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Université Claude Bernard Lyon 1, Institut de Science Financière et d’Assurances, 50

Avenue Tony Garnier, F-69007 Lyon, France

This paper is concerned with the problem of ruin in the classical compound binomial
and compound Poisson risk models. Our primary purpose is to extend to those models an
exact formula derived by Picard and Lefèvre [24] for the probability of (non-)ruin within
finite time. First, a standard method based on the ballot theorem and an argument
of Seal-type provides an initial (known) formula for that probability. Then, a concept
of pseudo-distributions for the cumulated claim amounts, combined with some simple
implications of the ballot theorem, leads to the desired formula. Two expressions for the
(non-)ruin probability over an infinite horizon are also deduced as corollaries. Finally, an
illustration within the framework of Solvency II is briefly presented.

Keywords: ruin probability, finite and infinite horizon, compound binomial model, com-
pound Poisson model, ballot theorem, pseudo-distributions, Solvency II, Value-at-Risk.

1 Introduction

The two classical models in risk theory are the compound binomial model, which is a
discrete-time process where the claim amounts are usually assumed to be integer-valued
random variables, and the compound Poisson model, which is a continuous-time analogue
of this process where the claim amounts are generally assumed to have an absolutely
continuous distribution. Although the continuous-time version is quite popular, a discrete-
time version can be appropriate for some applications and provides a better intuitive
understanding.

The present paper deals with the problem of evaluating, for both risk models, the
probability of (non-)ruin within finite time. This problem has received much attention in
the literature, and different algorithms have been proposed, with their own advantages
and drawbacks; see, e.g., the analysis by Dickson [11] and the references therein.

Recently, Picard and Lefèvre [24] derived an elegant explicit formula, called P.L. for-
mula below, for the finite-time non-ruin probability in a compound Poisson model where
the claim amounts are integer-valued. Such a case is important because in practice a
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discretization of the claim amounts is often required for numerical calculations (e.g., de
Vylder and Goovaerts [9]). The importance of the P.L. formula has been pointed out by
De Vylder [6], [7] and Ignatov et al. [17]. A refined discussion of its merits in comparison
with other available formulas is given in Rullière and Loisel [28]. Besides, De Vylder and
Goovaerts [10] proved that a similar formula holds too for a compound Poisson model
with continuous claim amounts; see also Ignatov and Kaishev [18].

Several methods are possible to establish the P.L. formula. In Picard and Lefèvre
[24] and De Vylder and Goovaerts [10], the first step consists in stipulating for a total
claim amount until some time t and conditioning on the last claim instant and amount
before t. This yields an integral equation which is then solved by the former authors
using the generalized Appell polynomials (in an extended framework), and by the latter
authors using the convolution products and the Laplace transforms. On another hand,
Rullière and Loisel [28] showed that the P.L. formula can be linked to the well-known
ballot theorem and a Seal-type formula (see, e.g., Seal [29] and Gerber [12]).

The primary aim of the present paper is to establish that the formula derived by Picard
and Lefèvre [24] can be generalized to the classical compound binomial and compound
Poisson risk models. As in its original version, this extended formula will be given explic-
itly in terms of the pseudo-distributions of some cumulated claim amounts. The method
of proof will enable us to provide a unified approach to the ruin problem over a finite hori-
zon. To begin with, we obtain a first formula for the finite-time probability of non-ruin
by applying a standard argument, based on the ballot theorem when the initial reserves
are null and on a Seal-type formula when the reserves are positive. The result here is not
new but this will put us in a position to develop an alternative argument. Succinctly, we
first introduce a concept of pseudo-distributions for the cumulated claim amounts, and
we show how to compute numerically these pseudo-laws using simple recursions. This
mathematical tool, combined with some simple implications of the ballot theorem, will
then enable us to derive the desired formula of P.L.-type. In addition, we will also deduce
from the Seal and P.L.-types formulas two expressions for the (non-)ruin probability over
an infinite horizon. Finally, a brief illustration is presented that points out how finite-time
ruin probabilities could be of interest within the framework of Solvency II.

2 Compound binomial risk model

This Section is concerned with a discrete-time risk model equivalent to the compound
binomial model, but given under a less traditional formulation where more than one
claim can arise per time period. We mention that such a model has been investigated
by Gerber [13], De Vylder and Goovaerts [9], Shiu [31], Willmot [35], Dickson [11], De
Vylder and Marceau [8], Cheng et al. [4], Li and Garrrido [21] and Picard et al. [25].

Let us consider an insurance company that evaluates its reserves at periodic times
fixed in advance. Claims arise at any date but they can be registered only at the end
of the period during which they occur. The successive claim amounts per period, Xi for
i = 1, 2, . . ., are non-negative integer-valued independent identically distributed (i.i.d.)
random variables; let {pn, n ∈ IN} be their common probability mass function (IN ≡
{0, 1, 2, . . .}). At the beginning of each period, the company receives a constant premium,
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Figure 1: Cumulated premium and claim amounts.

assumed to be equal to 1, as a prepayment to cover the risk during that period (see the
remark below). The initial reserves are of amount u ∈ IN.

Take the length of a period as the time unit, and denote by t ∈ IN the new time scale.
During any time interval (0, t], the cumulated claim amount is given by St = X1+. . .+Xt,
and the total premium income is equal to t. Thus, the reserves Rt of the company at time
t are given by

Rt = u+ t− St, t ≥ 1. (2.1)

Note that at time t+ 0, the company will receive an additional premium of 1 but this is
a prepayment for the next period (t, t+ 1]. A typical situation is represented in Figure 1.

Ruin will occur at the first time Tu when the reserves become negative or null. In
other words, Tu ≥ 1 necessarily and for t ≥ 1,

Tu ≥ t+ 1 means Si < u+ i for 1 ≤ i ≤ t. (2.2)

This definition of ruin is that adopted by Gerber [13] rather than Shiu [31] where ruin
occurs when the reserves become negative. The exact distribution of Tu is the topic of
investigation hereafter.

Let us mention that if the premium per time unit is equal to a positive constant c 6= 1,
so that the reserves are Rt = u + ct − St, the ruin problem is different from the actual
one. Indeed, the monetary unit might be adapted by dividing by c, but this would give
claim amounts that are no longer integer-valued. Nevertheless, the ruin probability for
this case can be evaluated by following the method developed in Picard et al. [25].

2.1 A standard approach

Basic case u = 0. Ballot-type problems are among the oldest questions discussed
in probability. Their applications are numerous, in risk theory as here and in many other
fields such as queueing, reliability, sequential analysis and random graphs. Much on this
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can be found in the book by Takács [34]. A well-known generalization of the original
ballot theorem due to Takács [33] is as follows.

Lemma 2.1 (Ballot theorem, discrete case). Let Xi, i ≥ 1, be a sequence of non-negative
integer-valued i.i.d. random variables. Consider the associated partial sums process Si =
X1 + . . .+Xi, i ≥ 1. Then, for any integers t ≥ 1 and 0 ≤ n ≤ t− 1,

P (Si < i for 1 ≤ i < t, and St = n) =
t− n

t
p∗tn , (2.3)

where {p∗tn , n ∈ IN} denotes the probability mass function of St (i.e. the t-th convolution
of the law of X1).

Graphically, the left-hand side of (2.3) represents the probability that the partial sums
process reaches the level n at time t without meeting or crossing earlier the diagonal line
of slope 1 (which is an upper boundary); see Figure 2.

Note that formula (2.3) remains true for exchangeable sequences. Many proofs of
this result have been proposed, including methods based on a combinatorial argument
(e.g., Takács [33]), a stopping time theorem for backward martingales (e.g., Grimmett
and Stirzaker [16]) or a queueing theoretic construction (Konstantopoulos [20]). To get
a self-contained presentation, we choose to give below an elementary proof in the i.i.d.
case, by applying a simple trick that will be useful too later.

Proof of (2.3). Let us make a rotation of 180◦ in Figure 2, and consider the partial
sums trajectories in reversed time. Since the increments of the process are i.i.d., each
sample path keeps the same probability after rotation. Note also that the reversed partial
sums process starts at level t− n and is backward shifted in the sense that the first jump
X1 occurs at time 0, the second jump X2 at time 1, and so on; see Figure 3. Therefore,
(2.3) is equivalent to the following identity: for t ≥ 1 and 0 ≤ n ≤ t− 1,

P (t− n+ Si > i for 1 ≤ i < t, and t− n + St = t) =
t− n

t
p∗tn . (2.4)

For m ≥ 1, let τm be the first-meeting time of the process m + Si, i ≥ 1, with the
diagonal line (which is a lower boundary). We observe that the probability in the left-
hand side of (2.4) corresponds to P (τt−n = t). Obviously, τm ≥ m and P (τm = m) = p∗m0 ,
m ≥ 1. For n ≥ 1, τm = m + n means that firstly, Sm takes an arbitrary integer value
j say, between 1 and n, and then, independently, a similar shifted partial sums process
starting at level j meets the diagonal line at time n (Figure 3); this gives

P (τm = m+ n) =

n
∑

j=1

p∗mj P (τj = n). (2.5)

We point out that (2.5) provides a recursive formula to calculate the probabilities P (τm =
m+ n) for m,n ≥ 1.

On another hand, let us consider the partial sums Sm, m ≥ 1. The assumption of
i.i.d. increments implies that, for n ≥ 1,

E(Sm | Sm+n = n) =
1

p
∗(m+n)
n

n
∑

j=1

j p∗mj p∗nn−j , (2.6)
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Figure 2: Non-crossing of {Si} through
the diagonal line y = x.

Figure 3: First-crossing of {t− n+ Si}
through the diagonal line y = x.

as well as
E(Sm | Sm+n = n) = m

n

m+ n
. (2.7)

Combining (2.6) and (2.7) then yields the identity

m

m+ n
p∗(m+n)

n =

n
∑

j=1

p∗mj

j

n
p∗nn−j. (2.8)

Let us now define the quantities θm(m + n) ≡ [m/(m + n)] p
∗(m+n)
n , for m ≥ 1, n ∈ IN.

Thus, θm(m) = p∗m0 and for n ≥ 1, (2.8) gives

θm(m+ n) =
n
∑

j=1

p∗mj θj(n). (2.9)

Here too, (2.9) allows us to determine recursively the quantities θm(m+ n). In fact, the
recursive formulas (2.5) and (2.9) are identical, so that P (τm = m + n) = θm(m + n).
Formula (2.3) then follows by putting m = t− n. ⋄

Let us turn to the ruin time T0 for the risk model with u = 0. Of course, T0 = 1 when
X1 ≥ 1, and for t ≥ 1, we can write that

P (T0 ≥ t+ 1) =

t−1
∑

n=0

P (Si < i for 1 ≤ i ≤ t, and St = n). (2.10)

Applying the ballot formula (2.3) to the right-hand side of (2.10) then leads to the fol-
lowing result (e.g., Takács [34]).

Proposition 2.2 (Takács-type formula). P (T0 = 1) = P (X1 ≥ 1), and

P (T0 ≥ t+ 1) =
1

t

t−1
∑

n=0

(t− n) p∗tn , t ≥ 1. (2.11)
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We notice that the probability of non-ruin before time t is given explicitly in terms of
the distribution of St evaluated at points n = 0, . . . , t− 1.

Passage to u ≥ 0. Looking at Figure 2, let us now suppose that the upper boundary
for the partial sums process Si, i ≥ 1, is a straight line of slope 1 beginning at level u ∈ IN
instead of 0.

Lemma 2.3 For any integers u ≥ 0, t ≥ 1 and u ≤ n ≤ u+ t− 1,

P (Si < u+ i for 1 ≤ i < t, and St = n) = p∗tn −

n
∑

j=u+1

t+ u− n

t+ u− j
p
∗(t+u−j)
n−j p

∗(j−u)
j .(2.12)

Proof. Operating a rotation of 180◦ as before, we observe that

P (Si < u+ i for 1 ≤ i < t, and St = n) = P (τt+u−n ≥ t and St = n), (2.13)

where τt+u−n denotes again the first-crossing time of the process t + u − n + Si, i ≥ 1,
with the (lower) diagonal line.

Now, for any m ≥ 1, P (m+St = m+n) = p∗tn . On another hand, the process m+Si,
1 ≤ i < t, will either cross or not the diagonal line, and if yes, for the first time at some
level k say, between m and t− 1. Therefore, we can write that

P (m+ St = m+ n) = P (τm ≥ t and St = n) +
t−1
∑

k=m

P (τm = k) P (St−k = m+ n− k). (2.14)

Using formula (2.3), we obtain from (2.14) that

P (τm ≥ t and St = n) = p∗tn −

t−1
∑

k=m

m

k
p∗kk−m p

∗(t−k)
m+n−k. (2.15)

Putting m = t + u − n in (2.15) and taking j = t + u − k as a new index of summation
then yields formula (2.12). ⋄

Remark. When u = 0, (2.12) and (2.3) hold true and the following identity then
follows: for t ≥ 1 and 0 ≤ n ≤ t− 1,

p∗(t)n =
n
∑

j=0

t− n

t− j
p
∗(t−j)
n−j p∗jj . (2.16)

This is precisely a generalization of (2.16) which will be the key result in the analysis of
Section 2.3.

Formula (2.16) is easily obtained on basis of a graphical representation. Indeed, con-
sider a line of slope 1 passing at point (t, n) (of equation y = n − t + x). The event
St = n implies that the process Si, 1 ≤ i ≤ t, necessarily crosses this line, for the first

6



time at some point (t − j, j) say, with 0 ≤ j ≤ n. Note that the first-crossing time,
inf{i : Si = n− t+ i}, corresponds to the time τt−n above. Thus, we have

P (St = n) =

n
∑

j=0

P (τt−n = t− j) p∗jj .

which gives (2.16) by virtue of (2.3). ⋄

Let us examine the ruin time Tu for the risk model with u ≥ 0. Of course, Tu = 1
when X1 ≥ u+ 1, and for t ≥ 1, we get

P (Tu ≥ t+ 1) =

u
∑

n=0

P (St = n) +

u+t−1
∑

n=u+1

P (Si < u+ i for 1 ≤ i < t, and St = n). (2.17)

Using (2.12) in the right-hand side of (2.17) and permuting the two sums, we then find
formula (2.18) below. A formula of this type was already obtained by Seal [29].

Proposition 2.4 (Seal-type formula). P (Tu = 1) = P (X1 ≥ u+ 1), and

P (Tu ≥ t+ 1) =

u+t−1
∑

j=0

p∗tj −

u+t−1
∑

j=u+1

p
∗(j−u)
j

(

u+t−1
∑

n=j

t+ u− n

t+ u− j
p
∗(t+u−j)
n−j

)

, t ≥ 1. (2.18)

Note that formula (2.18) is given explicitly in terms of the distribution of S1, . . . , St

at different points between 0 and u+ t− 1.

2.2 An alternative approach

Pseudo-distributions for St. To begin with, we are going to point out an underlying
polynomial structure in the distribution of St, t ∈ IN. Without real loss of generality, it is
assumed that 0 < p0 = P (X1 = 0) < 1. Now, among the t claims with sum equal to St,
the number of strictly positive claim amounts is a binomial random variable with exponent
t and parameter 1 − p0. For k ≥ 1, let Sc

k = Xc
1 + . . . + Xc

k where the random variables
Xc

i are i.i.d. and distributed as (X1 | X1 ≥ 1), i.e. P (Xc
i = n) = pn/(1 − p0), n ≥ 1; put

Sc
0 = 0. By the law of total probability, we can then write that

P (St = n) = pt
0

n
∑

k=0

(

t

k

)(

1 − p0

p0

)k

P (Sc
k = n), n ∈ IN, (2.19)

From (2.19), we thus see that the law of St is of the form

P (St = n) = pt
0 en(t), (2.20)

where e0(t) = 1 and for n ≥ 1, en(t) represents some polynomial of degree n in t satisfying
en(0) = 0.

So far, we were only concerned with values of t ∈ IN. Formally, the right-hand side of
(2.19), (2.20) might be evaluated for any value of t, positive integer or not. So, considering
its natural extension on IR, we introduce the following quantities:

pt
0 en(t) ≡ P̃ (St = n) say, with t ∈ IR. (2.21)
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Let us underline that the notation P̃ (St = n) in (2.21) has no probabilistic meaning
except when t ∈ IN as in (2.19). For example, when t = −1, P̃ (St = n) < 0 for all n ≥ 1.
By analogy, however, P̃ (St = n), n ∈ IN, can be viewed as a pseudo-probability mass
function for St.

The process St, t ∈ IN, having independent stationary increments, the convolution
property gives, for t1, t2 ∈ IN,

P (St1+t2 = n) =
n
∑

i=0

P (St1 = n− i) P (St2 = i), n ∈ IN, (2.22)

and by inserting (2.20), this yields a formula of binomial type:

en(t1 + t2) =

n
∑

i=0

en−i(t1) ei(t2). (2.23)

Now, we observe that the identity (2.23) still holds true for any t1, t2 ∈ IR since both
sides are polynomials of degree n in t1 (and t2) that are identical for an infinite number
of values ot t1 (and t2). Therefore, (2.22) can be generalized to the pseudo-distributions
above, giving

P̃ (St1+t2 = n) =
n
∑

i=0

P̃ (St1 = n− i) P̃ (St2 = i), t1, t2 ∈ IR. (2.24)

In the sequel, we will have recourse to the pseudo-probability mass functions of St and
S−t when t ∈ IN. These pseudo-distributions can be calculated numerically by recursion.
For St, it suffices to write that for t ≥ 0,

P (St+1 = n) =

n
∑

i=0

pn−i P (St = i), n ∈ IN, (2.25)

with S0 = 0. A similar procedure can be followed for S−t. Indeed, by (2.24) we have, for
t ≥ 1,

P̃ (S−t−1 = n) =

n
∑

i=0

P̃ (S−1 = n− i) P̃ (S−t = i), n ∈ IN, (2.26)

so that it remains to find the pseudo-distribution of S−1. For this, we recall that P (S0 =
n) = δn,0 (the Kronecker delta), so that (2.24) with t1 = −1 and t2 = 1 yields the recursion

δn,0 =

n
∑

i=0

P̃ (S−1 = n− i) pi, n ∈ IN. (2.27)

Implications for Tu. For clarity, we denote P̃ (St = n) = p̃∗tn when negative values
for t are allowed. We establish below that thanks to the previous pseudo-distributions,
formula (2.16) can be generalized to the case where u ∈ IN.
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Lemma 2.5 For any integers u ≥ 0, t ≥ 1 and u ≤ n ≤ u+ t− 1,

p∗tn =
n
∑

j=0

t+ u− n

t+ u− j
p
∗(t+u−j)
n−j p̃

∗(j−u)
j . (2.28)

Proof. By (2.24) we can write that

P (St = n) =

n
∑

k=0

P (St+u = n− k) P̃ (S−u = k). (2.29)

Now, consider the event (St+u = n− k) in (2.29). We first draw a straight line of slope

Figure 4: A trajectory {Si} with respect to the line of equation y = −(t+ u− n) + x.

1 passing at point (t+ u, n) (of equation y = −(t+ u− n) + x); see Figure 4. Remember
that t+u−n ≥ 1 by assumption. Thus, to reach the level n−k at time t+u, the process
Si, 1 ≤ i ≤ t + u, necessarily crosses that straight line. Suppose that the first-crossing
arises at some point (t+ u − j, n − j) say, with k ≤ j ≤ n. Since this first-crossing time
corresponding to τt+u−n, we obtain, using (2.3) for P (τt+u−n = n− j), that

P (St+u = n− k) =
n
∑

j=k

t+ u− n

t+ u− j
p
∗(t+u−j)
n−j p∗jj−k. (2.30)

Inserting (2.30) in (2.29) then yields, after permutation of the two sums,

p∗tn =
n
∑

j=0

t+ u− n

t+ u− j
p
∗(t+u−j)
n−j

j
∑

k=0

p∗jj−k p̃
∗(−u)
k , (2.31)

which reduces to (2.28) since by (2.24), the sum (
∑j

k=0 . . .) in (2.31) gives p̃
∗(j−u)
j . ⋄

Note that p̃
∗(j−u)
j in (2.28) is a standard probabilistic convolution when j ≥ u but this

is not true for the first u values of j. By substituting (2.28) for p∗tn in (2.12), we are able
to deduce a new representation for the non-crossing probability of interest.
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Lemma 2.6 For any integers u ≥ 0, t ≥ 1 and u ≤ n ≤ u+ t− 1,

P (Si < u+ i for 1 ≤ i < t, and St = n) =

u
∑

j=0

t+ u− n

t+ u− j
p
∗(t+u−j)
n−j p̃

∗(j−u)
j . (2.32)

A remarkable property of formula (2.32) is that the sum is taken over u+1 terms only,
whatever the value of n. From that point of view, (2.32) is simpler than (2.12) where the
sum contains n− u terms. Let us also point out that when u = 0, (2.32) directly reduces
to the ballot formula (2.3).

For the non-ruin probability before t, inserting (2.32) in (2.17) provides the following
alternative expression. A result of similar nature was obtained by Picard and Lefèvre [24]
for a continuous-time version of the model.

Proposition 2.7 (P.L.-type formula). P (Tu = 1) = P (X1 ≥ u+ 1), and

P (Tu ≥ t+ 1) =
u
∑

j=0

(

p∗tj + p̃
∗(j−u)
j

u+t−1
∑

n=u+1

t+ u− n

t+ u− j
p
∗(t+u−j)
n−j

)

, t ≥ 1. (2.33)

Formula (2.33) is given explicitly in terms of the pseudo-distributions of S−u, . . . , St+u

evaluated at different points between 0 and u+t−1. Comparing the efficacy of (2.18) and
(2.33) is rather delicate (see, e.g., Rullière and Loisel [28]). Some numerical experiments
show that (2.33) becomes especially fast when u is small compared to t.

2.3 Infinite-time horizon

Let µ = E(X1) be the expected amount of a claim. Since St/t → µ as t → ∞, ruin will
occur a.s. if µ ≥ 1. Assuming now that µ < 1, we want to obtain the probability of
ultimate (non-)ruin. Specifically, from (2.18) and (2.33) we are going to establish the two
formulas below.

Corollary 2.8 If µ < 1, then

P (Tu <∞) = (1 − µ)
∞
∑

j=u+1

p
∗(j−u)
j , (2.34)

P (Tu = ∞) = (1 − µ)

u
∑

j=0

p̃
∗(j−u)
j . (2.35)

Proof. To begin with, define by Zu+t−j
a the expectation

Zu+t−j
a = E

[(

1 −
St+u−j

t+ u− j

)

I(a≤St+u−j≤t+u−j)

]

, (2.36)

for any naturals a ∈ [0, t+ u− j] (IA is the indicator of the event A). Applying to (2.36)
the dominated convergence theorem, we get that

Zt+u−j
a → 1 − µ as t→ ∞. (2.37)
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Now, consider the Seal-type formula (2.18). It contains a sum (
∑t+u+1

n=j . . .) that cor-

responds to Zt+u−j
0 . We then find that

P (Tu <∞) = 1 − lim
t→∞

P (Tu ≥ t+ 1)

= 1 − lim
t→∞

P (St ≤ u+ t− 1) + lim
t→∞

u+t−1
∑

j=u+1

p
∗(j−u)
j Zt+u−j

0 ,

which reduces to formula (2.34) by virtue of (2.37) and since P (St ≤ u+ t− 1) → 1.
For the P.L.-type formula (2.33), we recognize the inner sum (

∑u+t−1
n=u+1 . . .) as Zt+u−j

u+1−j.
By (2.37) and since P (St ≤ j) → 0, we then obtain formula (2.35). ⋄

It can be checked that (2.34) and (2.35) correspond to formulas (40) and (42) obtained
by Gerber [13] for the usual version of the model with at most one claim per period. Let
us point out that in practice, the sum (2.35) with u + 1 terms will be much easier to
handle than the series (2.34).

3 Compound Poisson risk model

A continuous-time analogue of the previous model is the compound Poisson risk model.
This model plays a prominent role in risk theory and a considerable literature is devoted
to its study. The reader is referred to the books by Gerber [12], Grandell [15], Panjer
and Willmot [23], Asmussen [2] and Kaas et al. [19]); see also, e.g., Gerber and Shiu [16],
Albrecher et al. [1] and Cardoso and Waters [3] for recent results on the ruin problem.

The insurance company is now assumed to be able to follow the evolution of its reserves
in continuous-time. The occurrence of claims is described by a Poisson process N(t), t ≥
0, with rate λ > 0. The successive claim amounts Xi, i = 1, 2, . . ., are positive i.i.d.
continuous random variables, with density function f(x) for x > 0. The initial reserves are
of amount u ≥ 0, and the premium rate is constant and equal to c > 0. Thus, the reserves
at time t > 0 are given by Rt = u+ct−St (as in (2.1)) but with St = X1 + . . .+XN(t) and
c > 0. Note that the law of St has an atom at 0 with P (St = 0) = e−λt, and is continuous
on (0,∞).

The ruin time is the first instant Tu > 0 where Rt becomes negative or null. In the
sequel, we suppose that c = 1. This assumption, however, is not restrictive for the present
model since it comes to change the monetary unit and claim amounts are here continuous.
So, for t > 0,

Tu ≥ t means Sy < u+ y for 0 < y < t. (3.1)

To obtain the exact distribution of Tu, we will adapt the method of proof followed for the
discrete-time model.

3.1 A standard approach

Basic case u = 0. The starting point is the following well-known ballot theorem in
continuous-time (see, e.g., Takács [34]).
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Lemma 3.1 (Ballot theorem, continuous case). Let Sy, y ≥ 0, be a compound Poisson
process with positive continuous jumps. Then, for any t > 0 and 0 < x < t,

P [Sy < y for 0 < y < t, and St ∈ (x, x+ dx)] =
t− x

t
ft(x)dx, (3.2)

where ft(.) denotes the density of St on (0,∞).

Let us recall that this result can be extended to processes with cyclically interchange-
able increments. Various proofs of (3.2) can be found in the references mentioned earlier.
We derive below formula (3.2) by arguing exactly as for (2.3).

Proof of (3.2). Denote by gt(x)dx the probability in the left-hand side of (3.2). Making
a rotation of 180◦, gt(x) can be viewed as the density of the first-meeting time τt−x of the
process t− x+ Sy, y > 0, with the diagonal line of slope 1. In other words,

gt(x)dx = P [τt−x ∈ (t, t+ dx)]

= P [t− x+ Sy > y for 0 < y < t, and t− x+ St ∈ (t, t+ dx)]. (3.3)

Considering the possible jumps during the time interval (0, t− x), we find that

gt(x) =

∫ x

0

ft−x(y) gx(x− y)dy. (3.4)

On another hand, since the increments of the process are independent and stationary,
the following identity holds:

E(St−x | St = x) = (t− x)
x

t

=

∫ x

0

y
ft−x(y) fx(x− y)

ft(x)
dy. (3.5)

Let us define φt(x) ≡ [(t − x)/t)] ft(x), for 0 < x < t; from (3.5) we see that these
quantities satisfy the integral equation

φt(x) =

∫ x

0

ft−x(y) φx(x− y)dy. (3.6)

Comparing (3.4) and (3.6), we deduce that gt(x) = φt(x), i.e. (3.2). ⋄

Turning to the ruin time T0, we can write that

P (T0 ≥ t) = e−λt +

∫ t

0

P [Sy < y for 0 < y ≤ t, and St ∈ (x, x+ dx)],

and thanks to (3.2), this yields formula (3.7) below, of structure similar to (2.10) (and
going back to Cramér [5]).

Proposition 3.2 (Takács-type formula)

P (T0 ≥ t) = e−λt +
1

t

∫ t

0

(t− x) ft(x)dx, t > 0. (3.7)

12



Passage to u ≥ 0. In the framework of the ballot problem, let us now suppose that
the upper boundary is a straight line of slope 1 passing at point (0, u), u ≥ 0.

Lemma 3.3 For any real numbers u ≥ 0, t > 0 and u < x < u+ t,

(1/dx) P [Sy < u+ y for 0 < y < t, and St ∈ (x, x+ dx)] = ft(x)

−e−λ(t+u−x)fx−u(x) −

∫ x

u

t+ u− x

t+ u− z
ft+u−z(x− z) fz−u(z)dz. (3.8)

Proof. After a rotation of 180◦, the probability in the left-hand side of (3.8), denoted
by ht(x, u)dx, may be represented as

ht(x, u)dx = P [τt+u−x > t and St ∈ (x, x+ dx)]. (3.9)

Proceeding as for (2.13), we observe that to reach the level x at time t, the process
t + u − x + Sy, 0 < y ≤ t, will either cross or not the diagonal line, and if yes, at some
level t+ u − z where z ∈ (u, x]. Note that t+ u − x is a possible crossing-level with the
probability e−λ(t+u−x). Thus, we get

ft(x) = ht(x, u) + e−λ(t+u−x)fx−u(x) +

∫ x

u

gt+u−z(x− z) fz−u(z)dz, (3.10)

where gt(x) is the density defined through (3.3). By the ballot formula (3.2),

gt+u−z(x− z) =
t+ u− x

t+ u− z
ft+u−z(x− z), (3.11)

so that substituting (3.11) in (3.10) and using (3.9) yields formula (3.8). ⋄

Now, concerning the ruin time Tu, we have, for t > 0,

P (Tu ≥ t) = e−λt +

∫ u

0

ft(z)dz +

∫ u+t

u

P [Sy < u+ y for 0 < y < t, and St ∈ (x, x+ dx)].

(3.12)
Inserting (3.8) in (3.12) and permuting the two integrals, we then deduce the following
result (originating from Prabhu [27]).

Proposition 3.4 (Seal-type formula)

P (Tu ≥ t) = e−λt +

∫ u+t

0

ft(z)dz −

∫ u+t

u

e−λ(t+u−z)fz−u(z)dz

−

∫ u+t

z=u

fz−u(z)

(
∫ u+t

x=z

t+ u− x

t+ u− z
ft+u−z(x− z)dx

)

dz, t > 0. (3.13)

This formula is similar to (2.18) and shows how to obtain the probability of non-ruin
before time t from the densities of Sy where 0 < y < u+ t.
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3.2 An alternative approach

Pseudo-distributions for St. First, let us consider the law of St, t > 0. Apart from
an atom at 0, it has a density on (0,∞) given by

ft(x) = e−λt

∞
∑

i=1

(λt)i

i!
f ∗i(x), x > 0, (3.14)

f ∗i(.) being the i-th convolution of the density of X1. Thus, similarly to (2.20), we can
write ft(x) under the form

ft(x) = e−λt ex(t), (3.15)

where ex(t) represents the corresponding power series in t.
For t = 0, let ex(0) = 0. Now, let us extend the domain of t to IR in (3.15). It is

directly checked that the series defining ex(t) converges absolutely. Therefore, as with
(2.21), we may introduce a pseudo-density for St by putting

e−λt ex(t) ≡ f̃t(x) say, with t ∈ IR. (3.16)

For t1, t2 > 0, St1+t2 is distributed as St1 + St2 . In terms of the previous power series,
this implies that

ex(t1 + t2) = ex(t1) + ex(t2) +

∫ x

0

ex−y(t1) ey(t2)dy, x > 0. (3.17)

Notice that (3.17) is an identity in t1 (and t2) that remains valid when t1 < 0 (and t2 < 0).
Thus, the convolution property is still true for pseudo-densities, yielding

f̃t1+t2(x) = f̃t1(x) e
−λt2 + f̃t2(x) e

−λt1 +

∫ x

0

f̃t1(x− y) f̃t2(y)dy, t1, t2 ∈ IR. (3.18)

These pseudo-densities can be rather easily calculated. Indeed, the number of claims
at t > 0 being Poisson distributed, we have for ft(.), t > 0, the classical Panjer represen-
tation, namely

ft(x) = λt

∫ x

0

y

x
f(y) ft(x− y)dy, x > 0. (3.19)

Furthermore, it is clear that formula (3.19) remains true on IR, i.e. for f̃t(.). Now, (3.19)
corresponds to a Volterra integral equation of the second kind, and such an equation can
be solved numerically by appropriate discretization (see, e. g., Appendix D in Panjer and
Willmot [23]).

Implications for the law of Tu. We will first derive a continuous variant of the
identity (2.28).

Lemma 3.5 For any real numbers u ≥ 0, t > 0 and u ≤ x ≤ u+ t,

ft(x) = e−λ(t+u−x)fx−u(x) +
t+ u− x

t+ u
ft+u(x)

+

∫ x

0

t+ u− x

t+ u− y
ft+u−y(x− y) f̃y−u(y)dy. (3.20)
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Proof. We write ft = ft+u−u, so that applying (3.18) gives

ft(x) = ft+u(x) e
λu + f̃−u(x) e

−λ(t+u) +

∫ x

0

ft+u(x− y) f̃−u(y)dy. (3.21)

To begin with, let us consider the density ft+u(x − y) and a straight line of slope 1
passing at point (t + u, x). The compound Poisson process will reach the level x − y at
time t+u necessarily after crossing that straight line, for the first time at some level x−z
where z ∈ [y, x] (at time t + u − z). Notice that both levels 0 and x − y are possible
first-crossing levels with positive probabilities. Using the density gt(x) defined by (3.3),
we then get

ft+u(x− y) = e−λ(t+u−x) fx(x− y) + gt+u−y(x− y) e−λy

+

∫ x

y

gt+u−z(x− z) fz(z − y)dz. (3.22)

Now, in the right-hand side of (3.21), let us first examine the term ft+u(x) e
λu. From

(3.22) with y = 0, we see that

ft+u(x) e
λu = e−λ(t−x fx(x) + eλu gt+u(x) + eλu

∫ x

y

gt+u−z(x− z) fz(z)dz. (3.23)

Then, consider the integral in (3.21). Substituting (3.22) for ft+u(x − y), this integral
becomes

∫ x

0

ft+u(x− y) f̃−u(y)dy = e−λ(t+u−x)

∫ x

0

fx(x− y) f̃−u(y)dy

+

∫ x

0

e−λy gt+u−y(x− y) f̃−u(y)dy

+

∫ s

0

gt+u−y(x− y)

[
∫ x

0

fz(z − y) f̃−u(z)dz

]

dy. (3.24)

By (3.17), the first integral in the right-hand side of (3.24) can be expressed as
∫ x

0

fx(x− y) f̃−u(y)dy = fx−u(x) − eλu fx(x) − e−λx f̃−u(x); (3.25)

a similar expression holds for the third integral too. Making these two substitutions, we
obtain for (3.24)

∫ x

0

ft+u(x− y) f̃−u(y)dy = e−λ(t+u−x) [fx−u(x) − eλu fx(x) − e−λxf̃−u(x)]

+

∫ x

0

e−λy gt+u−y(x− y) f̃−u(y)dy

+

∫ x

0

gt+u−y(x− y) [fy−u(y) − eλu fy(y) − e−λyf̃−u(y)]dy. (3.26)

Finally, inserting (3.23) and (3.26) in (3.21), and using the ballot formula (3.3) leads to
the result (3.20). ⋄

Lemma 3.5 allows us to obtain a new representation for the probability (3.8) of non-
crossing before time t.
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Lemma 3.6 For any real numbers u ≥ 0, t > 0 and u ≤ x ≤ u+ t,

(1/dx) P [Sy < u+ y for 0 < y < t, and St ∈ (x, x+ dx)]

=
t+ u− x

t+ u
ft+u(x) +

∫ u

0

t+ u− x

t+ u− y
ft+u−y(x− y) f̃y−u(y)dy. (3.27)

Inserting (3.27) in (3.12), we then deduce the desired formula.

Proposition 3.7 (P.L.-type formula)

P (Tu ≥ t) = e−λt +

∫ u

0

ft(y)dy +

∫ t+u

u

t+ u− y

t+ u
ft+u(y)dy

+

∫ u

y=0

f̃y−u(y)

(
∫ u+t

x=u

t+ u− x

t+ u− y
ft+u−y(x− y)dx

)

dy, t > 0. (3.28)

Note that (3.28) is constructed from the (pseudo-)densities f̃s(.), −u < s < t + u,
evaluated at points between 0 and t + u. The same formula was obtained by De Vylder
and Goovaerts [10], using a much less direct method based on the solution of some integro-
differential equation.

3.3 Infinite-time horizon

Let µ = E(X1) and assume that λµ < 1. Then, ruin is not a.s. and the ultimate
(non-)ruin probability can be expressed as follows.

Corollary 3.8 If λµ < 1, then

P (Tu <∞) = (1 − λµ)

∫ ∞

u

fy−u(y) e
λ(u−y)dy, (3.29)

P (Tu = ∞) = (1 − λµ)

[

eλu +

∫ u

0

f̃y−u(y) e
λ(u−y)dy

]

. (3.30)

Proof. We observe that given any non-negative real a ∈ [0, t+ u− y], the expectation

Zt+u−y
a ≡ E

[(

1 −
St+u−y

t+ u− y

)

I(a≤St+u−y≤t+u−y)

]

(3.31)

converges to 1 − λµ as t → ∞. Applying this result inside (3.13) and (3.28) then yields
(3.29) and (3.30), respectively. ⋄

It can be checked that (3.29) is equivalent to the classical Pollaczeck-Khinchine (Beek-
man) formula. Formula (3.30), less standard, is given in De Vylder and Goovaerts [10];
see also Shiu [30] for discrete claim amounts as discussed below.
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3.4 Discrete claim amounts

Picard and Lefèvre [24] derived a similar formula (recalled in (3.37)) for a compound Pois-
son risk model where the claim amounts are positive integer-valued instead of continuous
as before. The method of proof followed in that paper is primarily of algebraic nature.
Let us sketch that the approach developed here, of more probabilistic essence, works well
too.

Let {pt(n), n ∈ IN} be the probability mass function of St at time t > 0, i.e.

pt(n) = e−λt

n
∑

i=1

(λt)i

i!
p∗in , (3.32)

{p∗in , n ∈ IN} being the i-th convolution of the law of X1. As in (2.20), we write it as

pt(n) = e−λt en(t), (3.33)

where e0(t) = 1 and en(t), n ≥ 1, is a polynomial of degree n in t with en(0) = 0. Then,
for all t ∈ IR, we may define the pseudo-probability mass function {p̃t(n), n ∈ IN} of St

just by natural extension of (3.32), (3.33) to IR. In practice, these pseudo-distributions
are calculated by the Panjer algorithm: for t ∈ IR,

p̃t(0) = e−λt, and p̃t(n) =
λt

n

n
∑

i=1

i pi p̃t(n− i), n ≥ 1. (3.34)

The following results can then be established. Suppose (for clarity) that u is a non-
negative integer, and denote by [t] the integer part of t.
(Takács-type formula):

P (T0 ≥ t) =
1

t

[t]
∑

n=0

(t− n) pt(n), t > 0, (3.35)

(Seal-type formula):

P (Tu ≥ t) =

u+[t]
∑

j=0

pt(j) −

u+[t]
∑

j=u+1

pj−u(j)





u+[t]
∑

n=j

t+ u− n

t+ u− j
pt+u−j(n− j)



 , t > 0, (3.36)

(P.L.-type formula):

P (Tu ≥ t) =
u
∑

j=0



pt(j) + p̃j−u(j)

u+[t]
∑

n=u+1

t+ u− n

t+ u− j
pt+u−j(n− j)



 , t > 0. (3.37)

These formulas are very similar to those derived for the compound binomial model
(see (2.11), (2.18) and (2.33)).
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3.5 A brief illustration

The Solvency II project provides a framework for a future prudential regulation of insur-
ance in the European Union. In its Pillar 1, a main objective is to define the capital levels
a company will have to allocate in order to cover all the risks inherent to the business.
Two capital requirements are considered, the MCR (Minimum Capital Requirement) and
the SCR (Solvency Capital Requirement) which has the key role. To determine the SCR,
companies may follow standard approaches or apply internal models (the latter are more
time-consuming but are expected to yield lower requirements).

A rather well accepted rule for the SCR consists in fixing the probability of solvency
in any one year, most likely at the level of 99.5%. In other words, the SCR is such that
the one-year 99.5% Value-at-Risk (V aR) is controlled. In recent discussions (Quantitative
Impact Study 3), it has been suggested that the level of SCR could guarantee the MCR
level to be available at anytime within 5 or 10 years, with a sufficiently high probability.
Such a proposition would imply to deal with non-ruin probabilities in continuous-time
over some given period (as investigated in the present paper).

Let us briefly illustrate that a finite-time non-ruin probability could indeed be used as
an alternative to a Value-at-Risk. For that, we consider a compound Poisson risk model
in which the Poisson parameter is λ = 1, claim amounts are exponentially distributed
with mean µ = 1 and the premium rate is c = 1.1. First, we calculated the probabilities
P (Rt ≤ 0) of getting negative reserves at times t = 1, 5, 10 years, given initial reserves
u = 0, 1, 2, 5, 10, 20, by using the Panjer algorithm; we also calculated the ruin probabili-
ties ψ(u, t) over the period (0, t), for the same values of t and u, by applying the P.L.-type
formula (3.37), as well as ψ(u) ≡ ψ(u,∞) by using the well-known exact formula for the
exponential case. The results are presented in Table 1. We observe that as expected,
these probabilities can be very different, especially over a long horizon or for small initial
reserves. Then, choosing several solvency thresholds 90, 95, 97.5, 99.5%, we proceeded in
a similar way to determine the amounts u of initial reserves that enable to meet these
thresholds, the criterion being either the Value-at-Risk V aRt or the non-ruin probability
φ(u, t) with t = 1, 5, 10 years. The results, given in Table 2, show that the differences
between required capitals can be important over a long horizon or for low solvency thresh-
olds. Moreover, we note that, for example, an amount u = 6.03 needed to get a 1-year
99.5% Value-at-Risk allows also to get a 5-year non-ruin probability of ∼ 93%. In prac-
tice, however, controlling such a level of finite-time non-ruin probabilities is often found
to be more reliable (see Loisel et al. [22]). So, in this framework, the choice of the 1-year
99.5% Value-at-Risk as the solvency criterion of reference could be questioned. A more
detailed discussion on this problem is the object of a paper under preparation.
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u P (R1 ≤ 0) ψ(u, 1) P (R5 ≤ 0) ψ(u, 5) P (R10 ≤ 0) ψ(u, 10) ψ(u)

0 0.327 0.463 0.016 0.720 2.7.10−4 0.785 0.909
1 0.173 0.238 8.1.10−3 0.512 1.2.10−4 0.613 0.83
2 0.089 0.120 3.8.10−3 0.354 5.7.10−5 0.470 0.758
5 0.011 0.014 4.0.10−4 0.103 5.3.10−6 0.191 0.577
10 2.5.10−4 3.1.10−4 7.8.10−6 9.2.10−3 1.0.10−7 0.032 0.366
20 8.6.10−8 9.9.10−8 6.0.10−9 3.3.10−5 6.0.10−8 4.0.10−4 0.148

Table 1: Probabilities P (Rt ≤ 0) of getting negative reserves at time t and ruin probabil-
ities ψ(u, t) over the period (0, t), calculated for several values of t and u.

Level V aR1 φ(u, 1) V aR5 φ(u, 5) V aR10 φ(u, 10) φ(u)

99.5% 6.03 6.37 10.33 11.17 13.28 14.50 57.23
97.5% 3.81 4.19 7.01 8.02 9.15 10.62 39.53
95% 2.82 3.24 5.46 6.58 7.18 8.82 31.90
90% 1.81 2.26 3.80 5.06 5.04 6.91 24.28

Table 2: Initial reserves amounts u needed to satisfy different solvency thresholds, deter-
mined on the basis of the value-at-risk levels V aRt or the non-ruin probabilities φ(u, t),
for several values of t.
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formula. Scandinavian Actuarial Journal, 2, 97-105.

19



[8] De Vylder, F. E. and Marceau, M., 1996, Classical numerical ruin probabilities.
Scandinavian Actuarial Journal, 2, 109-123.

[9] De Vylder, F. E. and Goovaerts, M. J., 1998, Recursive calculation of finite-time ruin
probabilities. Insurance: Mathematics and Economics, 7, 1-7.

[10] De Vylder, F. E. and Goovaerts, M. J., 1999, Explicit finite-time and infinite-time
ruin probabilities in the continuous case. Insurance: Mathematics and Economics,
24, 155-172.

[11] Dickson, D. C. M., 1999, On numerical evaluation of finite time survival probabilities.
British Actuarial Journal, 5, 575-584.

[12] Gerber, H. U., 1979, An Introduction to Mathematical Risk Theory. S. S. Huebner
Foundation Monograph, University of Philadelphia: Philadelphia.

[13] Gerber, H. U., 1988, Mathematical fun with the compound binomial process. ASTIN
Bulletin, 18, 161-168.

[14] Gerber, H. U. and Shiu, E. S. W., 1998, On the time value of ruin. North American
Actuarial Journal, 2, 48-72.

[15] Grandell, J., 1990, Aspects of Risk theory. Springer-Verlag: New York.

[16] Grimmett, G. R. and Stirzaker, D. R., 1992, Probability and Stochastic Processes.
Clarendon Press: Oxford.

[17] Ignatov, Z. G., Kaishev, V. K. and Krachunov, R. S., 2001, An improved finite-time
ruin probability formula and its Mathematica implementation. Insurance: Mathe-
matics and Economics, 29, 375-386.

[18] Ignatov, Z. G. and Kaishev, V. K., 2004, A finite-time ruin probability formula for
continuous claim severities. Journal of Applied Probability, 41, 570-578.

[19] Kaas, R., Goovaerts, M. J., Dhaene, J. and Denuit, M., 2001, Modern Actuarial Risk
Theory. Kluwer: Dordrecht.

[20] Konstantopoulos, T., 1995, Ballot theorems revisited. Statistics and Probability Let-
ters, 24, 331-338.

[21] Li, S. and Garrido, J., 2002, On the time value of ruin in the discrete time risk model.
Working paper 02-18, Business Economics, University Carlos III of Madrid.

[22] Loisel, St., Mazza, Ch. and Rullière, D., 2007, Robustness analysis, convergence
of empirical finite-time ruin probabilities and estimation of risk solvency margin.
Working paper, Cahiers de recherche de l’I.S.F.A., Université Lyon 1.
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