Micromechanics based modeling of the Callovo-Oxfordian argillite mechanical behavior
Résumé
The present study is devoted to the development and validation of a non-linear homogenization approach of the mechanical behavior of Callovo-Oxfordian argillites. The material is modelled as an heterogeneous one composed of an elastoplastic clay matrix and of linear elastic or elastic damage inclusions. The macroscopic constitutive law is obtained by adapting the Hill-type incremental method [1]. The approach consists in formulating the macroscopic tangent operator of the material from the non-linear local behavior of its phases. Due to the matrix/inclusion morphology of the microstructure of the argillites, a Mori-Tanaka scheme is considered for the localization step. The developed model is first compared to Finite-Elements calculations and then validated and applied for the prediction of the macroscopic stress-strain responses of argillites.