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1 Statement of the problem

The purpose of this course is to present the general features of a work recently achieved with Marcel Vénéroni
[1]. Part of the methods and results were already published in previous articles [2], but a synthesis has
now been made, and a coherent though flexible scheme for evaluating correlations has emerged. Explicit
calculations, proofs, details and references can be found in [1,2], and we shall thus restrict ourselves to the
underlying ideas.

The general problems which we have in mind, and which are of relevance for the various topics of this
workshop, are formally the following ones. Suppose the state D (to) of a system of interacting particles
is given at some initial time {,. We consider some set of physical quantities ();, which are probabilistic
but vary in time according to a known law, and we wish to evaluate their expectation values and their
time-correlations.

This question covers many physical situations. For classical statistical mechanics, D (to) is the imitial
density in phase, the @); are some functions of the positions and momenta of the particles; they are random
due to the uncertainties contained in the initial condition D (to) , and evolve according to the Hamilton
equations. For instance, in plasma physics, the expectation value of (); may represent either the density at
some point (in which case j labels this point) or one of its Fourier components (in which case j labels a wave
number); we can ask about density correlations either at different times or more simply at equal times. In
cosmology, we are interested in correlations between the positions of galaxies in order to describe the large
scale structure of the Universe.

For quantum problems, D (to) is the density operator which describes the initial state. In the special
case of a pure initial state, it reduces to the projection operator onto this state; in zero-temperature field
theory, this can be the projection onto the vacuum. The quantities (); are some set of operators which
represent the observables of interest in the Schrodinger picture and which will evolve in the Heisenberg
picture. For instance, in the theory of nuclear heavy ion collisions, the state D (to) represents the projectile
and the target in their ground state, boosted towards each other. If we wish to describe statistically the
sizes of the outgoing fragments, we can take as observables ); the operators which describe the numbers
of nucleons lying in some or other region of space. Energy correlations can be obtained similarly. For
studying correlations in the final state, we should take all the times ¢ equal in the operators Qf (t, to) in the
Heisenberg picture; taking different times provides information on time-delayed correlations. In the same
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problem, we may also be interested for theoretical purposes in the expectation values and correlations of
single-particle (s.p.) observables.

The formalism will cover equilibrium questions, in which case D (to) is a Boltzmann-Gibbs distribution,
as well as non-equilibrium questions. For definiteness and for the sake of generality, we shall focus on quantum
many-body problems, governed by a Hamiltonian H, and shall illustrate the approach by an example which
leads to an elaborate extension of the mean-field theory for interacting fermions. Application to finite
temperature field theories may also be considered [3,4,5].

We shall write the initial state as

D(to) Ee‘ﬁﬁ, —1.1v

since usually In D (to) is a simpler operator than D (to) itself. The form (1.1) ensures positivity; for grand
canonical equilibrium, # equals H — uN where u is the chemical potential and £ is the inverse temperature.
More generally, the use of the maximum entropy criterion leads naturally to expressions of the type (1.1)
where H is a linear combination of the (in general simple) observables on which information is available.
Pure states can be recovered from (1.1) in the limit as 3 — oo for a suitable choice of H . In collision theory
we take H / H, — H, — v.p where H, and H, are the Hamiltonians of the two incoming fragments, p is
their relative momentum operator and v their relative velocity. We shall find it convenient not to normalize
D (to) (see ).

Denoting by @); the observables of interest in the Schrodinger picture, their counterpart in the Heisenberg
picture is given by the Heisenberg equation

dQ¥ (¢, t.)

di / —1 [Qf (tlato) 7H] ) 4—1.2v

we assume that H and @); do not depend explicitly on time. The boundary condition

Q;I (tmto) /Q] “—1.3v

is imposed at the initial time ¢,. We have let & / o, and should replace commutators by Poisson brackets for
classical problems.

We wish to evaluate quantities of the following types.

(i) Expectation values at a time ¢ .

(Qj«—t~—)=Tr D (to) QY (t,t5) /Tr D (to), 1.4

which do not depend on ¢ for equilibrium problems, where D (to) commutes with H.
(i1) Thermodynamic quantities. In particular, for a grand canonical equilibrium where H /) H-uN,
the grand potential is given as function of the temperature 7'/ 8~* and the chemical potential p by

AT pu~—/ —%ln Tr D (o)
J{(H—uN)-TS —1.5v—

The entropy S, free energy, internal energy, pressure, follow by taking partial derivatives of A.
(iii) Causal two-time correlation functions:

Cin (' ") =T T D (to) QF (¥, 1) QFF (t",t5) /Tr D (to)
—(Q; (¥))(Qx (")), 16—

where the time-ordering T-product acts on ¢’ and #”.

(iv) Ordinary correlations, obtained from (1.6) by letting ¢t/ / ¢'. If we are not interested in the dynamics,
correlations between the @; in the state D (t,) are found for t” / ¢/ / t,.

(v) Fluctuations, obtained from (1.6) by letting ¢/ / ¢ and &k / j.

(vi) Cross-sections, obtained from (1.4) by taking for @; a projector and by letting t, — —o0,
t — —o0.



(vii) Causal multi-time functions or higher order correlations, which are cumulants of several operators,
similar to (1.6), possibly with equal times.
(viii) Response functions:

Xgr (8,87) /=i (' =) Tr [QF (¥',t0) . Qi (#",20)] D (to) /T7 D (to) sl

which describe the first-order correction

Q) ~ [ e ) 6 (1) -
k

o

induced on the expectation value <Q] (t’)> by a small time-dependent perturbation >, (&t~ Qr—t~—
added to the Hamiltonian H at any time t > t,.

Both the initial state (1.1) and the Heisenberg operators (1.2) are usually extremely complicated, due
to correlations and interactions between the elementary particles which constitute the system. For weak
interactions, perturbative approaches are efficient. For stronger interactions, variational approaches of the
mean-field type often provide satisfactory results for bulk quantities like (1.5) or s.p. expectation values
like (1.4), but are obviously ill-suited for correlations. Indeed, in a variational method such as the Hartree-
Fock method, one looks for the minimum of some functional, which is the best approximation for the grand
potential (or for the ground state energy). However, using subsequently the state thus determined for
evaluating correlations is not a variational procedure, since this method optimizes only the grand potential.
We are thus not surprised that it yields trivial results. Instead, our purpose is to build up a systematic
variational formalism where the very functional that we make stationary directly provides the required
correlations. Our strategy relies on merging a few general ideas which we present in sects. 2 to 5.

2 Generating functional

The first of these ideas is a well-known basic technique of field theory. There, in order to build the Green’s
functions, one introduces sources and one defines a functional of these sources, analogous to a partition
function. Expanding it in powers of the sources then generates the Green’s functions.

Likewise, we introduce time-dependent sources £;+—%~— associated with each of the observables @);, and
define the generating functional for these observables by

o€} =In Tr D (t,) A(ts), 21w
Ate) =T exp z/ dt 253 QH t' 1) . 2.2+

o

In classical statistical mechanics, D (to) and A (to) are functions of a point in the many-body phase space,
and T'r is meant for an integration over this point.
The expansion of ¢ in powers of the sources £ reads

PlE}/ In Tr D (i ﬁzZ/ are; (1) (Q; (1)

—2/ di'd t”Zg] ) Ci (t',4") — ... 23—

to

It thus generates to first order the expectation values (1.4), to second order the causal two-time correlation
functions (1.6), and more generally the full sequence of multi-time causal functions. Just as for the second
characteristic function in probability theory, the inclusion of a logarithm in the definition (2.1) accounts
for the substractions which enter the definition of cumulants. The lack of normalization of D (to) affects



only the zeroth-order term in (2.3), which for equilibrium statistical mechanics yields the thermodynamic
potential (1.5).

Our purpose will thus be to evaluate approximately ¢, a single quantity which encompasses the various
questions that we are asking. The difficulty lies in the intricate form of both the initial state D (to) , assumed
to be given in the form (1.1) which is most often not easily manageable, and the operator A (to) . In the
definition (2.2) of the latter, the time-dependent operators Qf (t’, to) are complicated, even though usually
the Schrodinger operators (); are not; moreover they do not commute at different times ¢'. We wish to
determine ¢ variationally, and to this aim we shall need beforehand to characterize the objects D (to) and
A (to) by simple equations. This will be the object of the next two sections.

3 Backward Heisenberg equation

In spite of the complexity of the operator A (to) , we shall show that it can be generated by a formally simple
differential equation, provided we replace the initial time #, in its definition (2.2) by a time ¢ which will run
from — oo back to t,. We thus introduce the operator

A—t— =T exp 2/ dr'y & () QY (1), g1
J

t

which still depends on the sources ¢; (t’) for ¢ > t in a complicated fashion, but depends moreover on the
time t. Let us focus on this dependence.

We are led to regard the Heisenberg operators Qf (t’,t) as functions of two times, the usual running
time #', and also the reference time ¢ at which they coincide with the Schrodinger operators as in (1.3).
However, instead of being fixed at the initial time ¢, as usual, this reference time is now regarded as a second
running time. We take advantage of this fact and write a differential equation for Qf (t’,t) in terms of ¢.
By using the formal explicit expression

QF (1) J UT(t',4) QU (t'.1) —3.2
in terms of the evolution operator U (t’,t) from ¢ to ¢/, and the properties of U, we readily find

de (')

7 / Z[Qf{ (t',t) ,H] . +-3.3v—

The differential equation (3.3) should for each ¢’ be solved together with the final boundary condition
Qi (t'.t) / qj, —3.4—

and hence the time ¢ should be considered as running backwards.

We call (3.3) the backward Heisenberg equation b2alf. Tt plays the same role in quantum mechanics as
the backward Kolmogorov equation does in the theory of Markov processes, where the forward Kolmogorov
equation (the equivalent of the standard Heisenberg equation) is identified with the Fokker-Planck equation.
Both the forward equation (1.2) and the backward one (3.3), together with the associated boundary condition
(1.3) or (3.4), have (3.2) as solution. Nevertheless the backward equation is the only useful one here, since
the time ¢’ is integrated over in the definition (3.1) of A«—¢~. Let us note moreover that the backward
Heisenberg equation, in spite of its somewhat weird feature of involving a change in the reference time ¢
rather than in the observation time #', is more general than the ordinary one. Indeed, if the Hamiltonian H
or the Schrodinger operator (); depend explicitly on time, the Heisenberg equation (1.2) is replaced by

aQ (1)

. / / / / / dQ); / L
m /—z[QfI(t,t),UT(t,t)H(t)U(t,t)]—,UT(t,t)ﬁU(t,t). 3.5+



7, as its solution requires the determination of U (t’,t) . In contrast,
the backward equation (3.3) remains unchanged, within the replacement of H by H <+t~ while the time
dependence of (); is accounted for by the boundary condition (3.4). This backward equation is thus a better
means than the forward one for generating the operators Qf in the Heisenberg picture. Note also that the
classical counterpart of (1.2) is the Hamilton equation (written with a Poisson bracket), supplemented by
an initial condition in terms of a random point in phase space; on the other hand, the classical counterpart
of (3.3) is obtained by shifting infinitesimally the initial time ¢ for a similar final boundary condition.

In the definition (3.1) of A——t¢~—, we have not only changed the reference time of the Heisenberg picture
into ¢, but also cut-off the sources at the times #' earlier than ¢. The derivative of A+t~ with respect to ¢
thus involves a term arising from (3.3) and another one from the lower integration bound, namely

It is no longer a closed equation for Q¥

— [ ibAt—, Hi — iAde—t— Y Ee—t—Q;. 3.6

J

Moreover, the integrand in (3.1) vanishes as ¢ — oo, whence

The operator A (to) is therefore obtained by solving the differential equation (3.6) backward in time, from
t / —oo where we have the boundary condition (3.7), down to ¢ / #,. The equation (3.6) is formally
simple. It disentangles the various dependences of A+t~ as it accounts for the evolution through H and
for the sources through its last term. The ordering of operators in this term reflects the occurrence of the
T-product in the definition of A«#<—, for an anti-T-product, it would be reversed. It is remarkable that all
the complications of A (to) , and in particular its functional dependence on the sources, come out only from
the integration of (3.6).

4 A simple equation for the initial state

Since # in (1.1) is usually a simple operator, typically a sum of one- and two-particle operators, the
complications of D (to) arise from taking its exponential. We can, here also, generate this exponential by
replacing 3 by a variable u going from o to 3 and taking the derivative with respect to u. This yields the

Bloch equation
d
= emult / —HeuH —g1~—
du
In order to stress an analogy with the equation (3.6) for A+—i~, we introduce the complex time
t =ty — 1+ — u~ and define

Dt =e / e_iH<t_t°_w). —g.2v~—

The initial state D (to) is then characterized as being the solution of the differential equation

dD+—t~—
dD b= Dt gz
el A : 43
with the boundary condition
D (to — 2'/3) /1. —q.4~—

Here t runs from t, — i to t,.

For the sake of symmetry, we introduce, as is usual in quantum statistical mechanics [3], an L-shaped
contour in the complex plane of times (fig. 1), oriented from #, —if8 to ¢, then to —oco. The forward equation
(4.3) for D and the backward equation (3.6) for A meet at #,, where we want to calculate the generating
functional ¢ through (2.1).



Figure 1 . The complex ¢-plane.
1

5 General method for constructing variational expressions

Our last step consists in replacing the set of equations (2.1), (3.6) and (4.3), which together with the
boundary conditions (3.7) and (4.4) determine the quantity of interest ¢, by a variational principle. To
achieve this aim, we shall resort to a general method [2b,6] which produces systematically variational
principles for problems of the following type:
Find the value
e? = f{X} —5.1v—

taken by a function f{X'} of some set of variables X, at a point {X,,} / {Xm} which is
characterized by a set of equations

gn{X} /0. 5.2+

In our case, the quantities X,,, are the matrix elements of the two operators A+t~ at each time ¢t > ¢,
and D+t~ at each time t, — i < t <1, and the single index m encompasses both the matrix indices and
the (continuous) time. The equations (5.2) are the matrix elements at each time of the differential equations
(3.6) and (4.3), and the quantity ¢ / In f{X} is (2.1). Note that this quantity depends only on part of
the variables X, since 1t involves only the time #,.

We wish to construct a function (or a functional if m is a continous index) which will be equal to e?
at its stationary point. In spite of the fact that the constraints (5.2) are in sufficient number to determine
Xom, let us associate with them a set of Lagrangian multipliers ),,, and introduce the functional

{X,V} = f{X} =" Vaga{d}. “—5.3v

(For a continuous index, the sum becomes an integral.) Infinitesimal variations of the variables Y, and X,
produce changes

5% /Y da,, af{X} Zynag”{x} , PR



respectively. If @ is stationary under unrestricted variations of the Y’s, the vanishing of (5.4) is equivalent
to (5.2). Hence the stationary value of the functional @ with respect to the multipliers ) is the required
quantity (5.1). If moreover @ is stationary with respect to the A’s, the vanishing of (5.5) determines in the
space {X, Y} a saddle-point of (5.3) where @ equals e (fig. 2).

Figure 2 . A geometric interpretation of the general variational method. The two axes symbolize the
coordinates {X} and {)}, respectively. The altitude represents the value of ®{X,Y}, the level lines of
which have been drawn. When one sits near the saddle point, one approaches the searched quantity e (the
altitude of the saddle-point) within a second-order error. Using the stationarity of ® with respect to {X'}
eliminates half of the variables, and forces one to remain on the dashed-dotted line Y(X'). When ® has a
suitable curvature, ®{X,Y(X)} follows the thalweg and the region explored in the variational treatment

lies below the saddle-point.
2

These remarks lead to a variational principle of practical interest. Let us assume that the equations (5.2)
are too intricate to be solved, and/or the evaluation of (5.1) at the point X is not tractable. Nevertheless,
let us choose a trial set for {X, Y}, as wide as possible, such that we can evaluate explicitly (5.3). This will
be feasible if f{X'} and g,{X'} have a sufficiently simple form, which is the case for (2.1), (3.6) and (4.3).
Writing then that the variations (5.4), (5.5) vanish within the restricted subset provides the stationary value
of @ in this subset. If the latter is suitably chosen, we may expect the result to lie close to e¥, because
the surface @{X,Y} is flat near its saddle-point (fig. 2); the error in ¢ is of second-order with respect to
the errors in {X',Y}. Thus, doubling the set of variables, and characterizing the exact solution by simple
equations, allows us to set up a variational scheme especially designed for the evaluation of the quantity
(5.1).

The examples given in refs.[2,6] show that this general approach encompasses many of the known
variational principles used in physics. In particular, not only a stationary, but a maximum functional can
be obtained when it is possible to eliminate the variables Y by means of (5.5) (see fig. 2). Moreover,
refs.[2b,5] show how the variational principle based on (5.3) can be used for stochastic evolutions, or how it
can fruitfully be combined with perturbative methods.



Applying this general technique to our problem, we introduce trial time-dependent operators A+t~
for t > t, and D+t~ for 1, — 18 <t < t,, which are the variables X' of the general theory, and their
associated multipliers Y. For the sake of symmetry, we denote these as D+t~ for t > t,, which is associated
with the constraint (3.6) characterizing At~ and At~ for t, — i} <t < t,, which is associated with
the constraint (4.3) characterizing D+—¢~. The determination of the generating functional ¢ then amounts
to the search for the stationary value e¥ of the functional

@{D‘—t\—,fl‘—t\—} / Tr D (to — ZO) A (to — O) —
—Tr [ dt D—t— {d{i;j* — b At HY — iA—t— Y, £j1—t\—Qj} 6

The trial quantities A——#~— and D+t~ defined along the contour of fig. 1, which stand either for A+t~
if t > t, and D—it~— ift, — i < t < t, or for multipliers along the remaining parts of the contour, should
satisfy the boundary conditions

A——o0— / 1, D (to g Zﬂ) / 1. —5.7T~—

Among the stationarity conditions (5.4), (5.5), we get from the variations with respect to D (to — io) and
./4 (to - O)
A(to—/i0>/A<to—/0>, D(to—ri0>/D<to—/0), ‘—58\—

this continuity property explains why we chose the same notations for the variables and the multipliers. The
various data on which ¢ depends, namely the Hamiltonian H, the observables ();, the sources £;+—%~—, and
the logarithm —BH# of the initial density operator, enter (5.6) explicitly in a simple fashion.

6 Application to interacting fermions

In ref.[1] we have determined approximately the one- and two-time functions for a system of interacting
functions by using the above variational principle. We rely on the fact that (5.6) can be evaluated explicitly
if At~ and D+t~ are restricted to the subspace of exponentials of s.p. operators. Our trial space for
D+t~ is thus the same as in usual mean-field theories. Nevertheless, we find non-trivial results because
our variational principle is especially suited to the determination of correlations. In other words, the best
generating functional ¢ obtained from this formalism is not the one which would naively be inferred from
the independent-particle state and evolution of a standard mean-field theory. Indeed, the optimization of
(5.6) leads to approximate states and evolutions which depend on the sources £;+t~—, in spite of the use of
the same trial states as in usual mean-field theories; it is this dependence which, together with the doubling
of variables, generates the rather elaborate results that we find for the two-time correlation functions.
Let us briefly describe these results. We consider a Hamiltonian of the form

1 A
H = EBachcﬁ — — E (af | V| 'yd)cgcgcvq, 6.1~
af afyé

and assume that # has also a similar form. For single-time expectation values (1.4), we find the same
outcomes as in the usual mean-field theories. Namely, we have first to build the static Hartree-Fock density
matrix p, associated with the s.p. state simulating e=PH | it is obtained by solving self-consistently the

equation
1
Po / W

°©—1

—6.2~

and the equation which expresses W, as the s.p. reduction of # in terms of p,. We then have to solve the
TDHF equation associated with H,

Z'dpl_o‘_ —f—



with p=°— (to) / Po as an initial condition, where W is the s.p. reduction of H. (Classically (6.3) reduces
to the Vlasov equation.) Finally, (Q;<t~) is given in terms of p“~° +—t~ by means of Wick’s theorem.

The results become more interesting when we expand ¢ up to second order in the sources so as to
generate (2.3). The best variational estimate for (1.6) within our mean-field framework then involves two
RPA kernels, R and R. The first one, describing a time-dependence, is associated with p~°~ +—t< and H,
according to

ZRQ@W Loy = [W (pl_o‘_) ,m]aﬁ — [trzvlzm,p‘_o‘_ﬂaﬁ ) 6.4
Y4

Likewise the initial-state kernel R is associated with p, and #. Next, we have to introduce in the s.p. space
a matrix L; (t’, t) which is the image of Q¥ and satisfies the equation (for ¢ < ¢/~

d .

i (t',t) /i Lj (t' 1) Re—t~, —6.5—
with the final boundary condition L; (t’,t’) / Q;. This backward dual RPA equation appears as the s.p.
reduction of the backward Heisenberg equation, while the TDHF equation (6.3) appears as the s.p. reduction
of the Liouville-von Neumann equation. The two-time correlation functions are then given by

Cik (t',1") | 2 tr L; (', o) —coth LR F1— [Lr (t",ts) ,po], ' St". 6.6+
For the linear responses (1.7), we get

ik (U, 17) ) =i 0 (' ") tr [Ly (Y 10) , Li (7, 26)] po- —6.7—

Thus, not only the HF and TDHF equations, but also the RPA, both static and dynamic, occur
variationally here; this sheds a new light on this approximation. It should be noted that each of these
building blocks has a specific use, the RPA beginning to play a réle when we go from expectation values to
correlations. However, in contrast to standard treatments, we get here a backward version of the RPA | with
time flowing from t’ to ¢,. The two directions of time which enter our equations reflect the self-consistency
of the scheme and the coupling between the approximations for A+—¢~ and D+t~.

Numerical calculations based on some preliminary results have been performed long ago for evaluating
fluctuations in the number of nucleons of the outcoming fragments in heavy ion reactions [7]. They have
shown that the present formalism brings in large corrections, which led to a better fit with experiment.

On the theoretical side, expressions like (6.6) and (6.7) constitute an important improvement on the
outcome of ordinary mean-field theories. They obey many consistency requirements which are violated by
the latter theories [1]. For instance, if the initial state is an equilibrium state, they depend only on the time
difference ¢/ —t", as they should. They also satisfy the fluctuation-dissipation theorem, as well as properties
arising from conservation or invariance laws.

In conclusion, let us stress again the generality of the approach. The use of a variational method based
on the above ideas, and in particular of some or other variant of (5.6) should provide a flexible tool for
dealing with problems from various branches of physics.
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