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Abstract. The classical risk model is considered and a sensitivity analysis of finite-time ruin probabilities is
carried out. We prove the weak convergence of a sequence of empirical finite-time ruin probabilities. So-called
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1. Introduction

The surplus of an insurance company is classically modeled by the risk process (Rt)t>0 defined
as follows : for t > 0,

Rt = u+ ct− St,

where u is the non-negative amount of initial reserves and c > 0 is the premium income rate.
The cumulated claim amount up to time t is described by the compound Poisson process

St =
Nt∑

i=1

Wi,

where the amounts of claimsWi, i = 1, 2, ... are non-negative independent, identically-distributed
random variables, distributed as W , with the convention that St = 0 if Nt = 0. The number
of claims Nt until t > 0 is modeled by an homogeneous Poisson process (Nt)t>0 of intensity λ.
Claim amounts and arrival times are assumed to be independent.
We are interested in the robust estimation of finite-time ruin probabilities. Solvency regulations
for insurance companies, called Solvency II, impose the control of a certain number of insolvency
probabilities. The chosen risk measure to determine the Solvency Capital Requirements (SCR)
is more likely to be a 99.5%, one-year Value at Risk than a continuous-time ruin probability.
Nevertheless, reserving is expected to quantified by a best estimate of liabilities, plus a so-called
Market-Value Margin (MVM), which is determined by a cost-of-capital approach: this margin
corresponds to the cost of maintaining the surplus above the SCR level during the whole period
[0, t], where t is typically 10 years. This corresponds to a continuous-time ruin problem in finite
horizon. Let us denote by ψ(u, t) the probability of ruin before time t with initial reserve u :

ψ(u, t) = P [∃s ∈ [0, t], Rs < 0 | R0 = u] , u > 0, t > 0,

and let
ϕ(u, t) = 1 − ψ(u, t)

∗ Corresponding author
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be the probability of non-ruin within time t with initial reserve u.
Algorithms to compute or approximate ψ(u, t) have been proposed, among others, by (Asmussen,
Avram and Usabel (2002)) by the means of Erlangization, by (Picard and Lefèvre(1997)) by the
means of Appell polynomials, and by (Rullière and Loisel (2004)) by the means of a Seal-type
argument based on the ballot Lemma. An important feature of Solvency II is that estimation
risk should be controlled, particularly if internal models are used. However, most models use a
calibrated model and an a posteriori proportional loading factor to take into account estimation
risk. It would be of course much better to carry out a robustness analysis at the same time.
This led us to define in an earlier paper (see (Loisel, Mazza and Rullière(2007))) reliable ruin
probabilities as quantiles of empirical finite-time ruin probabilities, and the Estimation Risk
Solvency Margin (ERSM) as the additional capital required to cover estimation risk:

Let ψN (u, t) and ϕN (u, t) respectively be the finite-time ruin and non-ruin probability with
claim amounts drawn from the empirical distribution FN associated with an i.i.d. sample of
distribution F, where F is the c.d.f. of W and N > 1 is the size of the sample. Define the reliable
finite-time ruin probability ψN,reliable

1−ε (u, t) as the (1 − ε)-quantile of the (random) bootstrapped

finite-time ruin probability ψN (u, t):

ψN,reliable
1−ε (u, t) = inf

s>0

{
P
[
ψN (u, t) > s

]
6 ε

}
.

If uη and uη,ε are respectively defined as the initial capital required to ensure that

ψ(uη , t) 6 η

and
ψN,reliable

1−ε (uη,ε, t) 6 η,

the Estimation Risk Solvency Capital ERSMη,1−ε can be defined as the additional capital needed
to take estimation risk into account:

ERSMη,1−ε = uη,1−ε − uη.

In (Loisel, Mazza and Rullière(2007)), we have shown the convergence of
√
N
(
ϕ(u, t) − ϕN (u, t)

)

as N tends to +∞ in distribution to a centered, Gaussian random variable only for u = 0. The
proof was based on the symmetrical (in W1, . . . ,Wn) expression

ϕ(0, t) =
∑

n>1

P (Nt = n)E
[
(u+ ct− (W1 + . . . +Wn))+

]
,

where x+ denotes the positive part of a real number x. We also computed the asymptotic variance
Vu of the limit of √

N
(
ϕ(u, t) − ϕN (u, t)

)
,

and expressed this variance in terms of the variance of a random variable defined from the
influence function of finite-time non ruin probability. Influence functions were introduced in the
field of robust statistics to study the impact of data contamination on the estimated quantity
(see (Huber(1981)) and (Hampel(1974))). For a functional T of a distribution F , the influence
function at point x ∈ R is defined as the limit (when it exists)

IFx[T] = lim
s↓0

T(F (s,x)) −T(F )

s
,

where F (s,x) is defined for x ∈ R and s > 0 by

for u ∈ R, F (s,x)(u) = s1{x6u} + (1 − s)F (u).

Cahiers de Recherche de l’ISFA, WP 2036 (2007)
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In the sequel, for each quantity related to the contaminated distribution F (s,x), we use the
exponent (s,x). In a recent paper, (Marceau and Rioux(2001)) provided an algorithm to compute
the influence function of the eventual probability of ruin. We obtained in (Loisel, Mazza and
Rullière(2007)) that for all u > 0,

Vu = VY [IFY [ϕ(u, t)]] . (1)

Nevertheless, it remains to be shown that the limit distribution of

√
N
(
ϕ(u, t) − ϕN (u, t)

)

is Gaussian, and besides formula (1) involves computation of influence functions described in
(Loisel, Mazza and Rullière(2007)), which corresponds to heavy computation times and new
convergence issues. In this paper, we prove the convergence in distribution of

√
N
(
ϕ(u, t) − ϕN (u, t)

)

toward a Gaussian random variable for all u > 0 by the means of U -statistics and so-called
partly shifted risk processes. These processes are defined in section 2, in which finite-time ruin
probabilities for partly shifted risk processes are computed as well. The expression of Vu in terms
of ruin probabilities for modified risk processes derived in section 3.5 is of fundamental impor-
tance from a theoretical and operational point of view: it gives a probabilistic representation of
Vu, which is used to prove the convergence of the empirical ruin probability for arbitrary u > 0.
We also give elegant mathematical expressions for influence functions associated to finite time
ruin probabilities. Finally, we provide efficient numerical methods for computing Vu.

2. Finite-time ruin probabilities for partly shifted risk processes

2.1. Partly shifted risk processes

Given x > 0, we define the x-partly shifted risk process as the stochastic process given by

Rx
t = u+ ct− Sx

t ,

where
Sx

t = St + x1{U6t},

and U is a certain positive random variable. After this random delay U , the sample path of Rx
t

is shifted x units downwards. It corresponds to add a jump of size x at a random instant U .
The process (Rx

t )t>0 has no longer stationary and independent increments. Nevertheless, we
will show how to adapt results of risk theory to these partly shifted risk processes. This is
important since, as we will see, finite-time ruin probabilities for partly shifted processes are
directly involved in computations of sensitivities, influence functions and asymptotic variance of
finite-time ruin probabilities for classical risk processes.

2.2. Finite-time ruin probability for partly shifted risk processes starting from

zero

Let us consider the case where claim amounts are integer-valued.

PROPOSITION 1. For c > 0, x > 0 and n ∈ N \ {0}, we have

P

[
Sx

t < ct, ∀t < n

c

]
= P

[
Sx

i/c < i, i = 1..n
]
.
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Figure 2. A corresponding sample path of the x-partly shifted risk process.

This is a direct adaptation of results of (Rullière and Loisel (2004)). It thus suffices to study the
cumulated claim amount process at a finite set of inventory dates.
To this end, consider the random variables defined by Yi = Si/c, Y

x
i = Sx

i/c, and Ū = [U + 1],

where [x] denotes the floor of real number x. The finite-time ruin probability for partly shifted
risk processes starting from 0 is obtained by an adaptation of the well known ballot Theorem.

LEMMA 1 (Ballot Theorem (see Takács (1962,a,b))). For n > 1, let Zi, i = 1..n be a process
with exchangeable increments. Then, we have

P [Zi < i, i = 1..n, Zn = j] =
n− j

n
P [Zn = j] 0 6 j 6 n.

The ballot Theorem applies to the family of random variables Yi, i = 1, · · · , n, which has i.i.d.
increments, but also to the Y x

i , i = 1, · · · , n.

PROPOSITION 2 (Ballot theorem for partly shifted risk processes). Let W1, ..,Wn be i.i.d., integer-
valued random variables. Consider the partial sum process

Yi =
i∑

j=0

Wj ,

and define
Y x

i = Yi + x1{Ū6i},

where Ū uniformly distributed on the finite set {1/n, 2/n, . . . , 1}. Then,

P [Y x
i < i, i = 1..n, Y x

n = j] =
n− j

n
P [Y x

n = j] 0 6 j 6 n.

Proof: Takács’s result is true for exchangeable random variables (and even for cyclically ex-
changeable random variables). It can easily be shown that the Y x

i , 1 6 i 6 n are exchangeable.
To this end, consider the distribution function

FY x
σ(1)

,...,Y x
σ(n)

associated with the random vector
(
Y x

σ(1), . . . , Y
x
σ(n)

)
,

Cahiers de Recherche de l’ISFA, WP 2036 (2007)
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which is also the distribution function of the random vector

(Y x
1 , . . . , Y

x
n , ) ,

which is denoted by
FY x

1 ,...,Y x
n
,

∀y1, · · · , yn. Then

FY x
σ(1)

,...,Y x
σ(n)

(y1, . . . , yn) =
1

n

n∑

i=1

FYσ(1),...,Yσ(n)
(y1, . . . , yi−1, yi − x, yi+1, . . . , yn) (2)

=
1

n

n∑

i=1

FY1,...,Yn(y1, . . . , yi−1, yi − x, yi+1, . . . , yn) (3)

= FY x
1 ,...,Y x

n
(y1, . . . , yn). (4)

We used the fact that the random variables Yi, 1 6 i 6 n, are i.i.d. to get (3) from (2), and the
fact that U is uniformly distributed on [0, t], and independent of the Yi’s to write (2), and to
get (4) from (3). 2

REMARK 1. The previous result remains valid if U is uniformly distributed on {1, .., nmax},
with nmax > n. To prove this, distinguish two cases: given that U 6 n, proposition 2 applies,
and given that U > n, the classical ballot lemma applies.

Propositions 1 and 2 directly enable us to obtain the finite-time ruin probability for partly
shifted risk processes starting from 0:

THEOREM 1. The finite-time ruin probability for partly shifted risk processes starting from 0
is given by

P [Rx
s > 0∀s < t | Rx

0 = 0] = E

[
(ct− x− St)+

ct

]
,

where Rx
s = Rs − x1{U6s}, and U is uniformly distributed on [0, t].

2.3. Finite-time ruin probability for partly shifted risk processes starting from

u > 0

Conditionally on the last continuous passage of Rt at 0, the process is located under the barrier
u+ ct at time t = n/c if there is no ruin, or if the last visit of the process at 0 occurred at time
i/c. Let Tu(x) be the first instant of ruin associated with the modified process, when R0 = u.
Then we have (see (Rullière and Loisel (2004)))

P
[
Sx

n/c < u+ n
]

= P

[
T x

u >
n

c

]
+ ∆,

where

∆ =
n−1∑

i=1

n−i∑

j=1

P
[
Sx

i/c = u+ i ∩ Sx
i+k/c − Sx

i/c < i, k = 1, .., n − i ∩ Sx
n/c − Sx

i/c = j
]
.

If Ū is uniformly distributed on 1, .., n, conditioning on Ū , we can consider every element of
the second sum and get the following result.

THEOREM 2 (modified ruin probability when R0 = u). The ruin probability associated to the
modified process is given by

P

[
T x

u >
n

c

]
= P

[
x+ Sn/c < u+ n

]
− ∆1 − ∆2,

Cahiers de Recherche de l’ISFA, WP 2036 (2007)
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where

∆1 =
n−1∑

i=1

i

n
P
[
x+ Si/c = u+ i

] n−i∑

j=1

P
[
S(n−i)/c = j

] n− i− j

n− i
,

and

∆2 =
n−1∑

i=1

n− i

n
P
[
Si/c = u+ i

] n−i∑

j=1

P
[
x+ S(n−i)/c = j

] n− i− j

n− i
.

3. Sensitivity analysis

3.1. The ruin probability as a function of the additional claim

In the sequel, we consider the probability of non-ruin before t = n/c, when starting with an
integer valued initial reserve. Conditioning on the last passage time i/c of Rt at 0, the probability
that the reserve is some integer j at time n/c, 1 6 j 6 u + n, is given by (see (Loisel, Mazza
and Rullière(2007)))

P
[
Rn/c = j

]
= P

[
Tu > n/c and Rn/c = j

]

+
n−j∑

i=1

P
[
Si/c = u+ i

]
P
[
S(n−i)/c = j and Sν/c < ν∀ν, 1 6 ν 6 n− i

]
,

where we assume that the sum vanishes when j > n. Using classical results of (Takács(1962a)),
one obtains that the first term is given by

P
[
Sn/c = u+ n− j

]
− 1{j6n}

n−j∑

i=1

P
[
Si/c = u+ i

]
P
[
S(n−i)/c = j

] n− i− j

n− i
.

For j = 0, we have P
[
Tu > n/c and Rn/c = 0

]
= P

[
Sn/c = u+ n

]
− P

[
Sn/c = u+ n

]
= 0.

Conditionally on {Nn/c = k}, defining

ϕk,j(u, n) = P
[
Tu > n/c and Rn/c = j | Nn/c = k

]
,

and ϕk(u, n) = P
[
Tu > n/c | Nn/c = k

]
, one obtains that

ϕk,j(u, n) = P
[
W ∗k = u+ n− j

]

−
n−j∑

i=1

k∑

n0=0

αi,k(n0)P [W ∗n0 = u+ i] P
[
W ∗(k−n0) = j

] n− i− j

n− i
,

where αi,k(n0) = P
[
Ni/c = n0

]
P
[
N(n−i)/c = k − n0

]
/P
[
Nn/c = k

]
, id est

αi,k(n0) =

(
n0

k

)

in0(n− i)k−n0/nk.

So we have ϕk(u, n) =
∑u+n

j=0 ϕk,j(u, n) and ϕ(u, n) =
∑u+n

k=0 P
[
Nn/c = k

]
ϕk(u, n). In fact, every

claim amount W takes here a positive integer value (one can assume that W 6= 0 by modifying
λ).

Cahiers de Recherche de l’ISFA, WP 2036 (2007)
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3.2. Inference on ruin probabilities

The probability of ruin starting with initial reserve u > 0 is here expressed as a U-statistics.
The basic information we use is exposed in (Hoeffding(1948)) and (Von Mises(1947)).

Let σ denote a permutation of [N ] = {1, · · · , N}. Assuming that the observed claims belong
to the finite set {w1, ..., wN}, ϕk,j(u, n) can be estimated by using the statistics ϕ̂k,j(u, n). Our
estimator has the form

̂̂ϕk,j(u, n) =
1

N !

∑

[σ]



Ĩk
1 (u+ n− j) −

n−j∑

i=1

k∑

n0=0

αi,k(n0)Ĩ
n0
1 (u+ i)Ĩk

n0+1(j)
n − i− j

n− i



 ,

where
Ĩi1
i0

(j) = 1
{
∑i1

i=i0
wσ(i)=j}

,

and where the sum
∑

[σ] is performed over all the permutations of [N ]. Summing over j, one
gets a U-statistics ϕk(n), which estimates ϕk(n).

Our next task consists in proving that ̂̂ϕk,j(u, n) corresponds to the probability one gets when
using the empirical distribution associated to the observed claims as our claim distribution. We
use the following formula

ϕ̂k,j(u, n) =
1

Nk

∑

i1,..,ik∈{1,..,N}



Ik
1 (u+ n− j) −

n−j∑

i=1

k∑

n0=0

αi,k(n0)I
n0
1 (u+ i)Ik

n0+1(j)
n − i− j

n− i



 ,

where Iy
x(j) = 1{wix+...wiy=j}, x, y ∈ N, x 6 y. The indicator functions Iy

x(j) are defined for each

multi-index ~i = (i1, .., ik) (omitted here). Given u and n, set

ϕ̂k,j(u, n) =
1

Nk

∑

i1,..,ik∈{1,..,N}

Φk,j(i1, ..., ik),

where
Φk,j(i1, ..., ik) = Φ

(1)
k,j(i1, ..., ik) − Φ

(2)
k,j(i1, ..., ik),

and

Φ
(1)
k,j(i1, ..., ik) = Ik

1 (u+ n− j),

Φ
(2)
k,j(i1, ..., ik) =

n−j∑

i=1

k∑

n0=0

αi,k(n0)I
n0
1 (u+ i)Ik

n0+1(j)
n − i− j

n− i
.

A basic result of (Hoeffding(1948)) holds when Φk,j(i1, ..., ik) is symmetric as a function of
i1, .., ik . We shall study questions of symmetry in the next Section.

3.3. On the symmetry of ϕ̂k,j(u, n)

First, Φ
(1)
k,j(i1, ..., ik) = Ik

1 (u+n−j) is clearly symmetric as a function of i1, .., ik. Next, one studies

the symmetry of Φ
(2)
k,j(i1, ..., ik). A transposition that permutes i1 and iν yields an element of the

form In0
1 (u+ i)Ik

n0+1(j). This element is modified into

In0
1 (u+ i+ 1{ν>n0}(wi1 − wiν ))Ik

n0+1(j − 1{ν>n0}(wi1 − wiν )),

which is difficult to manage. We proceed differently and observe that αi,k(n0) = P
[
Bk,i/n = n0

]
,

where Bk,i/n is the binomial coefficient of parameters k and i/n. Let σk denote all the possible
permutations of the set {i1, .., ik}. Then one obtains that

1

k!

∑

σk

k∑

n0=0

αi,k(n0)I
n0
1 (u+ i)Ik

n0+1(j) = Eδ1,..,δk

[
Jk(u+ i)J̄(j)

]
,
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with
Jk(u+ i) = 1{δ1wi1

+...+δkwik
=u+i},

and
J̄k(j) = 1{δ̄1wi1

+...+δ̄kwik
=j},

where δ̄ν = 1 − δν , and where the random sequence δν is i.i.d., with Bernoulli distribution with
parameter i/n, ν 6 k.
We can show that a transposition of two elements i1 and iν has the same effect than a transpo-
sition of δ1 and δν . The random variables δν are i.i.d., so that the mean is invariant under any
permutation of the variables δν , that is

Eδ1,..,δk

[
Jk(u+ i)J̄(j)

]

is symmetric as a function of i1, ..., ik .

The point here is that
∑k

n0=0 αi,k(n0)I
n0
1 (u + i)Ik

n0+1(j) is not symmetric. We will use the
following Lemma:

LEMMA 2.

Nkϕ̂k,j(u, n) =

(
N

k

)

U +
∗∑

Φk,j(i1, ..., ik),

where the sum
∑∗ is taken over all k− uplets for which at least one pair of indices is such that

iν0 = iν1 (ν0 6= ν1), and where U is a U-statistic.

Proof: Let Θk = {i1, · · · , ik} be a subset of [N ] of k distinct elements i1 < · · · < ik. Then one
can write

∑

i1,..,ik∈{1,..,N}

Φ
(2)
k,j(i1, ..., ik) =

∑

Θk⊂[N ]

∑

σk

n−j∑

i=1

k∑

n0=0

αi,k(n0)I
n0
1 (u+ i)Ik

n0+1(j)
n − i− j

n− i
+

∗∑
...

As state previously, the expectation Eδ1,..,δk

[
Jk(u+ i)J̄(j)

]
is independent of the choice of the

subset Θk ⊂ [N ]. one obtains that

∑

i1,..,ik∈{1,..,N}

Φ
(2)
k,j(i1, ..., ik) =

∑

Θk⊂[N ]

n−j∑

i=1

k!Eδ1,..,δk

[
Jk(u+ i)J̄(j)

] n− i− j

n− i
+

∗∑
...

where
U = U (1) − U (2)

U (1) =
1
(N

k

)
∑

Θk⊂[N ]

Ik
1 (u+ n− j),

and

U (2) =
1
(N

k

)
∑

Θk⊂[N ]

n−j∑

i=1

k!Eδ1,..,δk

[
Jk(u+ i)J̄(j)

] n− i− j

n− i
,

proving the result. 2

3.4. Hoeffding’s results

The variance of ϕ̂k,j(u, n) is bounded and may be expressed as a function of a U-statistic. We can
thus apply a powerful Theorem from Hoeffding (Theorem 7.3 on page 308 of (Hoeffding(1948)))
to get the following Theorem.
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THEOREM 3 (Asymptotic normality of the empirical ruin probability). Let

ϕ̂k(u, n) =
u+n∑

j=0

ϕ̂k,j(u, n),

and set
∆k =

√
N (ϕ̂k(u, n)) − ϕk(u, n)) .

The random vector (∆1, ...,∆u+n) is asymptotically centered normal of variance

Γ = {γδζ(γ,δ)
1 }γ,ζ∈{1,..,u+n}.

The variance ζ
(γ,δ)
1 is not very explicit. We will discuss its various properties in the next

Section.

REMARK 2. We can assume that the number of claims is smaller than u + n, since, if not,
ruin occurs with probability one: W > 1 and therefore ∆k = 0.

The variance of
√

(N) (ϕ̂(u, n) − ϕ(u, n)) is given by

Vu =
u+n∑

γ=0

u+n∑

δ=0

γδP
[
Nn/c = γ

]
P
[
Nn/c = δ

]
ζ
(γ,δ)
1 .

If asymptotic normality holds, the limiting variance is given by formula (7) of (Loisel, Mazza
and Rullière(2007)), and we have Vu = VY [IFY (ϕ(u, t)], where IFY is the related influence
function (for more details, see (Hampel(1974)), (Hampel et al.(1981)), or (Huber(1981))). Let
VY denote the variance of the random variable Y . We will give equivalent expressions for these
variances using the shifted ruin process of Section 2.

3.5. Alternative formulas for Vu

Given that among k claims, one of them is given by Y , one has ϕY
k,j(u, n) = Lk,j(Y ) −Rk,j(Y ).

We omit Y when there is no ambiguity; furthermore, the letters L et R are used for Left and
Right. Note that

Lk,j = P
[
Y +W ∗k = u+ n− j

]
.

Since we do not know a priori whether the claim Y occurred during the first n0 claims, Rk,j is
obtained by conditioning on δ, the Bernouilli random variable of parameter i/n, which indicates

if the claim occurred. When j = 0, one has Lk,0 = Rk,0 = P
[
Y +W ∗k = u+ n

]
. When j > 1,

conditioning on δ, one obtains that Rk,j is given by

n−j∑

i=1

k∑

n0=0

i

n
P
[
Bk−1,i/n = n0 − 1

]
P [Y +W ∗n0 = u+ i] P

[
W ∗k−n0 = j

] n− i− j

n− i

+
n− i

n
P
[
Bk−1,i/n = n0

]
P [W ∗n0 = u+ i] P

[
Y +W ∗k−n0−1 = j

] n− i− j

n− i
.

Set

Lk(Y ) =
u+n∑

j=0

Lk,j(Y ),

Rk(Y ) =
u+n∑

j=0

Rk,j(Y ),
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L̄k = EY [Lk(Y )] and R̄k = EY [Rk(Y )]. Then, following ((Hoeffding(1948)), Section 6), one gets

that the covariance term ζ
(k,l)
1 can be written as

ζ
(k,l)
1 = EY

[(
(Lk −Rk) − (L̄k − R̄k)

) (
(Ll −Rl) − (L̄l − R̄l)

)]
.

Hence, using the fact that both L̄ and R̄ are expectations over Y , we have

ζ
(k,l)
1 = EY [(Lk −Rk)(Ll −Rl)] − (L̄k − R̄k)(L̄l − R̄l).

In the sequel, if no specific indication is given, we consider that all probabilities, expectations
and variances are taken given Y on the remaining random variables W1,W2, ....
The variance Vu is given by

Vu =
∞∑

k=1

∞∑

l=1

klP
[
Nn/c = k

]
P
[
Nn/c = l

]
ζ
(k,l)
1 ,

and it is easy to show that in fact

Vu = VY

[
+∞∑

k=1

kP
[
Nn/c = k

]
(Lk(Y ) −Rk(Y ))

]

.

Using the fact that

kP
[
Nn/c = k

]
=
λn

c
P
[
Nn/c = k − 1

]
, k > 1,

one gets that Vu is the variance of the random variable

λn

c

+∞∑

k=0

P
[
Nn/c = k − 1

]
(Lk(Y ) −Rk(Y )).

The term on the left is given by

+∞∑

k=0

P
[
Nn/c = k − 1

]
Lk,j(Y ) = P

[
Y + Sn/c = u+ n− j

]

+∞∑

k=0

P
[
Nn/c = k − 1

]
Lk(Y ) = P

[
Y + Sn/c 6 u+ n

]

On the other hand, the term on the right is obtained by using the identity

P
[
Nn/c = k

]
P
[
Bk,i/n = n0

]
= P

[
Ni/c = n0

]
P
[
N(n−i)/c = k − n0

]
,

since we can write

+∞∑

k=0

P
[
Nn/c = k − 1

]
Rk,j(Y ) =

n−j∑

i=1

n− i− j

n− i
(Sj,1 + Sj,2) ,

where Sj,1 and Sj,2 are given by

∑

k∈N

∑

n06k

i

n
P
[
Ni/c = n0 − 1

]
P
[
N(n−i)/c = k − n0

]
P
[
W ∗n0−1 + Y = u+ i

]
P
[
W ∗k−n0 = j

]
,

and

∑

k∈N

∑

n06k

n− i

n
P
[
Ni/c = n0

]
P
[
N(n−i)/c = k − 1 − n0

]
P [W ∗n0 = u+ i] P

[
W ∗k−n0−1 + Y = j

]
.
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Hence, we have

Sj,1 =
i

n
P
[
Si/c + Y = u+ i

]
P
[
S(n−i)/c = j

]
,

Sj,2 =
n− i

n
P
[
Si/c = u+ i

]
P
[
S(n−i)/c + Y = j

]
.

Finally, one gets the following result.

THEOREM 4 (Asymptotic variance Vu). Let Y be distributed according to the claim size dis-
tribution. Vu is the variance over Y of the following function of Y

λn

c
P
[
Y + Sn/c < u+ n

]

−λn
c

n−1∑

i=1

i

n
P
[
Si/c + Y = u+ i

] n−i∑

j=1

P
[
S(n−i)/c = j

] n− i− j

n− i

−λn
c

n−1∑

i=1

n− i

n
P
[
Si/c = u+ i

] n−i∑

j=1

P
[
S(n−i)/c + Y = j

] n− i− j

n− i

We therefore find a mathematical expression which is similar to the ruin probability. This can
be seen intuitively quite clearly since, apart from a factor λn/c, the random variable of interest
corresponds to the ruin probability associated to the process obtained by adding an additional
claim Y . Looking at the various terms of the above expression, Y is added to Si/c with probability
i/n, or to S(n−i)/c with probability n− i/n. In the special case where Y = 0, we recover the ruin
probability obtained by summing over j:

P
[
Tu > n/c and Rn/c = j

]

= P
[
Sn/c = u+ n− j

]
− 1{j6n}

n−j∑

i=1

P
[
Si/c = u+ i

]
P
[
S(n−i)/c = j

] n− i− j

n− i
.

Notice that for u = 0, this formula corresponds to the formula for V0 given in (Loisel, Mazza
and Rullière(2007)). We can finally give a more compact version of the formula:

THEOREM 5 (Link with the partly shifted process). Set

ϕx(u, t) = P [Rx
s > 0∀s < t | Rx

0 = u] ,

where Rx
s = Rs − 1{U<s}x, s > 0, and U is uniform on [0, t]. Then we have

Vu = VY

[
λtϕY (u, t)

]
.

REMARK 3. Using the notation of (Loisel, Mazza and Rullière(2007)), one can check that Vu

is also the variance of
IFY [ϕ(u, n)] .

This is the variance of

λ
n

c
ϕY (u, n),

where
ϕx(u, n) = P [Rx

s > 0∀s < n/c | Rx
0 = u] ,

and ϕ(u, n) = ϕ0(u, n) are the probabilities of non ruin before time n/c for the regular and the
modified processes.
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4. Link with influence functions

The kth-order derivative of the ruin probability with respect to λ involves Rx
t since

∂k

∂λk
ϕ(0, t) = tk

k∑

i=0

(
k

i

)

(−1)k−iEY1,..,Yi

[
ϕY1+..+Yi (0, t)

]
,

as a consequence of equation (9) in (Loisel, Mazza and Rullière(2007))). In particular,

∂

∂λ
ϕ(0, t) = tEY

[
ϕY (0, t) − ϕ(0, t)

]
,

as the Yi are i.i.d., and distributed as generic claim amount W .

4.1. IF for the compound Poisson distribution

We use here some basic facts given in (Loisel, Mazza and Rullière(2007)). Let T be a functional
of the distribution function F . By definition of the influence function, one has

IFx[T] = lim
s↓0

T(F (s,x)) −T(F )

s
,

where F (s,x) is defined for x ∈ R and s > 0 as

for u ∈ R, F (s,x)(u) = s1{x6u} + (1 − s)F (u).

THEOREM 6 (IF of St). For any Borel set A ⊂ R,

IFx [P [St ∈ A]] = λt (P [x+ St ∈ A] − EY [P [Y + St ∈ A]]) ,

where Y is distributed as W .

Proof: Let n be the number of claims before time t, and set pn = P [Nt = n]. Then

P
[
St

(s,x) ∈ A
]

= P

[
+∞∑

n=0

pnP
[
W (s,x)∗n ∈ A

]]

.

But note that

P
[
W (s,x)∗n ∈ A

]
=

n∑

k=0

(
n

k

)

sk(1 − s)n−kP
[
kx+W ∗n−k ∈ A

]
.

Taking the derivative of the above expression with respect to s when s = 0, one obtains

IFxP [St ∈ A] =
∞∑

n=0

(

pn

(
n

1

)

P
[
x+W ∗n−1 ∈ A

]
− pn

(
n

0

)

nP [W ∗n ∈ A]

)

,

and it follows that, using pn = λtpn−1/n when n > 1,

IFxP [St ∈ A] = λt
∞∑

n=0

(pnP [x+W ∗n ∈ A] − pnP [Y +W ∗n ∈ A]) ,

where Y is distributed as W . 2
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4.2. IF associated with ruin probabilities

THEOREM 7 (IF associated with ϕ(0, t)). The influence function of the ruin probability start-
ing from R0 = 0 is given by

IFx [ϕ (0, t)] = λt
(
ϕx(0, t) − EY

[
ϕY (0, t)

])
,

where ϕx(0, t) is the ruin probability of the modified risk process Rx
t defined previously, where

ϕx(0, t) = 1
ctE [(ct− x− St)+].

Proof: Set IFx, j(n) = IFxP
[
Sn/c = j

]
, and consider

IFx

[
ϕ

(
0,
n

c

)]
=

n∑

j=0

n− j

n
IFx, j(n),

which can be obtained by using Takac’s results (see (Loisel, Mazza and Rullière(2007)), Proposi-
tion 9). The result follows then directly from the Definition of ϕx(0, n/c) and the interpretation
of ϕx(0, n/c) in the first Sections. 2

REMARK 4. Theorem 7 links the derivative with respect to λ of the ruin probability with the
influence function since, as we already checked,

∂

∂λ
ϕ(0, t) = tEY

[
ϕY (0, t) − ϕ(0, t)

]
.

THEOREM 8 (IF associated with ϕ(u, t)). We now turn to the computation of the influence
function associated with the ruin probability starting from the initial reserve u, which is given by

IFx [ϕ (u, t)] = λt
(
ϕx(u, t) − EY

[
ϕY (u, t)

])
,

where ϕx(u, t) is the probability of ruin associated with the modified risk process Rx
t , when Rx

0 = u.

Proof: We use Propostion 10 of (Loisel, Mazza and Rullière(2007)):

IFx

[
ϕ

(
u,
n

c

)]
=

u+n∑

i=0

IFx, i(n) −
n∑

k=1

IFx, u+k(k)ϕ(0,
n− k

c
)

−
n∑

k=1

hu+k(k)IFx

[
ϕ(0,

n− k

c
)

]
,

¿From the two previous Theorems, one can transform influence functions as function of the
distribution of x+ St and Y + St. One then gets the result by using that

P

[
T x

u >
n

c

]
= P

[
x+ Sn/c < u+ n

]

−
n−1∑

i=1

i

n
P
[
x+ Si/c = u+ i

] n−i∑

j=1

P
[
S(n−i)/c = j

] n− i− j

n− i

−
n−1∑

i=1

n− i

n
P
[
Si/c = u+ i

] n−i∑

j=1

P
[
x+ S(n−i)/c = j

] n− i− j

n− i
.

2
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REMARK 5. Note that one gets back logical expressions for the asymptotic variances:

V0 = VY

[
λtϕY (0, t)

]
= VY [IFY [ϕ(0, t)]] ,

Vu = VY

[
λtϕY (u, t)

]
= VY [IFY [ϕ(u, t)]] , u > 0,

as well as the following identities:

EY [IFY [ϕ(0, t)]] = 0,

EY [IFY [ϕ(u, t)]] = 0, u > 0.
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