vﬂs the par-
allel Jacobian kinematic matrix of the Orthoglide, whicledmot
meet parallel kinematic singularities when its end-effecov-
ersCy. ThereforeA is not singular and its inversé, 1, exists.
Thus, the positioning error of the end-effector can be camgbu

using quI4).

op =Coq (4)
where
0px/0a1 0px/0hy --- Opx/0r3
C:—Ale: apy/aal apy/ahl apy/arS ER3><18 (5)
0pz/0aq 0pz/0hy --- Op,/0r3

represents the sensitivity matrix of the manipulator. The
terms ofC are the sensitivity coefficients of the Cartesian coor-
dinates of the end-effector to the design parameters angsack
to analyze the sensitivity of the Orthoglide.

3.1.2 Results of the Linkage Kinematic Analysis
The sensitivity matriXC of the manipulator depends on the posi-
tion of its end-effector.

Figures[}#[]5[]6 anfl 7 depict the mean of the sensitivity co.
efficients ofpy, py, p,, andp, when the end-effector cove@Gs.
It appears that the position of the end-effector is very isigas
to variations in the position of poing, variations in the lengths
of the parallelogramd,;, variations in the lengths of prismatic
joints, pi, and variations in the position of poin® defined by
ri (see FigﬂB). However, it is little sensitive to the orieidat
errors of the direction of the prismatic joints, defined bygpa-
etersbyy, b1z, box, b2z, bax, bay. Besides, it is noteworthy tha
(py , Pz, respectively) is very sensitive to the design parameter:
which make up thesi (2", 39, respectively) leg of the manipu-
lator, contrary to the others. That is due to the symmetrhef t
architecture of the manipulator. Henceforth, only the atioins
in the design parameters of the first leg of the manipulatdr wi
be taken into account. Indeed, the sensitivity of the pasitf
the end-effector to the variations in the design parametettse

Copyright 0 by ASME



2 <Opz/0gi> [pum/pm]

0.5

q;

Qi bisbiop1 Li G2 boxcboopa Lo s bsx bsyps Lats

Figure 4. Mean of sensitivity of
Px throughout C,

-
°| <opy/dqi> [um/pm]

0.5

i

iy bipr Lirt a2 baxboupo Lot s baxbayps Lt

Figure 5. Mean of sensitivity of
py throughout Cy

D 1.5
L5 <0pz/0¢i> [um/pum] ?

<0p/0gi> [m/pm]

q;

0
ibiybip1 L1 G2 boxbop2 Lom s b bsyps Lsrs 4 iy bupr Lir @2 box b Lora a5 bsxbsyps Lats

Figure 6. Mean of sensitivity of
p; throughout Cy

Figure 7. Mean of sensitivity of p
throughout Cy

second and the third legs of the manipulator can be deduced fr
the sensitivity of the position of the end-effector to védas in
the design parameters of the first leg.

Chablat et al. |]|7] showed that if the prescribed bounds of
the velocity transmission factors (the kinematic critarged to
dimension the manipulator) are satisfiedQatandQ,, then these
bounds are satisfied throughout the prescribed cubic Gamtes
workspaceC,. Q1 andQ; are then the most critical points 6f,
whereag is the most interesting point because it corresponds to
the isotropic kinematic configuration of the manipulatoere]
we assume that if the prescribed bounds of the sensitivifieo
cients are satisfied &, andQ, then these bounds are satisfied
throughouC,.

Figures[B ancﬂ9 depict the sensitivity coefficients pf
and py to the dimensional variations in the'lleg, i.e:
ag, b1y, b1z, p1,L1,r1, @alongQ1Q.. It appears that these coeffi-
cients are a minimum in the isotropic configuratioa,. P = O,
and a maximum wheR = Qo, i.e.: the closest configuration to
the singular one. FigurEIlO depicts the sensitivity coeffits of
p along the diagona; Q.. It is noteworthy that all the sensi-
tivity coefficients are a minimum wheld = O and a maximum
whenP = Q.. Finally, figure depicts the global sensitivities
of p, px, Py, andp; to the dimensional variations. It appears that
they are a minimum whelR = O, and a maximum wheR = Q.

Figured 1P anf ] 3 depict the sensitivity coefficientp,cdnd
p in the isotropic configuration. In this configuration, thespo
tion error of the end-effector does not depend on the oriiemta
errors of the directions of the prismatic joints becausestesi-

2 0.8

15 0.6
< &
S) S

Ly s 304
s Y
S arpPLm <

0.5 by, brz 0.2

p 0 e p
0 O -50 0 50 100 @ 150 —1()[)Q1 -50 0 50 100 Qo 150

Figure 8. Sensitivity of Px to the
variations in the 15! leg

Figure 9. Sensitivity of Py to the
variations in the 15! leg

25

20)

1.5

. 15
& aLpLm 10

0.5 biy, b1z 5

Pr.Py.P=
0 ! 0 L
Q1 -50 0 50 100 Q2 150 Q1 -50 0 50 100 Q’Z 150

Figure 10. Sensitivity of P to the
variations in the 15! leg

Figure 11. Global sensitivity of
P. Px, Py, and pz

. <0pz/dgi> [pm/pm] . <dp/0gi> [um/pm]

0.8 0.8
0.6 0.6
0.4 0.4]
0.2 0.2

q;

0 @by bupi Liriaxbocboupe Lo asbscbsyps Lars 0 @by bupi Liri abocbzp Lors s b bayps Lty &

Figure 12. Sensitivity of Py in
the isotropic configuration

Figure 13. Sensitivity of P in the
isotropic configuration

tivity of the position ofP to variations inbyy, b1z, box, B27, bax, bay
is null in this configuration. Besides, variationspg, py, and
p; are decoupled in this configuration. Indeed, variariong,in
(py, pz, respectively) are only due to dimensional variations in
the T, (2"9, 39, respectively) leg of the manipulator. The corre-
sponding sensitivity coefficients are equal to 1. It meaastte
dimensional variations are neither amplified nor compeusit
the isotropic configuration.

Figureg 14 anfi 15 depict the sensitivity coefficientpdnd
p when the end-effector hit3; (P = Q). In this case, variations
in px, Py, andp, are coupled. For example, variationspp are
due to both dimensional variations in th& leg and variations in
the 29 and the %' legs. Besides, the amplification of the dimen-
sional variations is important. Indeed, the sensitivitgfficients
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Figure 14. Q2 configuration, Figure 15. Q2 configuration,
sensitivity of Py sensitivity of P

Figure 16. Variations in O — Aj chain

of p are close to 2 in this configuration. For example, as the sen-
sitivity coefficient relating td_; is equal to 1.9, the position error

of the end-effector will be equal to ugnif dL; = 10um More- 3.2.1 Formulation The schematic drawing of thi&"
over, we noticed numerically th&, configuration is the most  leg of the Orthoglide depicted in Fj§.3 is split in order to-de
sensitive configuration to dimensional variations of thenipa- pict the variations in design parameters by a vectoriel forhe
lator. closed-loop kinematic chai3— A — B —Bj; —Cj; -G —P,i =

According to figure§}4 |, 2[5, variations in design pa- 1.2,3, j = 1,2, are depicted by Fids}[6}12; is the coordinate
rameters of the same type from one leg the other have the sameframe attached to thé" prismatic joint. o,a;,bi,bij,cij,ci,p,

influence on the location of the end-effector. are the Cartesian coordinates of polis\, B, Bij, Gj, G, P, re-
However, this linkage kinematic method does not take into Spectively, gxpresged iy and depicted in Fif] 3.
account variations in the parallelograms, except the trariain According to Fld:1|6,
their global length. Thus, a differential vector method ével-
oped below.
P a—0=Rj(ao+5a) (6)

3.2 Differential Vector Method

In this section, we perfect a sensitivity analysis method
of the Orthoglide, which complements the previous one. This
method is used to analyze the sensitivity of the positiontaed

whereay is the nominal position vector &% with respect taO
expressed ir;, 0g; is the positioning error of;. R; is the trans-
formation matrix fromg; to ®yp. 13 is the (3x 3) identity matrix

orientation of the end-effector to dimensional and angudai- and
ations, and particularly to the variations in the paratietoms.
Moreover, it allows us to distinguish the variations which ee- 00 -1 010
sponsible for the position errors of the end-effector fromanes Ri=l3 ; Re=|10 O ; R3=1001
which are responsible for its orientation errors. To depehis 0-10 100
method, we were inspired by a Huang & al. work on a parallel
I[?Ergt]a.matm machine, which is made up of parallelogram joiots According to Fig[al7,

First, we express the dimensional and angular variations in
vectorial form. Then, a relation between the position arel th bi — a = Ri(pi + 8pi)e1 + Rid0ai x (pi + dpi)er (7)
orientation errors of the end-effector is obtained fromdlosed-
loop kinematic equations. The expressions of the orieamatnd
the position errors of the end-effector, with respect toag- wherep; is the displacement of thi&" prismatic joint,3p; is its
ations in the design parameters, are deduced from thisarelat  displacement erroR0a; = [ 36aix 56aiy 66Aiz]T is the angular
Finally, we introduce two sensitivity indices to assess gbp- variation of its direction, and
sitivity of the position and the orientation of the end-effs to
dimensional and angular variations, and particularly eoghral-
lelism errors of the bars of the parallelograms. L . 0 . . 1ifj=1

= |0 , &= |0/, E(J){_lif'_z
0 1 1=

6 Copyright 0 by ASME



Figure 18. Variations in Bj — Bjj — Gjj chain

According to Fig.1B,

bij —bi = Ri[|3+59Ai><](E(j)(d/2+5bi/2)[|3+593i><]e208)
Gij ,bij = Ljw; +5LijWi + Liow; (9)

whered is the nominal width of the parallelograndb; is the
variation in the length of linlB;1 Bj> and is supposed to be equally
shared by each side &. 58g; = [ 30gix 3By 6GBiZ]T is the
orientation error of linkB;;1Bj> with respect to the direction of
the it prismatic joint,L; is the length of thé" parallelogram,
dLij is the variation in the length of link;; Gij, of whichw; is
the direction, andw; is the variation in this direction, orthogonal
tow;.

According to Figl1p,

Cj —Ci = Ri[|3+6e><](z(j)(d/2+ 5Ci/2)[|3+59ci><]62010)
G —p=[l3+30x]Ri(co+ 0Ci) (12)

where d¢; is the variation in the length of linki;1Ci2, which
is supposed to be equally shared by each sid€;ofd0¢c; =

Figure 19. Variations in Gjj — Cj — P chain

[ 86cix 3Bciy ESGCiZ]T is the orientation error of linki1Ci» with
respect to linkCiP. ¢ is the nominal position vector & with
respect to end-effect®, expressed ir;, &¢; is the position error
of G expressed i;, andd0 = [ 56x 36, 86,]" is the orientation
error of the end-effector, expressedip.

Implementing linearization of eqﬂ@lO) and removing the
components associated with the nominal constrained enuati
Po = Ri(ao + pi€1 — Co) + Liw;, yields

op = p—Po
= Ri(3e + pi(36ai x €1) +&(j) d/2 (36ai x €2) + (12)
&(j) d/2 (dyi x €2) +&(j) dm/2 &) +
OLijwi + Ljdw; — 8 x Ri(Co—i—d/ZE(j) ez)

where

op is the position error of the end-effector of the manipulator

0g = 0g; + Opje; — Oc; is the sum of the position errors of points
A, Bi, andC; expressed ir;.

dy, = 80g; — 88¢; is the sum of the orientation errors of th@
parallelogram with respect to th# prismatic joint and the
end-effector.

om; = db; — d¢; corresponds to the parallelism error of links
Bi1Ci1 andB;2Ci2, which is depicted by Fiﬂo.

Equation ) shows the coupling of the position and orien-
tation errors of the end-effector. Contrary to the origotaer-
rors, the position errors can be compensated because thp-man
ulator is a translational 3-DOF PKM. Thus, it is more impatta
to minimize the geometrical variations, which are resploledor
the orientation errors of the end-effector than the oneg;iwdre
responsible for its position errors.

The following equation is obtained by multiplying both
sides of eq[(12) by and utilizing the circularity of hybrid

Copyright 0 by ASME



product.

w 8p = W Ride + pi(Rier x Wi) TR0 +&(j) d/2

Q
nominal i
parallelogram =

LA+3L,

real parallelogram

Figure 20. Variations in the jth parallelogram

(13)
(Riez x Wi) TRi (804 + 8yi) +&(j) dmi /2w Rie
+3Li; — (Ri(co+&(j) d/2 &) x w;) " 88

Orientation Error Mapping Function: By substraction of
eqs.) written forj = 1 andj = 2, and for thei" kinematic
chain, a relation is obtained between the orientation exttine
end-effector and the variations in design parameters, lwisic
independent of the position error of the end-effector.

d(Riez x ;)" 80 = 8l; +d(Rie2 x Wi) " R; (80 + 8vi) +dm W Riex

(14)

wheredl; = 6Lj1 — OLj2, the relative length error of linkB;1Ci1
andB;,>C;2, depicts the parallelism error of linlg; B> andCi1Ciz
as shown in Fig.20. Equatiop {14) can be written in matrixrfor

00 = Jeece (15)
with
Jog = D E
(Rigx x wy)T Ey------
D=d|(Re&xw2)" | ; E=]|--E

Ei

(R382><W3)T
[l WiTRieg d(Rieg X Wi)TRi d(Rieg X Wi)TRi}

00 is the orientation error of the end-effector expressegyn
and gg = (f;,€l,,€l3)" such thateg = (3l;,dm;, 05,8y )"

The determinant oD will be null if the normal vectors to the
plans, which contain the three parallelograms respegtiak
collinear, or if one parallelogram is flat. Here, this detizramt
is not null whenP coversC, because of the geometry of the ma-
nipulator. Therefore is nonsingular and its inver& * exists.
As (Riez x W) T LRjey, 80ai; anddyiz, the third components
of 804; anddy; expressed irR;, have no effect on the orientation
of the end-effector. Thus, matridgg can be simplified by
eliminating its columns associated wiiaj; anddyiz, i = 1,2,3.
Finally, eighteen variationsdl;, dm, dBaix, 86aiy, OYix, OViy,
i =1,2,3, should be responsible for the orientation error of the
end-effector.

Position Error Mapping Function: By addition of eqs@?a)
written for j = 1 andj = 2, and for the'" kinematic chain, a
relation is obtained between the position error of the effector
and the variations in design parameters, which does notndepe
onody;.

WiT5p:5Li +W;rRi5a +pi(Rie1xwi)TRiéeAi—(Ricoxwi)Tée

(16)
Equation [Ip) can be written in matrix form:
€

with

Jop=F1G ; Jpe=F 'HJee
F = [wiwows]"
G =diagGi) ; Gi=[1WRipi(Rierxw) R;]
H = — [R1Co X W1 RaCo X W2 R3Cp x W3]
€p = (Ep1,EpaEpa) ', Epi = (OLi, e, 804"

oL; = (OLi1 + OLi2)/2 is the mean value of the variations in
links Bj1Ci1 and Bi2Ci2, i.e.: the variation in the length of the
it" parallelogram.¢p, is the set of the variations in design pa-
rameters, which should be responsible for the positionrgwd
the end-effector, except the ones which should be resplerfsib
its orientation errorsi.e.. €g. €p is made up of three kinds of
errors: the variation in the length of thi#@ parallelogramj.e.:
oLi,i = 1,2,3, the position errors of point4;, B;, andG, i.e.
0g,i = 1,2,3, and the orientation errors of the directions of the
prismatic joints,.e.. 884, i = 1,2,3. BesidesF is nonsingular
and its inversé& ! exists becausg corresponds to the Jacobian
kinematic matrix of the manipulator, which is not singularen
P coversCy, [fl.

According to eq[(16) and dRier x wi)T LRjer, matrixJpp
can be simplified by eliminating its columns associated with
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d0aix, | = 1,2,3. Finally, thirty-three variationsdL;, e, dey,
06z, 0Baix, 0Baiy, 0Baiz, Oli, Oy, dyix, By, | = 1,2,3, should be
responsible for the position error of the end-effector.

Rearranging maticedpp andJyg, the position error of the
end-effector can be expressed as:

dp=Jeg=[J1J233] (g1 £qp Ea)" (18)

with ggi = (0L, deix, ey, 0€iz, OBaix, Baiy, BBaiz, Oli, O, dyix, GWy)T,
andJ € R3x33,

Sensitivity Indices: In order to investigate the influence of
the design parameters errors on the position and the otiemta
of the end-effector, sensitivity indices are required. érding
to section 3.1]2, variations in the design parameters o§inee

50 100 ql

Figure 21. Sensitivity of the position of the end-effector along Q1Q2,
(a): to dimensional variations, (b): to angular variations

Figures(a—b) depict the sensitivity of the position af th

type from one leg to the other have the same influence on the end-effector along the diagon&:Q. of C,, to dimensional

location of the end-effector. Thus, assuming that vanietia the
design parameters are independent, the sensitivity ofdbkitign
of the end-effector to the variations in tk€ design parameter
responsible for its position errare.. €q1 2 3)k, IS calledy and is
defined by eq[(39).

3 3
= 2 o k=1,---11
SR PIPRL

Likewise, the sensitivity of the orientation of the end-
effector to the variations in thé" design parameter responsible
for its orientation errorj.e.: €123y, is calledv, and follows

from eq.[1p).

(19)

Vr = (20)

2 3 5
iy, T=1,---.6
j;i; 06i(6j-+r)

Finally, ik can be employed as a sensitivity index of the po-
sition of the end-effector to thé" design parameter responsible
for the position error. Likewisey, can be employed as a sensi-
tivity index of the orientation of the end-effector to tH design
parameter responsible for the orientation error. It is wotéhy
that these sensitivity indices depend on the location ofettd
effector.

3.2.2 Results of the Differential Vector Method
The sensitivity indices defined by eds)(19) ahd (20) are used
evaluate the sensitivity of the position and orientatiothefend-
effector to variations in design parameters, particultrlyaria-
tions in the parallelograms.

variations and angular variations, respectively. Acaogdio
Fig.@(a), the position of the end-effector is very sewsitio
variations in the lengths of the parallelogramk;, and to the
position errors of point#\y, B;j, andC; along axisx of g;, i.e:
oay. Conversely, the influence @; and dm;, the parallelism
errors of the parallelograms, is low and even negligiblehia t
kinematic isotropic configuration. According to FE.Z],(H)e
orientation errors of the prismatic joints depicted &4, and
004, are the most influential angular errors on the position of
the end-effector. Besides, the position of the end-effastaot
sensitive to angular variations in the isotropic configiorat

0.035 |
P e S N /
= s
g 0.025 61, vg 6}/,’,/,69‘1“'
=002 £
= =
0.015
‘;. 0.01 6”’1, ~ :‘05 6%”89‘4”
! P =
~ -
0.005 . \/y \
0
q 0 0 50 100 ¢, q, -5 0 500 100 ¢,
(@) (b)

Figure 22. Sensitivity of the orientation of the end-effector along Q1Q2,
(a): to dimensional variations, (b): to angular variations

Figures[2R(a-b) depict the sensitivity of the orientatidn o
the end effector, alon®:1Q-, to dimensional and angular varia-
tions. According to Fi@Z(a)éli andom; are the only dimen-
sional variations, which are responsible for the orientagrror
of the end-effector. However, the influence of the paradtaler-
ror of the small sides of the parallelograms, depicted®byis
more important than the one of the parallelism error of thuig
sides, depicted bym.
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According to figure$ 21 and P2, the sensitivity of the posi-
tion and the orientation of the end-effector is generallll mu
the kinematic isotropic configuratiop & 0), and is a maximum
when the manipulator is close to a kinematic singular configu
tion, i.e.. P = Q2. Indeed, only two kinds of design parameters
variations are responsible for the variations in the positf the
end-effector in the isotropic configuratiobL; anddey. Like-
wise, two kinds of variations are responsible for the véiat in
its orientation in this configuratiordl;, the parallelism error of
the small sides of the parallelogramd®ajy anddyy. Moreover,
the sensitivities of the pose (position and orientatiorthefend-
effector to these variations are a minimum in this configamt
except fordl;. On the contraryQ), configurationj.e.. P = Qy, is
the most sensitive configuration of the manipulator to \temies
in its design parameters. Indeed, as depicted bygs.2@nd
variations in the pose of the end-effector depend on all #s&h
parameters variations and are a maximum in this configuratio

Moreover, figureq 21 anfi P2 can be used to compute the
variations in the position and orientation of the end-dffewith
knowledge of the amount of variations in the design pararaete
For instance, let us assume that the parallelism error cfriied|
sides of the parallelogram8|;, is equal to 1gm. According
to Fig(a), the position error of the end-effector will &égual
about to 3Im in Q; configuration P = Q). Likewise, according
to Fig (b), if the orientation error of the direction oétH" pris-
matic joint round axig; of %; is equal to 1 degreég.: 80y =1
degree, the position error of the end-effector will be egedut
to 4.8 mm inQ configuration.

4 Conclusions

In this paper, two methods were developed to analyze the
sensitivity of the Orthoglide. The first method was used teeta
rough idea of the influence of variations in the design patarse
on the location of the end-effector. It showed that varizgian
design parameters of the same type from one leg to the othier ha

the same influence on the end-effector. The second method was

used to study the sensitivity of the position and the origoaof
the end-effector to the dimensional and angular variatians
particularly to variations in the parallelograms.

It turns out that the kinematic isotropic configuration o th
manipulator is the least sensitive one to its dimensiondlan
gular variations, contrary to the closest configuratiornitstkine-
matic singular configurations. Besides, the position ofahd-
effector is very sensitive to variations in the lengths af trar-
allelograms and variations in the lengths of the prismaiiatg.
On the contrary, the parallelism errors of the bars of peiall
grams are little influential on the position of the end-efifecAs
far as the orientation of the end-effector is concerned, fiore
sensitive to the parallelism errors of the small bars of taealp
lelograms than to the ones of its long bars.

Therefore, these results should help the designer of the Or-

10

thoglide to synthesize its dimensional and angular tolezan
Moreover, they can be used to study the robustness of the mi
nipulator. Finally, one of the next steps in our researchi®to
study the relation between the sensitivity and the rigiditghe
manipulator.
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