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Stéphane Loisel,
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Université Claude Bernard Lyon 1 - Ecole ISFA - 50, avenue Tony Garnier -

F-69366 Lyon Cedex 07

Abstract

We consider the classical risk model and carry out a sensitivity and robustness anal-
ysis of finite-time ruin probabilities. We provide algorithms to compute the related
influence functions. We also prove the weak convergence of a sequence of empirical
finite-time ruin probabilities starting from zero initial reserve toward a Gaussian
random variable. We define the concepts of reliable finite-time ruin probability as
a Value-at-Risk of the estimator of the finite-time ruin probability. To control this
robust risk measure, an additional initial reserve is needed and called Estimation
Risk Solvency Margin (ERSM). We apply our results to show how portfolio experi-
ence could be rewarded by cut-offs in solvency capital requirements. An application
to catastrophe contamination and numerical examples are also developed.

Key words: Finite-time ruin probability, robustness, Solvency II, reliable ruin
probability, asymptotic Normality, influence function, Estimation Risk Solvency
Margin (ERSM).
JEL Classification codes: G22, C60.

∗ Corresponding author. Tel. +33 4 37 28 74 38, fax +33 4 37 28 76 32
Email addresses: Stephane.Loisel@univ-lyon1.fr (Stéphane Loisel),
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1 Introduction

No matter whether it is for risk capital allocation, for solvency requirements, or just for risk
measurement, most actuaries traditionally start by fitting the corresponding data with
some distribution using log-likelihood maximization, moment-based methods, or other
statistical procedures, and then compute the probability of ruin, the Value-at-Risk, or
some relevant risk-related quantity based on probabilistic models involving the fitted
distribution. Robust statistics is a huge field, extensively studied in the seventies and in
the eighties, in particular by Hampel (1974) and Huber (1981), and provides powerful
concepts for sensitivity studies. Recently, Marceau and Rioux (2001) pointed out the
importance of robust statistical methods in risk theory, and provided sensitivity results for
infinite-time ruin probabilities. Actuaries are nowadays more interested in finite-time ruin
probabilities, within a time-horizon between 1 and 10 years. Robust estimation of finite-
time ruin probabilities is really in the spirit of pillar I of Solvency II. Robust CVaRs were
used in different papers for portfolio selection for example. Finite-time ruin probabilities
were studied in several papers, in particular Picard and Lefèvre (1997), Rullière and Loisel
(2004), De Vylder (1999), and Ignatov, Kaishev and Krachunov (2001). But surprisingly,
no robustness analysis of the finite-time ruin probability has appeared in the literature
yet to our knowledge. Similarly, asymptotic Normality of estimators of infinite-time ruin
probabilities has been studied by Croux and Veraverbeke (1990) and more recently by
Bening and Korolev (2000). Consistency of bootstrap estimators of finite and infinite-time
ruin probabilities had also been studied by Frees (1986) and Hipp (1989). Estimation risk
has been designated as one of the risks that should be taken into account in the Solvency
II project. Despite this motivation, as far as we know, asymptotic Normality of estimators
of finite-time ruin probabilities had neither been proved nor used to take estimation risk
into account.
In this paper, we first continue on the track of Marceau and Rioux (2001) and we tackle the
robustness analysis of finite-time ruin probabilities in the classical risk model. We then
prove the convergence of the rescaled error on the finite-time ruin probability toward
a Gaussian random variable if computations are carried out with the empirical claim
amount distribution. We compute explicitly the variance of this distribution and can thus
define and quantify the reliable finite-time ruin probability. This Value-at-Risk of the
estimator of the finite-time ruin probability has to be controlled to cover estimation risk,
which requires an additional solvency capital compare to the case where one only controls
the empirical finite-time ruin probability : we define this capital as the Estimation Risk
Solvency Margin (ERSM).
Our paper is organized as follows: in section 2, we recall the classical risk model and
the literature about computation of “classical” finite-time ruin probabilities. We derive
some sensitivity results that are going to be useful in the sequel. We also introduce the
concept of influence function and briefly recall its main properties. In section 3 we compute
influence functions of finite-time ruin probabilities and of some related quantities, using
some formulas of Picard and Lefèvre (1997) and Rullière and Loisel (2004) as starting
points. In section 4 we study some properties of the influence function, in particular large
claim contamination in catastrophe risk. We use a result from Hoeffding (1948) to show
the weak convergence of a sequence of empirical ruin probabilities to a Gaussian process
in section 5. In section 6, we explain how to use the influence function and our results to
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get a more robust determination of solvency capital requirements with reliable finite-time
ruin probabilities : the required capital is the sum of the capital that is required to have
a probability of ruin based on empirical claim size distribution less than ε and of the
Estimation Risk Solvency Margin (ERSM). The goal of ERSM is to take estimation risk
into account in the spirit of Solvency II. The value of this margin may be easily obtained
thanks to the Gaussian approximation derived in section 5. The impact of excluding some
types of catastrophe risks in insurance or reinsurance treaties is also obtained with a very
simple formula. Numerical examples illustrate the developed methods in section 7. In
particular, we show that the better the experience of the company about claim sizes is,
the lower the estimation risk solvency margin (ERSM) is. The experience of the company
about claim sizes is quantified by the number of observed claim amounts in the database.
The higher this number, the smaller the ERSM.

2 The classical risk model : sensitivity analysis and influence function

We will consider a classical risk process (Rt)t≥0 defined as follows : for t ≥ 0,

Rt = u+ ct− St,

where u is the non-negative amount of initial reserves, c > 0 is the premium income rate.
The cumulated claim amount up to time t is described by the compound Poisson process

St =
Nt∑
i=1

Wi,

where amounts of claimsWi, i = 1, 2, ... are non-negative independent, identically-distributed
random variables, distributed as W . As usual St = 0 if Nt = 0. The number of claims Nt

until t ≥ 0 is modeled by an homogeneous Poisson process (Nt)t≥0 of intensity λ. Claim
amounts and arrival times are assumed to be independent.
We are interested in the robust estimation of finite-time ruin probabilities. Let us denote
by ψ(u, t) the probability of ruin before time t with initial reserve u :

ψ(u, t) = P [∃s ∈ [0, t], Rs < 0 | R0 = u], u ≥ 0, t > 0,

and let
ϕ(u, t) = 1− ψ(u, t)

be the probability of non-ruin within time t with initial reserve u. As we consider finite-
time ruin probabilities, no profit condition has to be satisfied from a theoretical point of
view.

2.1 Sensitivity analysis

We show here that derivatives of the finite-time non ruin probability ϕ(u, t) with respect
to c, λ or u may be easily obtained as functions of derivatives of the density fSt(x) of St
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with respect to x or λ. Some details or parts of proof are given in Appendix.

2.1.1 Continuous claim amount distribution

Consider first the case of continuous claim amount distributions. Note that derivatives
of the density of the cumulated claim amount St up to time t can easily be obtained by
differentiation of the continuous version of Panjer’s formula :

fSt(x) =λ
∫ x

0

y

x
fW (y)fSt(x− y)dy, x > 0, (1)

where fSt and fW respectively are the p.d.f. of St and W .

Proposition 1 Let k ∈ N. Then for u, c, t > 0 such that fW is k-times continuously
differentiable on [0, u+ ct],

∂k

∂uk
ϕ(u, t) =

∂k

∂uk
fSt(u+ ct)−

∫ t

0

∂k

∂uk
fSx(u+ cx)ϕ(0, t− x)dx.

For u, c, t > 0 such that fW is continuously differentiable on [0, u+ ct],

∂

∂c
ϕ(u, t) = tfSt(u+ ct)−

∫ t

0
xf ′St(u+ cx)ϕ(0, t− x) + fSt(u+ cx)

∂

∂c
ϕ(0, t− x)dx,

This provides a self-iterative process to determine ϕ(0, x) (for u = 0).

In the discrete case, expressing partial derivatives of finite-time ruin probabilities in terms
of derivatives of some fSt provides natural recursive computation schemes.

2.1.2 Discrete claim amount distribution

In the case of integer-valued claim amounts, we can either use finite-difference calculus
instead of differentiation, or study the particular behavior of ϕ(u, t) as u varies for exam-
ple. As explained in Rullière and Loisel (2004), ruin and ruin at inventory are exactly the
same, provided that the set of inventory dates Ω is chosen as

Ω = {τ ∈]0, t], u+ cτ ∈ N \ {0}} .

This set of inventory dates Ω depends on u, t and c but not on λ.

Set x+ = max(x, 0).

Proposition 2 The partial derivatives of order k w.r.t. λ of finite-time non-ruin proba-
bilities starting from zero can be written as follows :
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∂

∂λ
ϕ
(

0,
n

c

)
=
n

c
E

[(
1−

W + Sn/c
n

)
+

]
− n

c
ϕ
(

0,
n

c

)
, k ≥ 1, (2)

∂k

∂λk
ϕ
(

0,
n

c

)
=
(
n

c

)k k∑
i=0

Ci
k(−1)k−iE

[(
1−

W ∗i + Sn/c
n

)
+

]
, k ≥ 0.

Proof: ϕ(0, t) = E
[(

1− St
ct

)
+

]
, and (A.3) give the result. �

Proposition 3 For k ≥ 1, partial derivatives of order k w.r.t. λ of finite-time non-ruin
probabilities can be written as follows :

∂k

∂λk
ϕ(u, t) =

∂k

∂λk
P [Rt ≥ 0]−

∑
s∈Ω

k∑
i=0

Ci
k

∂i

∂λi
P [Rs = 0]

∂k−i

∂λk−i
ϕ(0, t− s). (3)

Proof: This follows from Proposition 2 in Appendix and results of Rullière and Loisel
(2004). �

Remark 1 Some results concerning derivatives of ruin probabilities involve the distribu-
tion of W +St. This will also be the case for some results about influence functions in the
next sections, in particular for propositions 15, and 16 in the case of large claim contam-
ination. If we add a claim at time zero, we can link the involved ruin probability with a
ruin probability in the so-called dual risk model, in which the risk process decreases at a
deterministic rate and has upward jumps. We can also link the involved ruin probability
with the probability that a classical process reaches an upper barrier. For more details, see
Mazza and Rullière (2004).

2.2 Influence functions

It is unlikely that the “real” claim amount process is exactly the one which has been
chosen for statistical inference. At best, it might correspond to a model that is close
to the starting model, for example a small contamination of it. Therefore, one needs
estimators that are efficient and that do not change much if a small change occurs in the
inputs of the model. Estimators of this kind are called robust. The influence function,
which was introduced by Hampel (1974) to study the infinitesimal behavior of real-valued
functionals, is one of the main tools in robustness theory to measure the impact of a small
perturbation of the model on the outputs.

Definition 1 (Influence Function (IF)) Assume that T is a functional of a distribu-
tion F . The influence function at point x ∈ R is defined as the limit (when it exists)

IFx[T] = lim
s↓0

T(F (s,x))−T(F )

s
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where F (s,x) is defined for x ∈ R and 0 < s < 1 by

for u ∈ R, F (s,x)(u) = s1x≤u + (1− s)F (u).

In the sequel, for each quantity related to the contaminated distribution F (s,x), we use
the exponent (s,x). Given a random sample X1, · · · , Xn distributed according to some
distribution function F , let Fn denote the associated empirical distribution. The influence
function has two main uses: it allows the study of the influence of perturbations of the data
on the values taken by the functional T, and it permits, under some regularity assumptions
to catch the asymptotic variance when the rescaled process weakly converges toward a
Gaussian random variable

Var(
√
n|T(Fn)−T(F )|) −→ A(F,T),

as n→∞, where

A(F,T) =
∫

R
(IFx[T(F )])2 F (dx) (4)

(see Huber (1981), Hampel (1974) or Hampel et al. (1986)).

3 Computation of the influence function

We assume here that W is integer-valued, with P [W = 0] = 0 (which is not restrictive, see
for example De Vylder (1999) or Rullière and Loisel (2004)). In this section, we provide
algorithms to compute influence functions of finite-time non-ruin probabilities and of
some related quantities. Set Πi = P [W = i], i ∈ N. We assume that the distribution F of
a single claim amount is contaminated, in the sense that we add some probability mass
at point x ∈ N. x can in general be any real number, but we present here the simpler
case where x ∈ N for the sake of clarity. This is also consistent with the fact that claim
amounts are integer-valued in reality. As for u, t > 0 and x ∈ N,

IFx [ψ (u, t)] = −IFx [ϕ (u, t)] ,

we can treat symmetrically the probability of ruin or of non-ruin before t.

Given j ∈ N and τ ∈ R, consider the functions

h0 (τ) = e−
λτ
c and hj (τ) =

λτ

cj

j∑
i=1

i · Pr [W = i] · hj−i (τ) .

For τ > 0, we have hj(τ) = P [Sτ = j] for j ∈ N. Set Πi = P [W = i] for i ∈ N, with
Π0 = 0. Similarly, for j ∈ N and τ ∈ R \ {0}, one sets

Hj (τ) =
j∑
i=0

hi (τ) and H̃j (τ) =
j∑
i=0

hi (τ)
(

1− i

τ

)
.

Then

Hj (0) = hj (0) and H̃j (0) = 1− λ

c
E [W1W≤j] ,
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hj (τ) = Pr
[
Sτ/c = j

]
, Hj (τ) = Pr

[
Sτ/c ≤ j

]
and H̃j(τ) =

1

τ
E
[(
τ − S τ

c

)
1S τ

c
≤j
]
.

Proposition 4 (IF for single claim probabilities)

IFx [Πi] = 1x=i − Πi, i ∈ N.

Proof: We see that Π(s,x) = s1x=i + (1− s)Πi, and the result is straightforward. �

In order to determine the influence function of the probability of ruin, we need to give
the influence function for quantities P [St = j], j ∈ N, t ∈ R. Notice that for τ < 0
computations are formal and do not have any probabilistic meaning. Nevertheless, these
formal computations will be useful for the final results, as in Rullière and Loisel (2004).

The influence function of these probabilities will be written as follows:

IFx, j(τ) = IFx

[
P
[
Sτ/c = j

]]
j ∈ N, τ ∈ R+.

Proposition 5 (IF for aggregated claim amount probabilities)

IFx, y(τ) =
λτ

c

x

y
1x≤yP

[
S τ
c

= y − x
]
− P

[
S τ
c

= y
]

+
y∑
i=1

λτ

c

i

y
ΠiIFx, y−i(τ). (5)

Proof: Using Panjer’s recursion, one obtains P
[
S τ
c

= y
]

=
∑y
i=1

λτ
c
i
y
ΠiP

[
S τ
c

= y − i
]
.

Thus, we can obtain both P
[
S τ
c

(s,x) = y
]

and P
[
S τ
c

= y
]

recursively as y varies. We can

then either consider the difference between P
[
S τ
c

(s,x) = y
]

and P
[
S τ
c

= y
]

and calculate

the limit when s tends to zero, or directly differentiate P
[
S τ
c

(s,x) = y
]

with respect to s,
and then take s = 0. According to Panjer’s formula, the second term on the right-hand
side of the equality is reduced to P

[
S τ
c

= y
]
. �

As for j ∈ N we can define hj(τ) for τ ∈ R (even if it loses its probabilistic interpretation,
see Rullière and Loisel (2004) for example), the definition of IFx, j(τ) may be extended to
the general case τ ∈ R for j, x ∈ N simply as follows :

IFx, j(τ) =
∂

∂s
hj

(s,x)(τ)
s=0

. (6)

Proposition 6 (Algorithm for IF related to aggregate claim amounts) The fol-
lowing iterative scheme provides both aggregated claim amount distributions and the cor-
responding influence functions, for τ ∈ R and x, y ∈ N :

IFx, y(τ) =
λτ

c

x

y
1x≤yhy−x(τ)− hy(τ) +

y∑
i=1

λτ

c

i

y
ΠiIFx, y−i(τ),

hy(τ) =
y∑
i=1

λτ

c

i

y
Πihy−i(τ),
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where h0(τ) = e−
λτ
c and

IFx, 0(τ) =
λτ

c
e−

λτ
c 1x=0

.

Proof: The first equation is given by Proposition 6, the second is an expression of Panjer’s
formula. For initial values, one can check that for x 6= 0, P [St = 0] = P

[
St

(s,x) = 0
]

=

P [Nt = 0], so that IFx, 0(t) = 0, t ∈ R. For x = 0, P
[
St

(s,x) = 0
]

= e−λt(1−s). �

Takács’s result (see Takács (1962a) and Seal (1969)) implies that

ϕ
(

0,
n

c

)
=

n∑
j=0

n− j
n

P
[
Sn
c

= j
]

=
n∑
j=0

n− j
n

hj(n), n ∈ N. (7)

As a direct consequence, we get the influence function of the finite-time non-ruin proba-
bility starting from zero.

Proposition 7 (IF for ϕ(0, t))

IFx

[
ϕ
(

0,
n

c

)]
=

n∑
j=0

n− j
n

IFx, j(n).

Proof: Differentiate ϕ
(
0, n

c

)
for the contaminated single amount distribution, take s = 0

and apply then equation (6). �

Computations for a time n /∈ N and an initial reserve u /∈ N can be done by application
of formulas (2.10) and (2.11) in Rullière and Loisel (2004).For the sake of clarity, we
consider u, n ∈ N in the sequel. Several ways have been proposed to compute finite time
ruin probabilities with initial reserves u ∈ N (see Rullière and Loisel (2004), Picard and
Lefèvre (1997)).

By conditioning by the last time the process (Rs)s≥0 reaches zero before time t, we get:

ϕ
(
u,
n

c

)
= Hu+n (n)−

n∑
k=1

hu+k (k) H̃n−k (n− k) . (8)

As a direct consequence, we get the following recursive scheme for the influence function
of the finite-time non-ruin probabilities ϕ(u, t), u ∈ N.

Set IFH̃x, j(τ) = IFx

[
H̃j(τ)

]
. Then

IFH̃x, j(τ) =
j∑
i=0

IFx, i(τ)
(

1− i

τ

)
,

with IFH̃x, 0(0) = 0. In particular, IFH̃x, n(n) = IFx

[
ϕ
(
0, n

c

)]
, n ∈ N.
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Proposition 8 (IF for ϕ(u, t) - first method)

IFx

[
ϕ
(
u,
n

c

)]
=

u+n∑
i=0

IFx, i(n)−
n∑
k=1

IFx, u+k(k)H̃n−k(n− k)

−
n∑
k=1

hu+k(k)IFH̃x, n−k(n− k).

Proof: Taking the derivative of (8) for the contaminated single amount distribution,
setting s = 0 and applying then (6) gives the required result. �
One might use also alternative formulas of Picard and Lefèvre (1997) or direct recursive
formulas. These formulas and the corresponding schemes are given in Appendix.
During the implementation of the algorithms, one may take care to compute each quantity
only once. In particular, since computations of hj(τ) and IFx, j(τ) involve calculation of
hi(τ) and IFx, i(τ), i ≤ j, these quantities should be stored and summed at the right time.
Notice also that some factors do not depend on perturbation point x, which enables us
to compute influence functions for a set of values of x in a shorter time.

Some of the above sums may be interpreted as influence functions of quantities like H.(.),
H̃.(.) or ϕ(0, .). The discussion on the comparison between computation times for these
three methods can be directly adapted from Rullière and Loisel (2004).

Remark 2 Previous computations of influence functions in propositions 8 and 20 for
times n/c, n /∈ N and initial reserves u /∈ N can be done by adaptation of formulas (2.7)
and (2.11) in Rullière and Loisel (2004). It will sometimes be necessary to find the initial
reserve u ∈ R+ respecting some constraints for ruin probabilities and influence functions,
so that an adaptation of previous formulas (given in Appendix) may be useful.

4 Properties of influence functions associated to ruin probabilities

In this section, we first show that the influence function of the finite-time ruin probability
is non-decreasing, bounded and constant after a certain threshold. This leads us to study
the particular properties of the influence function for large contamination points x. The
situation is quite simple in this case since each claim amount replaced by x will cause
ruin. Nevertheless, the event “one claim is replaced by x” is strongly dependent on the
number of claims on the considered period. A first approach can consist in studying
the risk process given the number of claims, but we consider here the cumulated claim
amount process, which is sufficient to determine the probability of ruin. This analysis is
particularly relevant for lines of business that may be exposed to catastrophe risk. Let us
start with an intuitive, and simple result:

Proposition 9 (Monotonicity of IF) For all u ≥ 0 and t > 0,

IFx [ψ (u, t)] = −IFx [ϕ (u, t)]

is non-decreasing in x.
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Proof: For each random path of Rt
(s,x), for any x′ > x, if Rt

(s,x) reaches the lower barrier
0, then a fortiori Rt

(s,x′) also reaches 0. It follows that

ψ(s,x′) (u, t) ≥ ψ(s,x) (u, t) ,

and the result holds. �
The following results are true for τ ∈ R, but when τ < 0, usual probabilities have to
understood formally. In what follows, we assume without loss of generality that τ > 0.

Proposition 10 (IF for x = 0)

IF0,y(τ) = −P
[
S τ
c

= y
]

+
y∑
i=1

λτ

c

i

y
ΠiIF0,y−i(τ). (9)

Proposition 11 Recall that hj
(s,x)(τ) = P

[
Sτ/c

(s,x) = j
]
. For x > j, we have

hj
(s,x)(τ) = exp

(
−λτ
c
s

)
hj (τ(1− s)) , x, j ∈ N, x > j.

Proof:

P
[
Sτ/c

(s,x) = j
]

=
+∞∑
n=0

P
[
Nτ/c

(s,x) = n
]
P
[
W (s,x)∗n = j

]
.

Since x > j, we have

P
[
W (s,x)∗n = j

]
= (1− s)nP [W ∗n = j].

�

Proposition 12 (Aggregate claim amount IF for large x) For x > j, the influence
function IFx, j(τ) does not depend on x and is given by

IFx, j(τ) =−λτ
c
hj(τ)− λ ∂

∂λ
hj(τ), x, j ∈ N, x > j. (10)

Proof: From proposition (11), taking derivatives at s = 0, and using (6), with eventually
τ ∂
∂τ
hj(τ) = λ ∂

∂λ
hj(τ).

We also remark that for large x, (5) becomes

IFx, y(τ) = −hy(τ) +
y∑
i=1

λτ

c

i

y
ΠiIFx, y−i(τ). (11)

We then check that equation (10) satisfies this last equality using (A.2). �

It is rather direct to get the ruin probability influence function from the aggregate claim
amount influence function, since we can simplify IFx

[
ϕ
(
u, n

c

)]
in proposition (8). An

interesting link occurs then between sensitivity with respect to parameter λ and influence
function, as shown in the next propositions.
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Proposition 13 Let ϕ(s,x)
(
u, n

c
, λ
)

be the probability of ruin for contaminated claim
amounts when we assume a Poisson intensity λ. For x > u+ n, we have

ϕ(s,x)
(
u,
n

c
, λ
)

= ϕ
(
u,
n

c
, λ(1− s)

)
exp

(
−λn

c
s
)
. (12)

Proof: Let N ′ be the number of claims replaced by x before time n/c. We see that

ϕ(s,x)
(
u,
n

c
, λ
)

= P [N ′ = 0]P
[
Tu

(s,x) >
n

c
N ′ = 0

]
,

when x > u+ n. Then

ϕ(s,x)(u,
n

c
, λ) =

∑
k∈N

P
[
N ′ = 0 ∩Nn/c = k

]
P
[
Tu

(s,x) >
n

c
N ′ = 0 ∩Nn/c = k

]
.

Denote by N s a Poisson process of intensity λ(1− s). Then

ϕ(s,x)(u,
n

c
, λ) =

∑
k∈N

P
[
N s
n/c = k

]
P
[
Tu >

n

c
Nn/c = N s

n/c ∩N s
n/c = k

]
exp

(
−λn

c
s
)
,

and the result follows. �

Proposition 14 (ruin probability IF for large x) For x > u+ n, we have

IFx

[
ϕ
(
u,
n

c

)]
= −λ ∂

∂λ
ϕ
(
u,
n

c

)
− λn

c
ϕ
(
u,
n

c

)
(13)

Proof: Plug (10) in (8), and use (8). Another way to get this formula is to differentiate
(12) with respect to s, and then to consider this derivative at s = 0. �

Derivatives with respect to λ may be simplified by using relations (A.1), (A.3) and (3).
As an example, we get:

Proposition 15 For x > j, the influence function IFx, j(τ) does not depend on x and is
given by

IFx, j(τ) =−λτ
c

P
[
W + Sτ/c = j

]
, x, j ∈ N, x > j. (14)

Proof: This is a consequence of (A.3) and (10).

Another possibility is to check that this equation satisfies (11). Use Panjer’s formula for

hy(τ), and develop P
[
W + Sτ/c = y

]
according to its natural convolution, one may check

that
y∑
i=1

ΠiP
[
Sτ/c = y − i

] (
1− i

y

)
=
λτ

c

y∑
i=1

i

y
ΠiP

[
W + Sτ/c = y − i

]
.

11



Expressing P
[
W + Sτ/c = y − i

]
as a natural convolution sum, the result is obtained with

a mere sum inversion, checking then that one sum can be suppressed thanks to Panjer’s
formula. �

Proposition 16 For x > n, the influence function of the non-ruin probability without
initial reserve does not depend on x and is given by

IFx

[
ϕ
(

0,
n

c

)]
=−λn

c
E

[(
1−

W + Sn/c
n

)
+

]
(15)

=−λn
c

P
[
W + Sn/c ≤ n

]
+
λ

c

n∑
j=0

jP
[
W + Sn/c = j

]
. (16)

Proof: Plug (14) in the expression of ϕ
(
0, n

c

)
as given in (7). �

Remark 3 For x > u+n, the influence function of the non-ruin probability without initial
reserve does not depend on x and is given by non-recursive sums involving only distribu-
tions of St and of W . Since these expressions are quite long, they are not given here. They
may be obtained by direct insertion of equation (14) into, for example, Proposition 8.

5 Weak convergence of finite-ruin probabilities based on empirical distribu-
tion

In this section we show that the rescaled empirical finite-time non-ruin probability starting
from zero converges in distribution to a Gaussian distribution. To this end, let us consider
the empirical finite-time non-ruin probability with zero initial reserve and within time
horizon t > 0

ϕN(0, t) = P

∃s ∈ [0, t], ct−
Nt∑
j=1

Y N
j < 0

 , (17)

where the
(
Y N
j

)
j≥1

are i.i.d. random variables drawn from the empirical distribution of a

random sample {Y1, . . . , YN} of size N ≥ 1 from the distribution of W . Given that

ϕ(0, t) =
1

ct
E

ct− Nt∑
j=1

Wj


+

 (18)

and

ϕN(0, t) =
1

ct
E

ct− Nt∑
j=1

Y N
j


+

 , (19)

we may rewrite the difference between the finite-time non-ruin probability and its estimate
based on the empirical distribution of W as

ϕ(0, t)−ϕN(0, t) =
∑
k≥1

P [Nt = k]

E
 1

ct

ct− k∑
j=1

Wj


+

− 1

Nk

∑
1≤i1,...,ik≤N

Φk (Yi1 , . . . , Yik)

 ,

12



where, for k ≥ 1, and for y1, . . . , yk ∈ R, we set

Φk (y1, . . . , yn) = E

 1

ct

ct− k∑
j=1

yj


+

.
One recognizes a typical von Mises functional, closely related to U-statistics, for which
many asymptotic results are known (see for example Hoeffding (1948), Von Mises (1947)
and Gotze (1984)).

Let ϕk(0, t) = E
[

1
ct

(
ct−∑k

j=1 Wj

)
+

]
, k ≥ 1, with ϕ0(0, t) = 1, and consider the process

ξNk = P [Nt = k]

ϕk(0, t)− 1

Nk

∑
1≤i1,...,ik≤N

Φk (Yi1 , . . . , Yik)

 , k, N ≥ 1.

We get thus a sequence (ζN)N≥1 taking values in the Banach space l2 (R+∞), where for
all N ≥ 1, ζN is defined as

ζN =
(
ξNk
)
k≥1

,

which induces a measure on the space R+∞. From Theorem 7.4 of Hoeffding (1948), the
finite-dimensional projections weakly converge to a Gaussian distribution:

∀K0 ≥ 1,
√
N
(
ξN1 , . . . , ξ

N
K0

)
→ ZK0 in distribution as N → +∞,

where for K0 ≥ 1, ZK0 follows a Gaussian distribution with mean vector

0K0 = (0, . . . , 0)

and the K0 ×K0 covariance matrix ΓK0 defined for 1 ≤ i, j ≤ K0 by

(ΓK0)ij = ijP [Nt = i]P [Nt = j]E
[(
ϕ

(Y )
i−1 − ϕi

) (
ϕ

(Y )
j−1 − ϕj

)]
,

with ϕ
(x)
k (0, t) = E

[
1
ct

(ct− x− St)+ | Nt = k
]
, and ϕ(x)(0, t) = E

[
1
ct

(ct− x− St)+

]
(we

omit the argument (0, t) for more clarity).

Notice that for claim amounts taking values in

δN = {0, δ, 2δ, . . . },

where δ > 0 and t > 0 are fixed, we can assume without restriction that claim amounts
take values in {δ, 2δ, . . . } (just change the intensity λ into λ(1− P (W = 0)) and P (W =
kδ) into

P (W = kδ)

1− P (W = 0)

for k ≥ 1). Then, if

Nt > b
ct

δ
c,

13



ruin is certain since we have at least

bct
δ
c+ 1

jumps of size greater or equal to δ. This is true both for empirical and “true” distributions
of W . Therefore, for all N ≥ 1,

ξNk = 0

for all k ≥ K + 1, where

K = bct
δ
c.

Theorem 1 If claim amounts take values in δN \ {0},
√
N
(
ϕ(0, t)− ϕN(0, t)

)
→ Z in distribution as N → +∞,

where Z ∼ N (0, V0), with variance

V0 = VY
[
λtϕ(Y )(0, t)

]
= VY [IFY [ϕ(0, t)]] , (20)

with ϕ(x)(0, t) = E
[

1
ct

(ct− x− St)+

]
, x ∈ N, and where Y is a r.v. distributed as W .

Remark 4 Notice that the identity between variances given in Theorem 1 corresponds to
the general relation between asymptotic variances and influence functions given in (4).

Remark 5 This theorem is only valid for u = 0. We leave the theoretical proof of the
general case u > 0 for future research, but provide a kind of computer-aided proof in the
numerical analysis section to show that the methods we propose to compute the Estimation
Risk Solvency Margin (to be defined in section 6.1) are implementable. The case u > 0 is
important for applications to Estimation Risk Solvency Margin (see section 6.1).

Proof: Theorem 7.4 of Hoeffding (1948) yields that the limiting variance is given by

V0 =
K∑
i=1

K∑
j=1

(ΓK0)ij .

Hence
V0 = v1 − v2,

with

v1 = EY

 K∑
i=1

iP [Nt = i]ϕ
(Y )
i−1

K∑
j=1

jP [Nt = j]ϕ
(Y )
j−1


and

v2 =
K∑
i=1

K∑
j=1

ijP [Nt = i]P [Nt = j]ϕi(0, t)ϕj(0, t).

Using the identities
iP [Nt = i] = λtP [Nt = i− 1]

and
ϕ

(Y )
k = 0, k > K,

14



one obtains that

v1 = (λt)2EY

 ∞∑
i=0

P [Nt = i]ϕ
(Y )
i

∞∑
j=0

jP [Nt = j]ϕ
(Y )
j

 ,
so that

v1 = (λt)2EY

[(
ϕ(Y )(0, t)

)2
]
.

We can show that
ϕi = EY

[
ϕ

(Y )
i−1

]
.

Using the above arguments, one gets that

v2 = (λt)2
∞∑
i=0

P [Nt = i]EY
[
ϕ

(Y )
i (0, t)

] ∞∑
j=0

P [Nt = j]EY
[
ϕ

(Y )
j (0, t)

]
,

and therefore
v2 = (λt)2

(
EY

[
ϕ(Y )(0, t)

])2
.

We next consider the last identity (20)

VY
[
λtϕ(Y )(0, t)

]
= VY [IFY [ϕ(0, t)]] .

Given 0 < s < 1, let ε be a generic Bernoulli random variable with P (ε = 1) = s =
1 − P (ε = 0). Then the random variable εy + (1 − ε)W has F (s,y)(u) as a distribution
function. One must thus consider the following limit,

lim
s→0

1

s

(
E(ε,W )

[
(ct−

k∑
i=1

(εiy + (1− εi)Wi)+

]
− EW

[
(ct−

k∑
i=1

Wi)+

] )
.

Using independence and Fubini’s Theorem, one is led to consider first the integral over ε
given W

Iw := Eε

[
(ct− y

k∑
i=1

εi −
k∑
i=1

Wi +
k∑
i=1

εiWi)+

]
.

The collection of i.i.d. random variables (ε1, ε2, · · · , εk) can be seen as corresponding to
random subsets J of {1, 2, · · · , k}, of law P (J) = s|J |(1 − s)k−|J |, where |J | denotes the
size of J with |J | = ∑k

i=1 εi. Then we can write

Iw =
k∑

n=0

s|J |(1− s)k−|J |
∑
|J |=n

(ct− yn−
k∑
i=1

Wi +
∑
i∈J

εiWi)+.

We shall see that only the first two terms corresponding to n = 0 and n = 1 contribute
to the limit: one first check the behavior of

lim
s→0

EW
[
Iw − Ĩw

]
s

,

where we set Ĩw = (ct−∑k
i=1Wi)+. Let Iw = I0

w + I1
w, where

I0
w = (1− s)k(ct−

k∑
i=1

Wi)+ and I1
w = s(1− s)k−1

k∑
j=1

(ct− y −
∑
i 6=j

Wi)+.

15



Using the fact that ((1− s)k − 1)/s) ∼ −k as s→ 0, one gets the equivalent expression

−kEW
[
(ct−

k∑
i=1

Wi)+

]
+ k(1− s)k−1EW

[
(ct− y −

k−1∑
i=1

Wi)+

]
.

The next step consists in taking the variance of the above random variable when Y is
distributed like W , and is independent of the Wi. The first term is constant, and therefore
the variance is given by, collecting the terms related to k,

VY

∑
k≥0

(λt)k

k!
e−λtkEW

[
(ct− Y −

k−1∑
i=1

Wi)+

]

= VY

λt∑
k≥0

(λt)k

k!
e−λtEW

[
(ct− Y −

k∑
i=1

Wi)+

]
= VY

[
λtϕ(Y )(0, t)

]
,

which corresponds to the required identity. It remains to check that the terms related to
n ≥ 2 do not contribute to the limit s→ 0. This follows from bounded convergence.

�

In the case where claim amounts follow a continuous distribution FW , we can approximate
FW with a sequence

(
FWp

)
p≥1

of discretized versions of FW such that Wp takes values in
1
p
N for p ≥ 1, in the sense that for all x ∈ R,

FWp(x)→ FW (x)

as p tends to infinity. Denote respectively by ϕp(0, t) and ϕNp (0, t) the finite-time ruin
probability with claim amount distribution FWp and the related empirical version. Clearly,
for a fixed N ≥ 1, (√

n
[
ϕp(0, t)− ϕnp (0, t)

])
1≤n≤N

converges in distribution to (√
n [ϕ(0, t)− ϕn(0, t)]

)
1≤n≤N

as p → +∞. As the weak convergence of a family of measures on the Banach space
l2 (R+∞) is ensured by the weak convergence of the finite-dimensional projections (see for
example Billingsley (1999), chapter 1.5), we get that(√

N
[
ϕp(0, t)− ϕNp (0, t)

])
N≥1

converges weakly toward (√
N
[
ϕ(0, t)− ϕN(0, t)

])
N≥1

,

as p→ +∞. For given p ≥ 1, Theorem 1 yields that

√
N
(
ϕp(0, t)− ϕNp (0, t)

)
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converges in distribution to

Zp ∼ N (0, σ2
p),

where

σ2
p = VWp

[
λtϕ(Wp)

p (0, t)
]
,

and

ϕ(x)
p (0, t) = E

[
1

ct
(ct− x− Spt )+

]
.

Here, Spt corresponds to the cumulated claim amount up to time t for individual claim
amounts distributed as Wp. As

σ2
p = VWp

[
λtϕ(Wp)

p (0, t)
]
→ VW

[
λtϕ(W )(0, t)

]
, p→∞,

Zp converges in distribution to

Z ∼ N (0, σ2),

with

σ2 = lim
p→+∞

σ2
p = VW

[
λtϕ(W )(0, t)

]
.

Hence √
N
(
ϕ(0, t)− ϕN(0, t)

)
→ Z in distribution as N → +∞,

with the following commutative diagram :

√
N
(
ϕp(0, t)− ϕNp (0, t)

)
N→+∞

d //

d p→+∞
��

Zp

d p→+∞

��

∼ N (0, σ2
p)

√
N
(
ϕ(0, t)− ϕN(0, t)

)
N→+∞

d //Z ∼ N (0, σ2).

Remark 6 Note that as the infinite-time ruin probability starting from zero only depends
on the claim size distribution through its expected value, the asymptotic variance of

√
N
(
ϕ(0, t)− ϕN(0, t)

)
tends to the asymptotic variance of

√
N
(
E[W1]− µNW

)
multiplied by λ2/c2 as t goes to infinity, where µNW is the (random) empirical average of W1

obtained from an N-sample of the claim size distribution. From the central limit theorem
and from the same way of reasoning as above, the asymptotic variance of

√
N
(
ϕ(0, t)− ϕN(0, t)

)
converges to

λ2

c2
V ar (W1)

as t tends to +∞.
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6 Some applications of influence functions

6.1 Reliable finite-time ruin probabilities

Recall that ψ(u, t) denotes the finite-time ruin probability, which is seen as a functional
of the claim amount distribution F . Similarly, ψN(u, t) denotes the random finite-time
ruin probability, with claim amounts drawn from the empirical distribution FN associated
with an i.i.d. sample of distribution F .

Definition 2 The reliable finite-time ruin probability ψN,reliable1−ε (u, t) is the (1− ε)-quantile
of the (random) bootstrapped finite-time ruin probability ψN(u, t):

ψN,reliable1−ε (u, t) = inf
s≥0

{
P
[
ψN(u, t) ≥ s

]
≤ ε

}
.

We checked in the previous sections that ψN(u, t) can be approximated for large claim
size databases (see section 7.2 to know what large N means in practice) by a Gaussian
random variable of mean ψ(u, t) when u = 0. Numerical simulations seem to confirm
the asymptotic Normality of ψN(u, t), for arbitrary u (see Section 7.1). When ψN(u, t) is
approximately Gaussian of mean ψ(u, t) and variance Vu/N , one can consider the approx-
imation

ψ̃N,reliable

1−ε (u, t) = ψ(u, t) +

√
Vu√
N

Φ−1(1− ε),

where Φ denotes the distribution function of a standard Normal r.v., and where Vu is the
asymptotic variance of

√
N
(
ϕ(u, t)− ϕN(u, t)

)
:

Vu = VY [IFY [ϕ(u, t)]] , u ≥ 0, (21)

which can be obtained from Sections 3 and 5. Section 7 gives examples where the com-
putation time required to estimate the variance is reasonable, but the computation time
can heavily increase when discretization step δ becomes smaller.
One judicious choice is ε = 2.5%, as the 97.5 percentile of a Gaussian (µ, σ2) random vari-
able can be approximated by µ+ 2σ. In this case, one gets the pragmatic approximation
Φ−1(1− ε) ' 2.

If uη and uη,ε are respectively defined as the initial capital required to ensure that

ψ(uη, t) ≤ η

and
ψN,reliable

1−ε (uη,ε, t) ≤ η,

the Estimation Risk Solvency Capital ERSMη,1−ε can be defined as the additional capital
needed to take estimation risk into account :

ERSMη,1−ε = uη,1−ε − uη,

which can be obtained from the results of Section 7. It might be thus interesting to
determine solvency requirements from ψN,reliable

97.5% ≤ η with 1− η < 99.5%, rather than from
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ψ ≤ 1− 99.5%. This might lead to a gain in robustness, as 99.5% safety levels are almost
impossible to handle in practice. We give examples of values of η that lead to values of
uη,97.5% of the same magnitude as u1−99.5% in section 7.2.

In practical cases, one may ignore the exact distribution F . If the claim size database
contains N ≥ 1 observed claim amounts ON = {w1, . . . , wN}, then estimators of ψ(u, t),
ψN,reliable

1−ε (u, t) and ψ̃N,reliable

1−ε (u, t) may be obtained, for example, by respective plug-in esti-

mators, ψON (u, t), ψON ,reliable

1−ε (u, t) and ψ̃ON ,reliable

1−ε (u, t), when F is replaced by the empirical
distribution function FON from ON . These estimators may also suffer from estimation risk.
From Propositions 5, 6, 7 and 8, and with the same kind of reasoning as in Sections 3
and 4, it can be shown that the influence function of the influence function of the ruin-
probability is bounded. From (4) and from Proposition 15, we obtain that estimators
ψON (u, t), ψON ,reliable

1−ε (u, t) and ψ̃ON ,reliable

1−ε (u, t) are robust according to Hampel’s definition,
as their influence functions are bounded.

6.2 Catastrophe claim contamination

For infinite-time ruin probabilities, in the case of heavy-tailed claim amount distributions,
it would be better to use some methods from the theory of extremes. However, in the case
of finite-time ruin probabilities, we want to point out here a very simple relation that
gives the impact of the contamination of data by large claim amounts. Assume that the
solvency capital requirements of an insurance company are determined in such a way
that the finite-time ruin probability is less than ε. For some lines of business exposed to
catastrophe risk, the following question arises: if the risk corresponding to claims that
are larger than a given deterministic amount M > 0 are transferred using reinsurance or
securitization, what is the effect of this transfer on the ruin probability? Is the decrease of
the required capital level enough to finance this risk transfer in order to maintain the same
premium income rate? Is it possible to determine easily the given amount M necessary
to get a given level of ruin probability ?

Consider the truncated random variable W̃ such that P
[
W̃ = x

]
= P [W = x], 0 < x <

M and P
[
W̃ = 0

]
= P [W ≥M ]. Recall that P [W = 0] = 0. Let (Ñt)t≥0 be the Poisson

process (with intensity λP [W > M ]) defined for t ≥ 0 by

Ñt =
∑
k≥1

1Ti≤t1Wi>M ,

where (Ti)i≥1 is the sequence of jump instants of (Nt)t≥0. Ñt represents of course the
number of claims of size larger than M up to time t ≥ 0. Denote by ϕ̃(u, t) the finite-time
non-ruin probability in the modified model.

From the total probability formula, the classical finite-time non-ruin probability satisfies
the following equation : for all u, M and t ≥ 0,
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ϕ(u, t) = P
[
∀s ≤ t, u+ ct− St ≥ 0 | Ñt = 0

]
.P
[
Ñt = 0

]
+ P

[
∀s ≤ t, u+ ct− St ≥ 0 | Ñt > 0

]
.P
[
Ñt > 0

]
(22)

As (Ñt)t≥0 and (Nt − Ñt)t≥0 are two independent Poisson processes,

P
[
∀s ≤ t, u+ ct− St ≥ 0 | Ñt = 0

]
is exactly ϕ̃(u, t). If besides M > ct, then any claim of size larger than M causes ruin,
and consequently

P
[
∀s ≤ t, u+ ct− St ≥ 0 | Ñt > 0

]
= 0.

As
P
[
Ñt = 0

]
= e−λP[W>M ]t,

equation (22) simplifies for M > ct into

ϕ(u, t) = ϕ̃(u, t)e−λP[W>M ]t. (23)

If follows that when it makes sense, determining the minimal value M0 of M > ct such
that ϕ̃(u, t) ≥ 1− ε is straightforward since

P [W > M ] =
1

λt
ln

[
ϕ̃(u, t)

ϕ(u, t)

]
.

This leads to the following condition :

P [W > M ] ≤ 1

λt
ln

[
1− ε
ϕ(u, t)

]
,

and so M has to be greater than

M0 = V aRα(W ),

where the Value-at-Risk level α is given by

α =
1

λt
ln

[
1− ε
ϕ(u, t)

]
.

Equation (23) may also be used to evaluate the influence of large claims and the impact
of an underestimation of catastrophe risk.

7 Numerical examples

In this section, we first show how the influence function of finite-time ruin probabilities
may look like. Then we analyze the impact of the size of the claim size database on
the asymptotic variance of the estimator of finite-time ruin probabilities and thus on the
estimation-risk solvency margin (ERSM), obtained from difference between the reserves
that are needed to control the reliable finite-time ruin probability (whose definition and
main properties were given in subsection 6.1) and the ones needed to control the empirical
finite-time ruin probability.
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Figure 1. Aspect of the influence function IFx [P [St = u]] = IFx, u(ct) as a function of x, for
λ0 = 1, c = 1.1, t = 10, for discrete exponentially distributed claim amounts with δ = 0.1.

7.1 Numerical analysis of influence functions

The results presented hereafter have been obtained for parameters λ0 = 1, c = 1.1, and
t = 10.

We first consider the case where W0 is exponentially distributed with parameter 1. We
then define the distribution function Fδ of a discrete claim amount Wδ with Fδ (iδ) defined
on each interval [iδ, iδ + δ[, such that

Fδ (iδ) =
1

δ

∫
[iδ,iδ+δ[

FW0 (x) dx.

In order to cancel π0 = P [Wδ = 0], the Poisson parameter λ0 has been modified into
λ = λ0(1− π0), and the πi have been changed into P [W = i] = πi/(1− π0). All amounts
(c, u,W ) are expressed in δ money unit, in order to get integer-valued amounts. This
discretization procedure is fully described in De Vylder (1999).

The interest of such a distribution is that some results for continuous exponential claims
distribution may be obtained as δ tends to 0.

Consider first the influence function of the probability that the aggregate claim amount
reaches a value u at time t. Figure 1 illustrates the non-monotonicity of this function.
In this particular example, changing some claim amounts into some of value 1 or 2 may
increase the probability that the aggregate claim amount is 10. For other values, like 5,
it may decrease this probability. For perturbation points x > u, the influence function is
obviously unchanged since changing only one claim into x implies that St will not reach
u.
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Figure 2. Aspect of the influence function IFx [ψ (0, t)] as a function of x, for
λ0 = 1, c = 1.1, t = 10, for discrete exponentially distributed claim amounts with δ = 0.1.
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Figure 3. Aspect of the influence function IFx [ψ (u, t)] as a function of x, for
λ0 = 1, c = 1.1, t = 10, u = 10, for discrete exponentially distributed claim amounts with
δ = 0.1.

We have checked numerically that (see equation (14)):

IFx, j(τ) = −λτ
c

P
[
W + Sτ/c = u

]
, x, j ∈ N, x > j.

In this special case, where λ0 = 1, c = 1.1, t = 10, u = 10, for discrete exponen-
tial claims with δ = 0.1, with standard, 64-bit arithmetic precision, P [W + St = u] =
0.00898542154104457 and IFx, u(ct) = −0.0855075913881109.

From recursive schemes given in proposition 8 and 20, which give similar results, we draw
the influence function of ruin probability as a function of the contamination point x.
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We get as an example in Figures 2 and 3 the shape of the influence function of the ruin
probability within finite time IFx [ψ (0, t)] and IFx [ψ (u, t)]. We can verify that this influ-
ence function starts at a given negative value, is non-decreasing, bounded and constant
for x > u+ ct.

We have checked numerically that (see proposition 16):

IFx

[
ϕ
(

0,
n

c

)]
= −λn

c
E

[(
1−

W + Sn/c
n

)
+

]
.

In this special case where λ0 = 1, c = 1.1, t = 10, u = 10, for discrete exponentially
distributed claim amounts with δ = 0.1, with standard 64-bit arithmetic precision,

E

[(
1− W + St

ct

)
+

]
= 0.15912803689065 and IFx [ϕ (0, t)] = −1.51430348533833.

We also checked in this case that numerically (see proposition 7) IFx

[
ϕ
(
0, n

c

)]
=
∑n
j=0

n−j
n

IFx, j(n).

At last, we checked that we retrieve numerically for small values of s:

IFx [P [W + St = j]]' 1

s

[
P
[
W (s,x) + St

(s,x) = j
]
− P [W + St = j]

]
,

and IFx [ϕ (u, t)]' 1

s

[
ϕ(s,x) (u, t)− ϕ (u, t)

]
.

7.2 Impact of database size on ERSM

We proved the convergence to a centered Gaussian distribution of the rescaled differ-
ence between the “real” finite-time ruin probability starting from zero and its empirical
equivalent, we obtained formulas to compute the asymptotic variance of this estimator
(both for null and positive initial reserves), but one practical question immediately arises:
how large should the size of the database be for the Normal approximation to be “good
enough”? This is an important question to know from which range of database size the
Normal approximation enables us to correctly approximate the Estimation-Risk Solvency
Margin. To tackle this question, we plotted a few empirical distributions of the finite-time
ruin probability for different values of database size ND and carried out several tests.
Our finding is that the Normal approximation is of good quality for ND ≥ 1000 in our
example, as the Gaussian hypothesis is not rejected for ND ≥ 1000 (see Tables 1 and 2
below).

In the example of Table 2, the finite-time ruin probability is 3.7%, and the 95%-reliable
finite-time probability is around 4.8% for N = 1000, which corresponds to a significant
increase of 27%.

In Table 3 we see that Ψ̃ONreliable
1−ε (u, t) is a quite good approximation of the empirical

quantile of ψN(u, t), as soon as N is greater than 100, which is often true in practice.
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Figure 4. Histogram of 100000 empirical ruin probabilities ψN (0, t) for N = 500 and Gaussian
p.d.f. with mean µ = ψ(u, t) and variance VY [λtϕ(y)(0, t)]/N , λ0 = 1, c = 1.1, t = 10, δ = 1.
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Figure 5. Histogram of 100000 empirical ruin probabilities ψN (0, t) for N = 5000 and Gaussian
p.d.f. with mean µ = ψ(u, t) and variance VY [λtϕ(y)(0, t)]/N , λ0 = 1, c = 1.1, t = 10, δ = 1.

In Table 4 and Figure 8, we determine the smallest values of uη and uη,ε such that ψ(uη, t)
and ψ̃ON reliable

1−ε% (uη,ε, t)) are less than η. Due to the Normal approximation of ψN (u, t) for
N ≥ 1000 (see Table 2), one can estimate here the ERSMη,1−ε by the difference uη,ε−uη.
We show that this margin is decreasing in the claim amount database size N .

In Table 5 we determine the values of η that lead to values of uη,97.5% of the same magnitude
as u0.5%. As u0.5% is the capital needed to control a classical 99.5% non-ruin probability,
this gives us an idea of the confidence level η that one should control to get results of
the same magnitude as in the classical case, but with a stronger robustness, and more
consistence with the impact of database size on estimation risk.
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Figure 6. Histogram of 5000 empirical ruin probabilities ψN (u, t) for N = 5000
and Gaussian p.d.f. with mean µ = ψ(u, t) and variance VY [[IFY [ϕ(u, t)]] /N ,
λ0 = 1, c = 1.1, t = 10, u = 10, δ = 1.
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Figure 7. Histogram of 100000 empirical ruin probabilities ψN (u, t) for N = 5000
and Gaussian p.d.f. with mean µ = ψ(u, t) and variance VY [[IFY [ϕ(u, t)]] /N ,
λ0 = 1, c = 1.1, t = 10, u = 10, δ = 1.
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N 1 10 100 1000 10000 100000 1000000

µE 0.699139547 0.769697551 0.778242822 0.779687725 0.779726799 0.779714464 0.77972124

σE 0.169347552 0.070979842 0.022666006 0.00714512 0.002253085 0.000708694 0.00022576

µ 0.779721532 0.779721532 0.779721532 0.779721532 0.779721532 0.779721532 0.779721532

σ 0.225269457 0.071236457 0.022526946 0.007123646 0.002252695 0.000712365 0.000225269

∆µ -10.33471% -1.28558% -0.18965% -0.00434% 0.00068% -0.00091% -0.00004%

∆σ -24.82445% -0.36023% 0.61731% 0.30144% 0.01732% -0.51521% 0.21763%

D (KS stat.) 0.45121 0.0856359 0.02129987 0.00853443 0.00831831 0.00831553 0.00837514

p-value <0.001 <0.001 0.022 >0.250 >0.250 >0.250 >0.250

Table 1
Empirical measures from 5000 values ψN (0, t), and adequation to Gaussian distribution with

parameters µ = ψ(0, t) and σ2 = VY
[
λtϕ(Y )(0, t)

]
/N . u = 0, c = 1.1, δ = 1, t = 10.

N 1 10 100 1000 10000 100000 1000000

µE 0.100446532 0.049993537 0.038233952 0.037476796 0.037375584 0.03732853 0.037344512

σE 0.206272576 0.063201549 0.018060165 0.005807668 0.001849715 0.000589131 0.000183304

µ 0.037342766 0.037342766 0.037342766 0.037342766 0.037342766 0.037342766 0.037342766

σ 0.184545163 0.058358305 0.018454516 0.00583583 0.001845452 0.000583583 0.000184545

∆µ 168.98525% 33.87743% 2.38650% 0.35892% 0.08788% -0.03812% 0.00468%

∆σ 11.77349% 8.29915% -2.13688% -0.48258% 0.23104% 0.95061% -0.67231%

D (KS stat.) 0.41984 0.26116 0.0561529 0.01292856 0.01014403 0.01558816 0.01022441

p-value <0.001 <0.001 <0.001 >0.250 >0.250 0.178 >0.250

ψreliable
5%

0.717433488 0.182651604 0.071621465 0.047605208 0.040501912 0.038294294 0.037645917

Table 2
Empirical measures from 5000 values ψN (u, t), and adequation to Gaussian distribution with

parameters µ = ψ(u, t) and σ2 = VY [IFY [ϕ(u, t)]]/N . u = 10, c = 1.1, t = 10, δ = 1.

N empirical Ψ
ON reliable
1−ε (u, t) Ψ̃

ON reliable
1−ε (u, t) relative error

1 0,717433 0,340893 110,46%

10 0,182652 0,133334 36,99%

100 0,071621 0,067698 5,80%

1000 0,047605 0,046942 1,41%

10000 0,040502 0,040378 0,31%

100000 0,038294 0,038303 -0,02%

1000000 0,037646 0,037646 -0,001%

Table 3
Comparison between the 95% empirical quantile of ruin probability ΨONreliable

1−ε (u, t) (from 5000
values ψN (u, t)) and the quantile Ψ̃ONreliable

1−ε (u, t) of the Gaussian asymptotical distribution,
u = 10, c = 1.1, t = 10, δ = 1, ε = 5%.

7.3 Convergence speed

Here, we present results obtained by simulating ruin probabilities. Each ruin probability
ψN(u, t) is simulated as follows: first, we build one empirical distribution from N claim
amounts drawn from distribution F . Second, we compute the exact ruin probability as a
functional of this empirical distribution.
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N 1− ε = 95% 1− ε = 97.5% 1− ε = 99.5%

1 22.17337 22.55869 23.22671

100 17.26102 17.53763 18.07737

500 16.21801 16.38931 16.73864

1000 15.93426 16.07896 16.31359

5000 15.42238 15.49750 15.64797

10000 15.30943 15.36141 15.46433

50000 15.16137 15.18416 15.22885

100000 15.12662 15.14268 15.17413

∞ 15.04309 15.04309 15.04309

Table 4
Different values of uη,ε such that ψ̃ON reliable

1−ε (uη,ε, t) = η = 0.5%, u = 10, c = 1.1, t = 10, δ =
1, η = 0.5%., and for N =∞ value of uη such that ψ(uη, t) = η.
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Figure 8. Values of uη and uη,ε > uη as functions of N , such that ψ(uη, t) = 2% and
ψ̃ON reliable

1−ε% (uη,ε, t) = 2%, λ0 = 1, c = 1.1, t = 10, δ = 1, ε = 5%.

N η ratio η/0.5%

1 8.59% 17.19

10 3.06% 6.12

100 1.31% 2.62

1000 0.76% 1.51

10000 0.58% 1.16

100000 0.53% 1.05

Table 5
Values of η such that uη,97.5% = u0.5%. c = 1.1, t = 10, δ = 1.
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Figure 9. Histogram of 100000 empirical
ruin probability ψN (u, t) for N = 100,
λ0 = 1, c = 1.1, t = 10, u = 20, δ = 1.
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Figure 10. Histogram of 100000 empirical
ruin probabilities ψN (u, t) for N = 1000,
λ0 = 1, c = 1.1, t = 10, u = 20, δ = 1.

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Figure 11. Values of distance −ln(DKS) as a function of log10(N), from 5000 values ψN (u, t).
λ0 = 1, c = 1.1, t = 10, u = 15, δ = 1.

For small ruin probabilities, we see in Figures 9 and 10 that the asymmetry of the empirical
distributions of ψN(u, t) would lead us to reject Normality for N = 100 and 1000, and
we can assume that the sample size needed to ensure the Gaussian hypothesis validation
would be larger for smaller ruin probabilities. That is mainly what we try to quantify
with further numerical analysis.

We have tried to quantify the empirical size N from which, in our simulations, random
variable ψN(u, t) could be considered as a Gaussian random variable. In a first step, we
have simulated 5000 values of ψN(u, t), for various values of N . For each sample, we have
computed the Kolmogorov-Smirnov distance DKS between the empirical distribution of
the finite-ruin probability and its Gaussian asymptotical distribution.
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Figure 12. Values of log10(ND) as a func-
tion of −log10(ψ(u, t)). Exponential case.
λ0 = 1, c = 1.1, t = 10, δ = 1.
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Figure 13. Values of log10(ND) as a func-
tion of −log10(ψ(u, t)). Pareto(1,1.2) case.
λ0 = 1, c = 1.1, t = 10, δ = 1.

In Figure 11, we give the value of−ln(DKS) as a function of N , for 5000 empirical ψN(u, t);
we see for example that −ln(DKS) reaches the particular value 4 for every computed N
greater than a level ND. From 5000 empirical ruin probabilities, validating Normality
(with a 95% level significance level) leads to values of −ln(DKS) approximately greater
than 4, and here to an empirical size ND ' 103.924 ' 8400 . Of course, depending on
simulations, this quantity may vary.
As a first approach, we have chosen to draw some values of −ln(DKS) for a set of dif-
ferent values of initial reserves u. Since we did not observe situations where the barrier
−ln(DKS) = 4 was crossed more than once, we could determine one empirical ND by a
dichotomic algorithm (with a total of around 14 computed points). We have then chosen
to define ND as the first empirical value for which −ln(DKS) was close enough to the
target value, which gives an idea of the convergence rate. More rigorous formalization of
this value ND would require the determination and the validation of a precise regression
model, but a such model would require more simulations. We are just here trying to get
rough indications on convergence speed.

In Figure 12 we have computed by this way the empirical size ND for which the Normality
is validated for different values of initial reserves u. Since the ruin probability varies with
u, we have given values of log10(ND) as a function of −log(ψ(u, t)). As an example, for
finite-time ruin probabilities of order 10−3, in this particular model (value 3 on horizontal
axis), one may suppose that Normality is not validated for samples of size less than
104.3 ' 20000, whereas 103.7 ' 5000 might be enough for ruin probabilities of order 10−2.
Note that data used for u = 1000 is the same as the one in Table 2, but in this last
application the distance DKS has been computed with unknown Gaussian parameters,
causing the small difference with the one indicated in Table 2. We finally insist on the
fact that values of ND are just rough estimates and that this Figure only gives one
empirical indication of the global need of larger samples to validate Normality for smaller
ruin probabilities.

We also investigate the extreme case where claim amounts are Pareto-distributed. Pareto
parameters are a = 1 and α = 1.2 (with mean 6 and undefined standard deviation), and
99%−percentile around 46.4. We always validate Normality in our simulations when N
is large enough. Nevertheless, we empirically see that, for a given ruin probability, this
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δ Vu time PC1 time PC2 PC2 + interpolation

(relative error on Vu)

1 0.03405692 0.031s 0.016s -

0.5 0.04251800 0.047s 0.016s -

0.25 0.04879227 0.11s 0.06s -

0.125 0.05271634 0.72s 0.4s -

0.1 0.05357748 1.5s 0.97s -

0.05 0.05538387 18.7s 12.1s -

0.025 0.05633120 4min29s 2min55s 9.3s (0.22%)

0.0125 0.05681639 70min 44min33s 1min10s (0.22%)

Table 6
Computation times to get Vu and the whole set of IFx

[
ϕ
(
u, nc

)]
, x ∈ δN . u = 10, c = 1.1,

t = 10.

validation requires larger values of N than in the exponential case.
From this numerical analysis, it appears that for small ruin probabilities, particularly
for heavy tailed claim amounts, large values of N are required to validate Normality. If
Normality was assumed without any data, the asymmetry of bootstrapped ruin probability
and the reliable ruin probability would probably be underestimated.

7.4 Computation times

The program which computes influence functions of ruin probabilities and bootstrapped
ruin probabilities has been written in C++, with a standard 64-bit double-precision arith-
metic. One central procedure has been optimized with only 13 assembly code instructions,
in order to avoid unnecessary access to principal memory (but without using further opti-
mization processes like loop unrolling, cache prefetching or SIMD instructions). Compu-
tations were carried out on an older single AMD Athlon processor (year 2001), 1330MHz,
with 512Mo PC2100 RAM (label PC1), and on a more recent single Intel Pentium 4
processor (year 2002), 2660MHz, with 1024Mo PC2700 RAM (label PC2).

We give here in Table 6 the time required to compute IFx

[
ϕ
(
u, n

c

)]
, for x varying from

0 to u+ n by step δ, for a varying discretization step δ (δ is the monetary unit, and thus
impacts u and n too). This time is also the one needed to compute the exact value of
Vu with Proposition 8 or 20 and with Formula (21). Here, since u and n are of the same
order, computation times are similar (but using both methods provides a useful validation
of numerical results).

Since δ impacts x, u and n, the complexity of the calculation of one IFx

[
ϕ
(
u, n

c

)]
is

roughly proportional to 1/δ3, so that the global complexity for all x ∈ δN, x < u + n, is
roughly proportional to 1/δ4. This may involve computational difficulties for small values
of δ.

Nevertheless, we show in the last column of Table 6 that a simple linear interpolation of
IFx

[
ϕ
(
u, n

c

)]
for any x ∈ [kx0, (k + 1)x0], k ∈ N, leads to reasonable errors and faster

computation times (we have chosen in this Table x0 = 20δ for u = 0.025 and x0 = 40δ
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for u = 0.0125).

8 Conclusion

We have provided algorithms to compute influence functions of finite-time ruin proba-
bilities. We have also proved the weak convergence of a sequence of empirical finite-time
ruin probabilities starting from zero initial reserve toward a Gaussian random variable,
and numerical investigation seems to confirm that the result holds for u > 0, which is
important for applications. We hope to be able to prove this in the near future. We defined
the concepts of reliable finite-time ruin probability and Estimation Risk Solvency Margin
(ERSM). Results on influence functions ensure us that the proposed estimators of these
quantities are robust (i.e. their influence functions are bounded). Numerical results show
that our method is implementable, even if some numerical problems may occur in the case
of very heavy tails or very small discretization step and would deserve more attention.
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Takács L. (1962b), The time dependence of a single-server queue with Poisson input and

general service times, Ann. Math. Statist. 33, 1340-1348.
Von Mises, R. (1947), On the asymptotic distribution of differentiable statistical functions,

The annals of mathematical statistics, Vol. 18-3, 309-348.

32



A Appendix

A.1 Sensitivity analysis

In the continuous case, one may get the following formulas for partial derivatives of ϕ(0, t).

Proposition 17 For u, c, t > 0 such that fW is continuously differentiable on [0, u+ ct],

∂

∂c
ϕ(0, t) =

∫ t

0

(
t− x
t

)
∂

∂c
fSt/c(x)dx

∂

∂λ
ϕ(0, t) =

∫ t

0

(
t− x
t

)
∂

∂λ
fSt/c(x)dx.

This may be extended to kth order partial derivatives for k ≥ 2.
In the case of discrete claim size distribution, set hj(τ) = P [Sτ = j] for τ ≥ 0 and j ∈ N,
and Πi = P [W = i] for i ∈ N, with π0 = 0. Panjer’s formula gives that

hj(t) =
j∑
i=1

λt
i

j
Πihj−i(t),

so that, for k ≥ 1,

∂k

∂λk
hj(τ) =

j∑
i=1

iΠi

j
t

(
λ
∂k

∂λk
hj−i(t) + k

∂k−1

∂λk−1
hj−i(t)

)
, (A.1)

where
∂k

∂λk
h0(t) = (−t)ke−λt.

This last relation permits the computation of the derivatives of hj(τ) with respect to λ
recursively. In the particular case where k = 1, one obtains

∂

∂λ
hj(t) =

1

λ
hj(t) +

j∑
i=1

iΠi

j
t

(
λ
∂

∂λ
hj−i(t)

)
. (A.2)

Proposition 18 For all t > 0 and for any Borelian A ⊂ R, the following identities hold:

∂

∂λ
P [St ∈ A] = tP [St +W ∈ A]− tP [St ∈ A]., k ≥ 1, (A.3)

∂k

∂λk
P [St ∈ A] = tk

k∑
i=0

Ci
k(−1)k−iP

[
St +W ∗i ∈ A

]
, k ≥ 0,

where W ∗i corresponds to a sum of i independent copies of W .

Proof: Check that for given t > 0 and n ∈ N,

∂

∂λ
P [Nt = n] = tP [Nt = n− 1]− tP [Nt = n], with P [Nt < 0] = 0.
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But P [St ∈ A] =
∑
n∈N P [Nt = n]P [W ∗n ∈ A], and the result follows. Extension to higher

derivative orders holds since

∂k

∂λk
P [Nt = n] = tk

k∑
i=0

Ci
k(−1)k−iP [Nt = n− i],

with P [Nt = −1] = 0. �

A.2 Influence functions

We give here alternative formulas from Picard and Lefèvre (1997) for the non-ruin prob-
ability:

ϕ
(
u,
n

c

)
=

u∑
i=0

hu−i (−i) · H̃i+n (i+ n) , (A.4)

or

ϕ(u,
n

c
) = Hu(n) +

u∑
i=0

hu−i(−i)
(
H̃i+n(i+ n)− H̃i(i+ n)

)
. (A.5)

As a direct consequence, we get the following alternative recursive schemes for the influ-
ence function of the finite-time non-ruin probabilities ϕ(u, t), u ∈ N.

Recall that IFH̃x, j(τ) = IFx

[
H̃j(τ)

]
. We have

IFH̃x, j(τ) =
j∑
i=0

IFx, i(τ)
(

1− i

τ

)
,

with IFH̃x, 0(0) = 0. In particular, IFH̃x, n(n) = IFx

[
ϕ
(
0, n

c

)]
, n ∈ N.

Proposition 19 (IF for ϕ(u, t) - first method)

IFx

[
ϕ
(
u,
n

c

)]
=

u+n∑
i=0

IFx, i(n)−
n∑
k=1

IFx, u+k(k)H̃n−k(n− k)

−
n∑
k=1

hu+k(k)IFH̃x, n−k(n− k).

Proof: Taking the derivative of (8) for the contaminated single amount distribution,
setting s = 0 and applying then (6) gives the required result. �

Proposition 20 (IF for ϕ(u, t) - second method)

IFx

[
ϕ
(
u,
n

c

)]
=

u∑
i=0

IFx, u−i(−i)
i+n∑
j=0

hj(i+ n)
(

1− j

i+ n

)

+
u∑
i=0

hu−i(−i)
i+n∑
j=0

IFx, j(i+ n)
(

1− j

i+ n

)
.
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Proof: As above, take the derivative of (A.4) for the contaminated single amount distri-
bution, set s = 0 and use (6). �

Proposition 21 (IF for ϕ(u, t) - third method)

IFx

[
ϕ
(
u,
n

c

)]
=

u∑
i=0

IFx, i(n) + IFx, u−i(−i)
i+n∑
k=i+1

hk(i+ n)

(
1− k

i+ n

)

+
u∑
i=0

hu−i(−i)
i+n∑
k=i+1

IFx, k(i+ n)

(
1− k

i+ n

)
.

Proof: Again, take the derivative of (A.5) for the contaminated single amount distribu-
tion, set s = 0 and use (6). �

Proposition 22 (IF for ϕ(u, t) - direct recursion)

IFx

[
ϕ
(
u,
n

c

)]
=−λn

c
P
[
Sn/c +W ≤ u+ n

]
+
λn

c
ϕ
(
u,
n

c

)
+

n∑
k=1

λk

c
P
[
Sk/c +W = u+ k

]
ϕ(0,

n− k
c

)

−
n∑
k=1

P
[
Sk/c = u+ k

]
IFx

[
ϕ(0,

n− k
c

)

]
.

Proof: Use the partial derivative of ϕ
(
u, n

c

)
with respect to λ, as given in (3), and simplify

derivatives of the distribution of aggregate claim amounts using (A.3). Finally, use the

expression of ϕ
(
u, n

c

)
as given in (8) to simplify some terms, and the result follows. �

In order to find the initial reserve u ∈ R+ respecting some constraints for ruin probabilities
and influence functions, the following adaptation of previous formulas may be useful. Write
εu = u − [u], εn = n − [n], ν = [εu + εn], where the brackets denote the integer part. We
have for u > 0, n > 0,

IFx [ϕ (u, n/c)] =
[u+n]∑
i=0

IFx, i(n)−
[n]+ν∑
k=1

IFx, [u]+k(k − εu)H̃[n]−k+ν(n− k + εu)

−
[n]+ν∑
k=1

h[u]+k(k − εu)IFH̃x, [n]−k+ν(n− k + εu), (A.6)

and the following adaptation of proposition 20,

IFx [ϕ (u, n/c)] =
[u]∑
i=0

IFx, [u]−i(−i− εu)H̃[n]+i+ν(n+ i+ εu)

+
[u]∑
i=0

h[u]−i(−i− εu)IFH̃x, [n]+i+ν(n+ i+ εu).
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