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Abstract. - We report the transport of ultracold atoms with optical tweezers in the non-adiabatic
regime, i.e. on a time scale on the order of the oscillation period. We have found a set of discrete
transport durations for which the transport is not accompanied by any excitation of the centre
of mass of the cloud. We show that the residual amplitude of oscillation of the dipole mode is
given by the Fourier transform of the velocity profile imposed to the trap for the transport. This
formalism leads to a simple interpretation of our data and simple methods for optimizing trapped
particles displacement in the non-adiabatic regime.

The controlled transport of ultracold atoms is crucial
for the development of experiments in atomic physics. It
makes possible the delivery of cold atoms in a region free
of the laser beams and coils of the magneto-optical trap
(MOT), allowing a better optical and mechanical access.
It also opens new perspectives for probing a surface or
any material structure, and for loading atoms in optical
lattices, or for positioning atoms in a high-Q optical cav-
ity [1,2]. In addition it opens the way to a new generation
of experimental setups where ultracold clouds of atoms
would be delivered on demand on a variety of different ex-
perimental platforms separated by macroscopic distances.
This is standard for charged particles and energetic neu-
tral particles, while it has only been recently accomplished
with ultracold atoms by moving slowly optical tweezers [3].
Transport of cold packets of atoms is also of importance
as a step towards the continuous production of a Bose-
Einstein condensate [4, 5].

Macroscopic transport of cold atoms has been demon-
strated using several different configurations. One can
move mechanically a pair of coils [6,7] or use a set of coils
with time-varying currents [8]. Such quadrupolar traps
are non-harmonic. Alternatively one can use traps with a
harmonic shape near their bottom, such as Ioffe-Pritchard
traps [5, 9–11], optical tweezers as recently demonstrated
on Bose condensed clouds [3] or 1-D optical lattices [12,13].
The harmonic potential is of particular interest since the
centre of mass motion (also referred as the Kohn’s mode)

is not coupled to the other degrees of freedom, and this
is true both in presence and absence of interactions be-
tween atoms and both for classical and quantum physics.
However all these studies have been performed in the adi-
abatic regime where the duration of the transport is long
with respect to the typical oscillation period of the trapped
atoms. This is because a lot of energy is given to the
trapped cloud when it is transported in the non-adiabatic
regime, giving rise to heating and to a strong excitation
of the dipole mode. This, in turn, can result in atom
losses due to the finite depth of the trap. While micro-
traps can have high oscillation frequencies, the traps al-
lowing to transport a large number of atoms are not very
steep and thus an adiabatic transport is quite long, limit-
ing the repetition rate of the experiments performed. To
our knowledge, the issue of an optimal transport beyond
this limit has only been addressed numerically for ions in
Paul traps [14].

In this letter we report the transport of a cold atom
cloud in the non-adiabatic regime with a high degree of
control by means of optical tweezers with no residual exci-
tation of the dipole mode of oscillation, moderate heating
and no losses. We also provide a simple theoretical model
which permits to work out a new picture of the transport.
The residual amplitude of oscillation of the cloud can be
expressed as the Fourier transform of the velocity profile
imposed to the trap, yielding a simple interpretation of our
data and providing simple methods for optimizing trapped
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Fig. 1: Sketch of the main part of the experimental setup (not
to scale) — see text.

particles displacement.

Our optical tweezers are generated by an Ytterbium fi-
bre laser (IPG LASER, model YLR-300-LP) with a cen-
tral wavelength of 1072 nm. The wavelength of the laser is
larger than the atomic resonance wavelengths of 780.24 nm
and 794.98 nm of the Rubidium 87 atoms, and thus, atoms
are attracted to the region of maximum intensity [15].
The beam is focused inside the vacuum chamber by a
lens with a 802 mm focal length mounted on a transla-
tion stage (Newport linear motor stage, model XMS100),
allowing one to move the optical tweezers longitudinally
on a 100 mm range with an absolute repeatability on the
order of a few hundreds of nm (see fig. 1). The resulting
waist has been measured to be 44 µm, corresponding to a
Rayleigh length of 5.7 mm.

The optical tweezers are loaded from an elongated
MOT. The cigar shape of the MOT results from the
two-dimensional magnetic gradients: (0, 5,−5) G/cm. To
maximize the loading of atoms into the dipole beam, the
optical tweezers are superimposed on the MOT along its
long axis. In addition, we favorize the selection of atoms
in the hyperfine low level 5S1/2, F = 1 by removing the re-
pump light in the overlapping region similarly to the dark
MOT technique [16].

The dipole trapping beam is turned on at a power of
80 W during the 500 ms loading time of the MOT. Then,
we increase the MOT detuning in 5 ms from −3Γ to −7.7Γ,
Γ being the natural frequency width of the excited state.
This procedure improves significantly the optical tweezers
loading efficiency. Then, the magnetic field and repumping
light are switched off to optically depump atoms to the
F = 1 ground sublevel. Finally all the remaining MOT
beams are turned off. The number of atoms in the optical
tweezers is as high as 3 × 107 corresponding to a peak
atomic density of 5 × 1012 at/cm3. These numbers are
measured 50 ms after switching off the MOT beams, so a
first evaporation has already occurred on this time scale
since the collision rate is larger than 500 s−1.

In order to transport a cloud in the non-adiabatic regime
without spilling atoms, one has to maximize the parame-
ter η = U0/kBT which is the ratio between the potential
well depth U0 and the average potential energy kBT . We
proceed in two steps. First, we cool down the sample by

forced evaporation by lowering the beam power P . Dur-
ing this whole phase η remains roughly constant. Second,
we adiabatically re-compress the trap by increasing the
beam power P . In this process, U0 scales as P and the
temperature T scales as P 1/2, and thus the dimensionless
parameter η increases as P 1/2. This way we can control
the value of η for a given power P after compression.

Two different atom cloud preparation schemes were
used. In the first one, referred to scheme 1, the initial
trapping beam power is lowered in two linear ramps by a
factor of 23 within 600 ms. The atomic cloud temperature
before re-compression is 27±1.0 µK. In scheme 2 the beam
power is decreased in four linear ramps by a factor of 170
within 3300 ms, resulting in a 3.7±0.5 µK temperature of
the atomic packet. The trapping beam power after com-
pression and before transporting the atoms reaches 37 W
(resp. 42 W), and the temperature of the transported
packets is 160 ± 11 µK (resp. 43 ± 2 µK) for scheme 1
(resp. 2). The η parameter is thus equal to 13 for scheme
1 and 50 for scheme 2. The initial number of atoms before
the transport is 2.1 × 106 (resp. 5.7 × 106) for scheme 1
(resp. 2).

The radial angular frequencies of the recompressed trap
were inferred from a parametric heating experiment, and
are on the order of 2 kHz for both schemes. The lon-
gitudinal angular frequency was measured by examin-
ing the cloud dipole mode oscillations. We find ω0 =
2π × (8.1 ± 0.3) Hz (resp. ω0 = 2π × (8.9 ± 0.3) Hz)
for the scheme 1 (resp. 2).

The transport experiment has been carried out in a sin-
gle vacuum chamber. We consequently imposed a “round
trip” displacement to the optical tweezers, going from the
MOT location A to a point B placed d = 22.5 mm from it
along the beam direction, and back to A (see fig. 2a). The
velocity of the trap as a function of time is deliberately
chosen as a succession of constant acceleration segments
for sake of simplicity. First, the trap is accelerated at a
constant rate a during a time T/4, then decelerated at the
opposite rate −a during T/2, and finally re-accelerated at
a to stop after a total transport time T . As explained af-
terwards, this specific velocity profile does not restrict the
generality of the conclusions drawn from our experiments.
The distance of transport 2d is simply related to the accel-
eration a and the transport duration T by 2d = aT 2/8. In
practice, the different transport durations that have been
used were obtained by varying the acceleration a from
0.2 to 3.3 m.s−2, in order to investigate the non-adiabatic
regime.

The transport is accompanied by a moderate heating of
the cloud (on the order of 40 µK for both schemes) and
no detectable atom loss as soon as the transport duration
is longer than two periods of oscillation. This increase of
temperature is attributed to the transverse shaking of the
cloud that occurs during the transport. To circumvent
this limitation, we plan to use for future experiments an
air bearing translation stage instead of the standard linear
rail guided translation stage we are currently using. Note
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ẋc

v0

T/4 T

(b)

0

1

2

3

4

5

0.4 0.6 0.8 1 1.2 1.4

A
[m

m
]

T [s]

(c)

0

1

2

3

4

5

6

0.4 0.6 0.8 1 1.2 1.4

A
[m

m
]

T [s]

Fig. 2: (Colour online) (a) Velocity profile imposed to the trap
to do the back and forth transport between A to B separated
by d = 22.5 mm. (b) (resp. (c)) The measured amplitude A

of the centre of mass dipole oscillation for the conditions of
scheme 1 (resp. 2), see text. The dashed line is the theoretical
prediction of eq. (4) with the measured angular frequency ω0

of the trap.

that the photon scattering rate remains relatively small for
both schemes (we evaluate the photon scattering induced
heating rate to be 3 µK/s).

To infer the residual amplitude of oscillation A (see
fig. 2b and c), we measure the centre of mass oscilla-
tions after the transport by recording a set of typically
30 images separated from one another by 10 ms after the
transport. The images are acquired using a standard ab-
sorption imaging technique on a CCD camera. Since the
imaging process is destructive, the whole experimental se-
quence has to be redone for each picture. The position
of the centre of mass of the cloud as a function of time is
inferred from a 2D Gaussian fit. We deduce the amplitude
of oscillation by fitting the first period of this position data
(see inset of fig. 2b) with a sine function.

For both schemes the variation of the amplitude as
a function of the transport duration is non monotonic.
There are specific discrete transport durations for which

the measured amplitude of oscillation is zero within our
error bars (see second inset of fig. 2b). This shows our
ability to move a packet of atoms in the non adiabatic
regime (i.e. in a time on the order of a few oscillation
periods) without exciting the dipole mode of oscillation.
We point out that after such an optimal transport over
a macroscopic distance, the number of atoms and tem-
perature of the remaining cloud are compatible with the
evaporative cooling to degeneracy in a crossed dipole trap
geometry. Indeed we have been able to achieve Bose Ein-
stein condensation with such clouds by crossing vertically
a 200 µm waist beam with our tweezers and ramping down
both powers.

To interpret our data a simple one-dimensional analyt-
ical model is sufficient and provides a good quantitative
understanding of the physics of the centre of mass motion
of a packet of atoms transported by a moving harmonic
potential. We consider an atomic packet initially at rest
in a harmonic trap of angular frequency ω0. The trap
position is given by the position of its centre xc(t). As
mentioned earlier, the movement of the centre of mass is
decoupled from the other degrees of freedom and hence
can be treated as a single particle in the harmonic trap.
For a particle of mass m, the imposed motion of the trap
can be considered as an extra force whose expression is
−mẍc(t) in the frame attached to the trap. According
to Newton’s law, the time dependent position x(t) of the
centre of mass obeys the relation:

x(t) = xc(t) +
1

ω0

∫ t

0

dt′ sin[ω0(t
′ − t)]ẍc(t

′) . (1)

The amplitude A of the oscillatory motion after transport
is readily inferred from eq. (1), and corresponds to the
Fourier transform of the velocity profile of the trap’s centre
position:

A = |F [ẋc](ω0)| , (2)

with F [f ] =
∫ +∞

−∞
f(t)e−iωt dt.

In the case of a one-way transport over a distance d =
aT 2/4 of duration T with the simple velocity profile shown
on fig. 3a (solid line), the final amplitude of oscillation is
plotted on fig. 3b (solid line) and reads:

A = d sinc2(ω0T/4) , (3)

where the sinc(x) function is defined as sin(x)/x. It
exhibits a series of discrete optimal transport durations
Tn = 2nT0, where T0 = 2π/ω0 is the period of oscilla-
tion of the trap, and n a non zero integer, for which the
amplitude after the transport vanishes. They correspond
to a transport without residual dipole mode excitation.
We find, for this specific example, that it is possible to
move optimally a packet of atoms on any distance d on
a time as short as twice the oscillation period. This is
to be contrasted with the transport in the adiabatic limit
(ω0T ≫ 1) for which the transport’s duration is long com-
pared to T0 = 2π/ω0. We emphasize that these optimal
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Fig. 3: (Colour online). (a) Two different velocity profiles to
go from a point A to a point B separated by a distance d:
the triangular profile (solid line) and the 4-term Blackman-
Harris profile [17] (dashed line). (b) The residual amplitude
A of oscillation of the centre of mass after transport for these
velocity profiles (see text). An optimal transport (A = 0) can
be performed in two period of oscillation in the triangle case,
and in any time greater than 4T0 in the Blackman case.

strategies are robust against experimental uncertainties:
indeed an error of 10% on the transport duration 2T0

would lead to a residual amplitude of oscillation less than
the one obtained when transporting ten times slower in a
non optimal manner (in 21T0).

In the case of a “round trip”, the amplitude of oscillation
after a transport of duration T reads:

A = 2d sinc2(ω0T/8)| sin(ω0T/4)| . (4)

As expected, we find optimal transport duration corre-
sponding to a cloud stopped after the forward motion
A → B. Indeed the backward motion B → A is then
optimal too, and we recover the sinc2 factor obtained for
the one-way transport. In addition we obtain another set
of zeros (due to the | sin | factor) for which the cloud is not
at rest after the forward move. In this case, the energy
given to the cloud in the first half of the motion is removed
during the second part due to the time symmetry of the
trajectory around T/2.

The dashed line in fig. 2a is given by eq. (4) rescaled
by a factor of 0.6 and is in good agreement with our ex-
perimental data. The measured amplitude of oscillation is
smaller than the predicted one because in our experiments
the oscillation of the centre of mass is damped when its
amplitude is large (see first inset of fig. 2b). This is due to
the fact that the cloud explores potential region far away
from the minimum where non-linearities play an increas-
ing role. In this instance, particles have different periods
of oscillation depending on their energy, and the observed
damping results from the average taken over this spectrum
of oscillation frequencies involved in a transport experi-
ment. It means that, strictly speaking, it is impossible
to transport in an optimal manner a packet of atoms in
the non-adiabatic regime as soon as the potential exhibits
non-linearities.

Two strategies can be used to avoid this effect. First,
a longer transport time whilst remaining in the non-

adiabatic regime minimizes this problem, because the
cloud then remains close to the harmonic bottom of the
trap. For scheme 1, we indeed observe that the damping
is negligible for longer transport duration.

Alternatively, one can use a larger η parameter. The in-
volved spectrum of oscillation frequency is then narrower,
resulting in partial damping suppression. This is exem-
plified by the data of scheme 2 represented in fig. 2c for
which η = 50 (to be compared to η = 13 for scheme 1),
where the dashed line represents the theoretical prediction
of eq. (4) without any adjustment on the amplitude. For
this sufficiently large η, we recover the expected contrast
of the amplitude curve (see Figs. 2b and c). The simple
theoretical framework that we have developed is then in
very good agreement with our data.

The occurrence of optimal transport durations is a gen-
eral feature of the transport in the non-adiabatic regime
with a harmonic trap. They can be adjusted at will by
choosing a proper velocity profile for the displacement of
the trap. The duration of an optimal transport can in
principle be reduced to very short time in comparison to
the period of oscillation. However for practical reasons,
including the finite depth of the trapping potential, there
is always a limit on the acceleration one can use and thus
on the minimum transportation time.

The Fourier transform formulation (eq. (2)) of the trans-
port allows for many enlightening analogies. For instance,
the modulus square of the amplitude A2 is mathematically
identical to the intensity profile for the far field Fraunhofer
diffraction pattern of an object with a transmittance hav-
ing the same shape as the velocity profile for the trans-
port. An optimal transport condition is equivalent to a
dark fringe in the corresponding diffraction pattern. The
“round trip” A → B → A (see fig. 2a) considered in our
experiment is made of two triangular velocity profiles cor-
responding to a one way transport A → B and another in
the opposite direction B → A. In optics, we know that the
repetition of a pattern in the transmittance yields inter-
ferences. We can thus re-interpret the formula (2) where
the factor term sinc2(ω0T/8) plays the role of a diffrac-
tion pattern for a one way transport, and the factor term
| sin(ω0T/4)| accounts for “interferences” between the two
one-way velocity profiles. The optimization of the con-
ditions under which a non adiabatic transport should be
carried out with a “harmonic” optical tweezers are then
equivalent to apodization problems in optics, which is a
thoroughly studied problem [18]. We further emphasize
that the finite width of the spectrum of periods of oscil-
lation due to non linearities involved in a non-adiabatic
transport is reminiscent of the finite temporal coherence
of the illuminating source in an optical diffraction experi-
ment. In the case of transport the width of this spectrum
depends on the duration of the transport. In optics the
spectrum width is an intrinsic property of the illuminating
source and therefore affects globally the whole diffraction
pattern.

Another interesting analogy based on the Fourier trans-
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form formulation lies in the minimization of side lobes of
the spectrum when choosing a window to perform spec-
tral analysis, or when choosing the time shape of a Raman
pulse [17,19]. For instance, the use of a 4-term Blackman-
Harris shape for the velocity profile1 should ensure a ro-
bust optimal transport as soon as its duration is bigger
than 4T0 (see fig. 3, dashed lines), yielding a very robust
optimal transport.

In conclusion, we have demonstrated the implementa-
tion of an optimal transport with optical tweezers in the
non-adiabatic regime along with a simple theoretical for-
malism. The results presented in this letter are of inter-
est not only for cold atoms experiments to increase their
repeating rate, but also to any experiment where trans-
port using harmonic traps is achievable like for instance
trapped ions experiments.
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