
HAL Id: hal-00168677
https://hal.science/hal-00168677v2

Preprint submitted on 30 Aug 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Balls of Strings: A Horizontal Analysis
Colin de La Higuera, Jean-Christophe Janodet, Frédéric Tantini

To cite this version:
Colin de La Higuera, Jean-Christophe Janodet, Frédéric Tantini. Learning Balls of Strings: A Hori-
zontal Analysis. 2007. �hal-00168677v2�

https://hal.science/hal-00168677v2
https://hal.archives-ouvertes.fr

Learning Balls of Strings: A Horizontal Analysis⋆

Colin de la Higuera and Jean-Christophe Janodet and Frédéric Tantini

Laboratoire Hubert Curien, Université Jean Monnet
18 rue du Professeur Benôıt Lauras, 42000 Saint-Étienne, France

{cdlh,janodet,frederic.tantini}@univ-st-etienne.fr

Abstract. There are a number of established paradigms to study the
learnability of classes of functions or languages: Query learning, Identifi-
cation in the limit, Probably Approximately Correct learning. Compar-
ison between these paradigms is hard. Moreover, when to the question
of converging one adds computational constraints, the picture becomes
even less clear. We concentrate here on just one class of languages, that
of topological balls of strings (for the edit distance), and visit the dif-
ferent learning paradigms in this context. Between the results, we show
that surprisingly it is technically easier to learn from text than from an
informant.
Keywords: Language learning, Query learning, Polynomial identifica-
tion in the limit, Pac-learning.

1 Introduction

When aiming to prove that a class of languages is learnable there have been
typically three different settings:

– Identification in the limit [1, 2] sees the learning process as one where infor-
mation keeps on arriving about a target language. The Learner keeps making
new hypothesis. Convergence takes place if there is always a moment where
the process is stationary and then the hypothesis is correct.

– Pac-learning consists in learning in a setting where a distribution over the
strings can be used to sample examples both to build the hypothesis and to
test this hypothesis [3]. Two parameters can be fixed. The first (ǫ) measures
the error that is made (which corresponds to the probability that a string
is classified wrongly), and the second (δ) measures the probability that the
sampling process has gone wrong.

– Query learning (sometimes called active learning) is the process of being able
to interrogate an Oracle about the language to be learned, in a formalised
way [4].

The three settings are usually difficult to compare; Using computability the-
ory, one reference is [5]. The comparison becomes even harder when complexity

⋆ This work was supported in part by the IST Programme of the European Commu-
nity, under the Pascal Network of Excellence, IST-2002-506778. This publication
only reflects the authors’ views.

issues are discussed. Some exceptions are the work by Angluin comparing Pac-
learning and using equivalence queries [6], the work by Pitt relating equivalence
queries and implicit prediction errors [7], comparisons between learning with
characteristic samples, simple Pac [8] and Mat in [9]. Other analysis of poly-
nomial aspects of learning grammars, automata and languages can be found in
[7, 10, 11]. An alternative approach to efficiency issues in inductive inference can
be found (for pattern languages) in [12].

If the customary approach is to introduce a learning paradigm and survey a
variety of classes of languages for this paradigm, we choose here to visit just one
class, that of balls of strings for the edit or levenshtein distance [13]. These were
shown to be learnable from noise [14] and from correction queries [15].

The results we obtain here are generally negative: Polynomial identification
in the limit from an informant is impossible, for most definitions, and it is the
same when learning from membership and equivalence queries. Pac-learning is
also impossible in polynomial time, at least if we accept that RP 6= NP.

On the other hand, the errors are usually due to the counterexamples, and
if we learn from text (instead of from an informant or when we count only
mind changes) we get several positive results: Only a polynomial number of
mind changes or of prediction errors are made. This constitutes a small surprise
as one would think the more information one gets for learning, the richer the
classes one can learn would be.

In Section 2 we introduce the definitions corresponding to balls of strings and
complexity classes. In Sections 3, 4 and 5, we focus on so-called good balls only
and present the results concerning Pac-learning, query learning and polynomial
identification in the limit, respectively. We list our learning results on general
balls in Section 6 before concluding in Section 7.

2 Definitions

2.1 Languages and Grammars

An alphabet Σ is a finite nonempty set of symbols called letters. We suppose in
the sequel that |Σ| ≥ 2. A string w = a1 . . . an is any finite sequence of letters.
We write λ for the empty string and |w| for the length of w. Let Σ⋆ denote
the set of all strings over Σ. A language is any subset L ⊆ Σ⋆. Let IN be the
set of non negative integers. For all k ∈ IN, let Σ≤k = {w ∈ Σ⋆ : |w| ≤ k}
and Σ>k = {w ∈ Σ⋆ : |w| > k}. The symmetrical difference A ⊕ B between 2
languages A and B is the set of all strings that belong to exactly one of them.

Grammatical inference aims at learning the languages of a fixed class L

(semantics) represented by the grammars of a given class G (syntax). L and G

are related by a semantical naming function L : G → L that is total (∀G ∈
G, L(G) ∈ L) and surjective (∀L ∈ L,∃G ∈ G s.t. L(G) = L). For any string
w ∈ Σ⋆ and language L ∈ L, we shall write L |= w ifdef w ∈ L. Concerning the
grammars, they may be understood as any piece of information allowing a given
parser to recognize strings. For any string w ∈ Σ⋆ and representation G ∈ G,

we shall write G ⊢ w if the parser answers Yes given G and w. Basically, we
require that the semantical function matches the parser: G ⊢ w ⇐⇒ L(G) |= w.

Finally, we will mainly consider learning paradigms subject to efficiency con-
straints. In order to define them, we will use ‖G‖ to denote the size of the
grammar G (e.g., the number of states in the case of Dfa). Moreover, given a
set S of strings, we will use ‖S‖ to denote the sum of the lengths of the strings
in S. Finally, we will use the single bar notation | · | for the cardinality of sets.

2.2 Balls of Strings

The edit distance d(w,w′) is the minimum number of primitive edit operations
needed to transform w into w′ [13]. The primitive operation is either (1) a
deletion: w = uav and w′ = uv , or (2) an insertion: w = uv and w′ = uav,
or (3) a substitution: w = uav and w′ = ubv, where u, v ∈ Σ⋆, a, b ∈ Σ and
a 6= b. E.g., d(abaa, aab) = 2 since abaa −→ aaa −→ aab and the rewriting of abaa
into aab cannot be achieved with less than 2 steps. Notice that d(w,w′) can be
computed in O (|w| · |w′|) time by dynamic programming [16].

It is well-known that the edit distance is a metric [17], so it conveys to Σ⋆

the structure of a metric space. Therefore, it is natural to introduce the balls of
strings. The ball of centre o ∈ Σ⋆ and radius r ∈ IN, denoted Br(o), is the set
of all strings whose distance is at most r from o: Br(o) = {w ∈ Σ⋆ : d(o, w) ≤
r}. E.g., if Σ = {a, b}, then B1(ba) = {a, b, aa, ba, bb, aba, baa, bab, bba} and
Br(λ) = Σ≤r for all r ∈ IN. We denote by BALL(Σ) the family of all the balls:
BALL(Σ) = {Br(o) : o ∈ Σ⋆, r ∈ N}.

We represent a ball Br(o) by the pair (o, r) itself. Indeed, its size is |o|+log r.
Moreover, deciding whether w ∈ Br(o) or not is immediate: One only has to
(1) compute d(o, w) and (2) check whether this distance is at most r, which
is achievable in time O (|o| · |w| + log r). Finally, as |Σ| ≥ 2, we can show that
(o, r) is a unique thus canonical representation of Br(o) [15].

A good ball is a ball whose radius is at most the length of the centre. The
advantage of using good balls is that there is a natural relation between the size
of the centre and the size of the border strings. We denote by GB(Σ) the class
of all the good balls.

2.3 Complexity Classes

See [18] for a comprehensive survey. Here, we only wish to recall that RP (‘Ran-
domised Polynomial Time’) is the complexity class of decision problems for
which a probabilistic Turing machine exists and (1) it always runs in time poly-
nomial in the input size, (2) if the correct answer is No, it always returns No
and (3) if the correct answer is Yes, then it returns Yes with probability > 1

2
(otherwise, it returns No).

The algorithm is randomised since it is allowed to flip a random coin while
it is running. It should be noted that because the error (in the negative case) is
less that 0.5, by repeating the run of the algorithm as many times as necessary,

the actual error can be brought to be as small as one wants. Notice that the
algorithm only makes one sided errors. The strong belief and assumption is that
RP 6= NP.

3 Main Pac Results

The Pac (Probably Approximatively Correct) paradigm has been widely used
in machine learning to provide a theoretical setting for convergence issues. The
setting was introduced by [3], and the analysis for the case of learning from
strings representations of unbounded size have always been tricky [19, 10, 20].
Typical techniques proving non Pac-learnability often depend on complexity
hypothesis [21].

3.1 Balls of Strings are not Pac-Learnable

Definition 1 (ǫ-good hypothesis). Let G be the target grammar and H be a
hypothesis grammar. Let D be a distribution over Σ⋆. We say, for ǫ > 0, that H
is an ǫ-good hypothesis with respect to G ifdef PrD(x ∈ L(G) ⊕ L(H)) < ǫ.

In the usual definition of Pac-learning we are going to sample examples
to learn from. In the case of strings, there always is the risk (albeit small) to
sample a string too long to account for in polynomial time. In order to avoid this
problem, we will sample from a distribution restricted to strings shorter than a
specific value given by the following lemma:

Lemma 1. Let D be a distribution over Σ⋆. Then given any ǫ > 0 and any
δ > 0, with probability at least 1-δ we have: If we draw a sample X of size
at least 1

ǫ
ln 1

δ
strings following D and write µX = max{|y| : y ∈ X}, then

PrD(|x| > µX) < ǫ.

Proof. Denote by µǫ the smallest integer n such that Pr(Σ>n) < ǫ. A sufficient
condition for PrD(|x| > µX) < ǫ is that we take a sample large enough to be
nearly sure (i.e. with probability at least 1 − δ) to have one string longer than
µǫ. On the contrary, the probability of having all (n) strings in X of length at
most µǫ is bounded by (1− ǫ)n. In order for this quantity to be less than δ, it is
sufficient to take n ≥ 1

ǫ
ln 1

δ
. ⊓⊔

A learning algorithm is now asked to learn a grammar given a confidence
parameter δ and an error parameter ǫ. The algorithm must also be given an
upper bound on the size of the target grammar and on the length of the examples
it is going to get (perhaps using an extra sample built thanks to Lemma 1 above).
The algorithm can query an Oracle: It may ask for an example randomly drawn
according to the distribution D. The query will be denoted Ex(). When the
Oracle is only queried for a positive example we will write Pos-Ex(). Finally, if
we pass a value m bounding the length of the admissible strings, we will write
Ex(m). Combining ideas we can use Pos-Ex(m). The Oracle will return a string

drawn from D(L(G)) (for Pos-Ex()), D(Σ≤m) (for Ex(m)) or D(L(G)∩Σ≤m)
(for Pos-Ex(m)), where we denote by D(L) the restriction of distribution D to

the strings in L: PrD(L)(x) = PrD(x)
PrD(L) if x ∈ L, 0 if not. PrD(L)(x) is undefined

if L is the empty set.

Definition 2 (Polynomial Pac-learnable). Let G be a class of grammars. G

is Pac-learnable ifdef there exists an algorithm Alg with the following property:
For every grammar G in G of size at most n, for every distribution D over
Σ⋆, for every ǫ > 0 and δ > 0, if Alg is given access to Ex(m), m and n, ǫ
and δ then with probability at least 1-δ, Alg outputs an ǫ-good hypothesis with
respect to G. If Alg runs in time polynomial in 1

ǫ
, 1

δ
, m and n, we say that G is

polynomiallly Pac-learnable.

Notice that in order to deal with the unbounded length of the examples we
can use an ǫ′ = ǫ

2 and a fraction of δ to compute m and accept to make an error
of at most ǫ′ over all the strings of length more than m, and then use Ex(m)
instead of Ex().

We will denote by PolyInformant-Pac the collection of all classes
polynomially Pac-learnable.

We prove that provided RP 6= NP, good balls are not efficiently Pac-
learnable. The proof follows the classical lines for such results: We first prove
that the associated consistency problem is NP-hard, through reductions from
a well known NP-complete problem (Longest Common Subsequence). Then it
follows that if a polynomial Pac-learning algorithm for balls existed, this algo-
rithm would provide us with a proof that this NP-complete problem would also
be in RP.

Theorem 1. GB(Σ) 6∈ PolyInformant-Pac .

Lemma 2. The following problems are NP-complete:

Name: Longest Common Subsequence (Lcs)
Instance: n strings x1 . . . xn, an integer k
Question: Does there exist a string w which is a subsequence of each
xi and is of length k?

Name: Longest Common Subsequence of Strings of a Given
Length(Lcssgl)
Instance: n strings x1 . . . xn all of length 2k
Question: Does there exist a string w which is a subsequence of each
xi and is of length k?

Name: Consistent ball (Cb)
Instance: Two sets X+ and X− of strings over some alphabet Σ
Question: Does there exist a good ball containing X+ and which does
not intersect X−?

Proof (of lemmata). The first problem is solved in [22] (see also [18]). The second
one can be found in [23] (Problem Lcs0 (page 42)). For the last one, we use a
reduction of problem Lcssgl: We take the strings of length 2k, and put these
with string λ into set X+. Set X− is constructed by taking each string of length
2k in X+, inserting every possible symbol once only (hence constructing at most
n(2k + 1)|Σ| strings of size 2k + 1). It follows that a ball that contains X+ but
no element of X− has necessarily a centre of length k and a radius of k (since
we focus on good balls). The centre is then a subsequence of all the strings of
length 2k that were given. Conversely, if a ball is constructed using as centre a
subsequence of length k, this ball is of radius k, contains also λ, and because
of the radius, contains no element of X−. Finally the problem is in NP, since
given a centre u it is easy to check if maxx∈X+

d(u, x) < minx∈X−
d(u, x). ⊓⊔

Proof (of Theo. 1). The proof relies on the widely accepted assumption that
NP 6= RP, and follows the model introduced by Pitt and Valiant [21]. Sup-
pose that GB(Σ) is polynomially Pac-learnable with Alg and take an instance
〈X+,X−〉 of Problem Cb. We write h = |X+| + |X−| and define over Σ⋆ the
distribution Pr(x) = 1

h
if x ∈ X+ ∪ X−, 0 if not. Let ǫ = 1

h+1 , δ = 1
2 ,

m = n = max{|w| : w ∈ X+} and run Alg(ǫ, δ,m, n). Let Br(o) be the re-
turned ball and test whether (X+ ⊆ Br(o) and X− ∩Br(o) = ∅) or not. If there
is no consistent ball, then Br(o) is necessarily inconsistent with the data, so the
test above is false. If there is a consistent ball, then Br(o) is ǫ-good, with ǫ < 1

h
.

So, with probability at least 1−δ > 1
2 , there is no error at all and the test will be

true. Finally, this procedure runs in polynomial time in 1
ǫ
, 1

δ
, m and n. Hence,

if good balls were Pac-learnable, then there would be a randomized algorithm
for the Cb problem, proved NP-complete by Lemma 2. ⊓⊔

3.2 About Pac-learning Balls from Positive Examples Only

In certain cases it may even be possible to Pac-learn from positive examples only.
In this setting, during the learning phase, the examples are sampled following
Pos-Ex() whereas during the testing phase the sampling is done following Ex(),
but in both cases the distribution is identical. Again, we can sample using Pos-
Ex(m), where m is obtained by using Lemma 1 and little additional cost. Let
us denote the collection of such classes polynomially Pac-learnable from Text
by PolyText-Pac. Nevertheless, we get:

Theorem 2. GB(Σ) 6∈PolyText-Pac .

Proof. Consider sample of strings X+ = {a, b}. Given any ball B1 containing
X+, there is another ball B2 also containing a and b such that B1 − B2 6= ∅;
Let w1 be a string in B1 − B2. Then we can construct a distribution D1 where
PrD1

(a) = PrD1
(b) = PrD1

(w1) = 1
3 . But if from X+ the Learner constructs

B1 instead of B2, the error is of 1
3 and cannot diminish as would be needed. ⊓⊔

4 Queries

Learning from queries involves the Learner (he) being able to interrogate the
Oracle (she) using queries from a given set. The goal of the Learner is to iden-
tify the representation of an unknown language. The Oracle knows the target
language and answers properly to the queries (i.e., she does not lie). We call
Quer the class of queries. For example, if the Learner is only allowed to make
membership queries, we will have Quer = {Mq}.

Definition 3. A class G is polynomially identifiable in the limit with queries
from Quer ifdef there exists an algorithm Alg able to identify every G ∈ G such
that, at any call of a query from Quer, the total number of queries and of time
used up to that point by Alg is polynomial both in ‖G‖ and in the size of the
information presented up to that point by the Oracle.

We will denote by PolyQueries-Quer the collection of all classes poly-
nomially identifiable in the limit with queries from Quer.

For instance, the class of all Dfa is in PolyQueries-{Mq,Eq} [24]. In the
case of good balls, we get the following result:

Theorem 3. GB(Σ) 6∈PolyQuer-{Mq,Eq}.

Proof. Let n ∈ IN and B≤n = {Br(o) : o ∈ Σ⋆, r ≤ |o| ≤ n}. Following [6],
we describe an Adversary who maintains a set S of all possible balls. At the
beginning, S = B≤n. Her answer to the equivalence query L = Br(o) is a coun-
terexample o. Her answer to the membership query o is No. At each step, the
Adversary eliminates many balls of S but only one of centre o and radius 0. As
there are Ω(|Σ|n) such balls in B≤n, identifying them requires Ω(|Σ|n) queries.

⊓⊔

Notice however that if the Learner is given one string from a good ball, then
he can learn using a polynomial number of Mq only. Also, we have shown in [15]
that special queries, called correction queries (Cq), allowed to identify GB(Σ).
Given a language L, a correction of a string w is either Yes if w ∈ L, or a string
w′ ∈ L at minimum edit distance from w, if w /∈ L.

Theorem ([15]). GB(Σ) ∈PolyQuer-{Cq}.

5 Polynomial Identification of Balls

In Gold’s standard identification in the limit paradigm, a Learner receives an
infinite sequence of information (presentation) that should help him to find the
representation G ∈ G of an unkown target language L. The set of admissible
presentations is denoted by Pres, each presentation being a function N → X
where X is any set. Given f ∈ Pres, we will denote by fm the m + 1 first
elements of f, and by f(n) its nth element. Below, we will concentrate on two
sorts of presentations:

– Pres=Text: All the strings in L are presented: f(N) = L(G)
– Pres=Informant: The presentation is of labelled pairs (w, l) where (w ∈

L =⇒ l = +) and (w 6∈ L =⇒ l = −): f(N) = L(G) × {+} ∪ L(G) × {−}.

Definition 4. We say that G is identifiable in the limit from Pres ifdef there
exists a learning algorithm Alg such that for all G ∈ G and for any presentation
f of L(G) (belonging to Pres), there exists a rank n such that for all m ≥ n,
L(Alg(fm)) = L(G).

This definition yields a lot of learnability results. However, the absence of
efficiency constraints may lead to unusable algorithms. Therefore several authors
have tried to define polynomial identification in the limit, by introducing different
efficiency criteria and combining them.

5.1 Polynomial Identification Criteria

Firstly, it is reasonable to think that polynomiality must concern the amount of
time an algorithm has to learn:

Definition 5 (Polynomial Update Time). An algorithm Alg is said to have
polynomial update time ifdef there is a polynomial p() such that, for every pre-
sentation f and every integer n, constructing Alg(fn) requires O(p(‖fn‖)) time.

However, it is known that polynomial update time is not sufficient [7]. Indeed, a
Learner could receive an exponential number of examples without doing anything
but wait, and then use the huge amount of time he saved in order to solve any
NP-hard problem. . .

Secondly, polynomiality should also concern the minimum amount of data
that any algorithm should receive in order to learn:

Definition 6 (Polynomial Characteristic Sample). A grammar class G ad-
mits polynomial characteristic samples ifdef there exist an algorithm Alg and a
polynomial p() such that ∀G ∈ G ∃Cs ⊆ X ∀f ∈ Pres ∀n ∈ N : ‖Cs‖ ≤
p(‖G‖) ∧ Cs ⊆ fn =⇒ L(Alg(fn)) = L(G). Such a set Cs is called a charac-
teristic sample of G for Alg. If such an algorithm Alg exists, we say that Alg
identifies G in the limit in Poly-CS time for Pres.

We will denote by PolyPresentation-Cs the collection of all classes
identifiable in the limit in Poly-CS time from Presentation (either
Text or Informant).

Notice that if a grammar class only admits characteristic samples whose size
are exponential, then no algorithm will be able to converge before receiving
an unreasonable amount of data. So the existence of polynomial characteristic
sample is necessary but not sufficient again. Notice that several authors (e.g.,
[11]) have used stronger notions of polynomial characteristic samples to define
polynomial identification in the limit.

Thirdly, polynomiality can concern the behaviour of the algorithm itself
through the hypotheses he outputs all along his learning, e.g., the number of
implicit prediction errors [7]:

Definition 7 (Implicit Prediction Errors). Given a learning algorithm Alg

and a presentation f, we say that Alg makes an implicit prediction error at time
n ifdefAlg(fn−1) 6⊢ f(n). We say that Alg is consistent ifdef it changes its mind
each time a prediction error is detected with the new presented element.

Definition 8 (Polynomial Implicit Prediction Errors Criterion). An al-
gorithm Alg identifies a class G in the limit in Ipe polynomial time ifdef (1) Alg

identifies G in the limit, (2) Alg has polynomial update time and (3) Alg makes
a polynomial number of implicit prediction errors: Let #Ipe(f) = |{k ∈ N :
Alg(fk) 6⊢ f(k + 1)}|; There exists a polynomial p() such that, for each grammar
G and each presentation f of L(G), #Ipe(f) ≤ p(‖G‖).

Note that the first condition is not implied by the two others.

We will denote by PolyPresentation-Ipe the collection of all classes
polynomially identifiable in the limit in Ipe polynomial time from
Presentation (either Text or Informant).

Fourthly, one can bound the number of mind changes instead of Ipe [25].

Definition 9 (Mind Changes). Given a learning algorithm Alg and a presen-
tation f, we say that Alg changes its mind at time n ifdef Alg(fn) 6= Alg(fn−1).
We say that Alg is conservative ifdef it never changes its mind when the current
hypothesis is consistent with the new presented element.

Definition 10 (Polynomial Mind Changes Criterion). An algorithm Alg

identifies a class G in the limit in Mc polynomial time ifdef (1) Alg identifies G

in the limit, (2) Alg has polynomial update time and (3)Alg makes a polynomial
number of mind changes: Let #Mc(f) = |{k ∈ N : Alg(fk) 6= Alg(fk+1)}|; There
exists a polynomial p() such that, for each grammar G and each presentation f

of L(G), #Mc(f) ≤ p(‖G‖).

We will denote by PolyPresentation-Mc the collection of all classes
polynomially identifiable in the limit in Mc polynomial time from
Presentation (either Text or Informant).

Finally, if an algorithm Alg is consistent then #Ipe(f) ≤ #Mc(f) for every
presentation f. Likewise, if Alg is conservative then #Mc(f) ≤ #Ipe(f). So we
deduce the following theorem:

Theorem 4. If Alg identifies the class G in the limit in Mc polynomial time
and is consistent, then Alg identifies G in the limit in Ipe polynomial time.
Conversely, if Alg identifies G in the limit in Ipe polynomial time and is con-
servative, then Alg identifies G in the limit in Mc polynomial time.

5.2 Identification Results for Texts

In this section, we show the following results:

Theorem 5. 1. GB(Σ) ∈ PolyText-Ipe;
2. GB(Σ) ∈ PolyText-Mc;
3. GB(Σ) ∈ PolyText-Cs.

We say that u is a subsequence of v, denoted u ¹ v, ifdef u = a1 . . . an

and there exist u0, . . . , un ∈ Σ⋆ such that v = u0a1u1 . . . anun. Subsequences
and edit distance are strongly related since, d(w,w′) ≥

∣

∣|w| − |w′|
∣

∣. Moreover,

d(w,w′) =
∣

∣|w| − |w′|
∣

∣ iff (w ¹ w′ or w′ ¹ w). We denote by lcs(u, v) the set of
longest common subsequences of u and v.

In order to prove Theo. 5, we will need to build the minimum consistent
ball containing a set S = {x1, . . . xn} of strings (learning sample). This will be
efficiently achievable if S admits a so-called certificate. We denote by Smax =
{w ∈ S : ∀u ∈ S, |w| ≥ |u|} the set of strings in S of maximum length and by
Smin = {w ∈ S : ∀u ∈ S, |w| ≤ |u|}, the set of strings in S of minimum length.

Definition 11 (Certificate). A certificate for S is a tuple (u, v, w, o, r) such
that (1) u, v ∈ Smax, (2) w ∈ Smin, (3) |u|−|w| = 2r(= |v|−|w|), (4) lcs(u, v) =
{o}, (5) |o| = |u| − r(= |v| − r) and (6) S ⊆ Br(o). There may exist 0, 1 or
several certificates for S; We will say that S admits a certificate ifdef there is at
least one.

Lemma 3. Suppose that S admits the certificate (u, v, w, o, r). If S ⊆ Br′(o′)
then either r′ > r, or (r′ = r and o′ = o). In other words, Br(o) is the
smallest ball containing S (w.r.t. the radius). Moreover, if (u, v, w, o, r) and
(u′, v′, w′, o′, r′) are 2 certificates for S, then (o = o′ and r = r′).

Proof. We have d(u,w) ≥ |u| − |w| = 2r. Moreover, as {u,w} ⊂ S ⊆ Br′(o′),
we deduce that d(u,w) ≤ 2r′ (since 2r′ is the diameter of Br′(o′)). So r ≤ r′.
If r < r′, the result is immediate. Suppose that r′ = r. Then d(u,w) = 2r ≤
d(u, o′) + d(o′, w). As {u,w} ⊂ S ⊆ Br′(o′), we get d(u, o′) ≤ r and d(o′, w) ≤ r,
thus d(u, o′) = d(o′, w) = r. As |u|−|o′| ≤ d(u, o′) = r, we get |o′| ≥ |u|−r = |o|.
Conversely, |o′| − |w| ≤ d(o′, w) = r, so |o′| ≤ |w| + r = |u| − 2r + r = |o|. So
|o′| = |o|. If o′ 6= o, as lcs(u, v) = {o} and |o| = |o′|, we deduce that o′ 6∈ lcs(u, v),
so either o′ 6¹ u or o′ 6¹ v. Assume o′ 6¹ u w.l.o.g.. Then, d(o′, u) > |u| − |o′| = r,
which is impossible since u ∈ Br′(o′). Hence, o′ = o. Finally, if (u, v, w, o, r) and
(u′, v′, w′, o′, r′) are 2 certificates for S, then S ⊆ Br(o) and S ⊆ Br′(o′), so
(o = o′ and r = r′). ⊓⊔

Lemma 4. There is a polynomial algorithm (in ‖S‖) that (1) checks whether S
admits a certificate, and if so, (2) exhibit one of them.

Proof. If, for any u ∈ Smax and w ∈ Smin, |u| − |w| is odd, then there is
no certificate, else, let r = (|u| − |w|)/2. The next step is to find 2 strings
u, v ∈ Smax for which ∃o ∈ Σ⋆ such that (4) lcs(u, v) = {o}, (5) |o| = |u| − r

and (6) S ⊆ Br(o). Checking if (5) and (6) hold is polynomial as soon as one
gets (4) holds. Nevertheless, the number of distinct strings in lcs(u, v) can be as
large as approximately 1.442n [26] (where n = |u| = |v|). So it is inconceivable
to enumerate lcs(u, v) with a brute-force algorithm. On the other hand, several
papers overcome this problem by producing compact representations of lcs(u, v).
In [27], the so-called Lcs-graph can be computed in O(n2) time and it is easy
to check if it contains exactly 1 string. Hence, checking if a certificate exists for
S and computing it can be acheived in at most O(‖S‖4) time. ⊓⊔

Algorithm 1: Pseudo Algorithm for the Identification of Good Balls from Text.

Data: A text f = {x1, x2, . . .}
read x1;
output (x1, 0) ;
c ← x1;
while true do

read xi;
if there exists a certificate (u, v, w, o, r) for fi then

output (o, r) (* valid ball *)
else

if c 6∈ Smax then c ← one string of Smax;
output (c, |c|) (* junk ball *)

end

end

Lemma 5. Algo. 1 identifies GB(Σ) in the limit.

Proof. Assume that Br(o) is the target ball. It is easy to see that there exists
a lot of certificates (u, v, w, o, r) for Br(o). E.g., u = aro, v = bro and w is any
string of Br(o) of length |o| − r (where a, b ∈ Σ, a 6= b). As soon as such u, v, w
appears in fi, then for all j ≥ i (u, v, w, o, r) will be a certificate for fj . Note that
other certificates may exist, but due to Lemma 3, Algo. 1 will return the same
representation (o, r) forever. ⊓⊔

Lemma 6. Algo. 1 makes a polynomial number of Mc.

Proof. Assume that Br(o) is the target ball and f is a presentation. Let us run
Algo. 1 on f and observe the output trace T = (x1, s1)(x2, s2)(x3, s3) . . . Each
(xi, si) is either the representation of a valid ball (o, r) coming from a certificate,
or else, of a junk ball (c, |c|).

Let (oi, ri) be an output generated by a certificate and j the smallest rank
such that j > i and (oj , rj) is also valid. If f(i+1) ∈ Bri

(oi) then (ui, vi, wi, oi, ri)
is still a certificate for fi+1 (by Def. 11), so by Lemma 3, j = i+1 and (oj , rj) =
(oi, ri). Else, f(i+1) 6∈ Bri

(oi). Then, as fi ⊆ Brj
(oj), by Lemma 3, either ri < rj

or (oj = oi and rj = ri). The latter is impossible, so ri < rj . Therefore, each

time Alg changes its mind in favor of a new valid ball, its radius is increased by
at least 1 w.r.t. the previous valid balls. So the number of different valid balls
it will output will be at most r (it is bounded by the radius of the target ball).
Moreover, the number of Mc of Alg in favor of a valid ball is ≤ r.

On the other hand, let (ci, |ci|) and (cj , |cj |) be 2 junk balls. We have: (1)
if i < j then |ci| ≤ |cj | (since ci (resp. cj) is a string of maximum length in fi

(resp. fj)), and (2) if |ci| = |cj | then ci = cj . So the number of different junk
balls all along T is bounded by 2r (since ∀x ∈ Br(o), |o| − r ≤ |x| ≤ |o| + r).
Moreover, the number of Mc in favor of a junk ball is ≤ 3r, that is, r Mc to
change from a valid ball to a junk ball and 2r Mc to change from a junk ball to
a junk ball. Hence the total amount of Mc is ≤ 4r. ⊓⊔

Proof (of Theo. 5). (2) Algo. 1 identifies in the limit in Mc polynomial time from
text as a consequence of Lemmata 4, 5 and 6. (1) Algo. 1 is clearly consistent.
Indeed, either one gets (o, r) that comes from some certificate, and then fi ⊆
Br(o); Or one gets (c, |c|) with c ∈ Smax, and then fi ⊆ Σ≤|c| ⊆ B|c|(c). As
GB(Σ) ∈ PolyText-Mc, we get GB(Σ) ∈ PolyText-Ipe by Theo. 4. (3) Any
certificate of the target ball is the base of a characteristic sample that makes
Algo. 1 converge towards the target, so GB(Σ) ∈ PolyText-Cs. ⊓⊔

5.3 Identification Results for Informants

Theorem 6. 1. GB(Σ) 6∈ PolyInformant-Ipe;
2. GB(Σ) ∈ PolyInformant-Mc;
3. GB(Σ) ∈ PolyInformant-Cs.

Proof. (1) Following [7], we suppose that GB(Σ) ∈ PolyInformant-Ipe. Then,
GB(Σ) ∈ PolyQueries-{Eq}, that contradicts Theo. 3. Indeed, let Alg be an
algorithm that would yield GB(Σ) ∈ PolyInformant-Ipe and consider an Oracle
that is able to answer to Eq. Assume that the Learner’s current hypothesis is
the ball B. He submits it to the Oracle. Either he gets Yes and the inference
task ends. Or he gets a counterexample x and uses Alg on x to produce a new
hypothesis B′. As the counterexamples provided by the Oracle are prediction
errors w.r.t. the hypotheses provided by Alg, we deduce that if Alg makes a
polynomial number of Ipe, then the Learner identifies GB(Σ) with a polynomial
number of Eq. (2) As hypotheses do not have to be consistent with the data, we
can use Algo. 1 to identify from an informant by ignoring the negative examples.
(3) We use the same characteristic samples as in the proof of Theo. 5 (3). ⊓⊔

6 Results for BALL(Σ)

By simple corollaries of the above theorems, we have the following negatives
results:

Theorem 7. 1. BALL(Σ) 6∈ PolyPresentation-Pac;
2. BALL(Σ) 6∈ PolyQueries-{Mq,Eq};

3. BALL(Σ) 6∈ PolyQueries-{Cq};
4. BALL(Σ) 6∈ PolyInformant-Ipe;
5. BALL(Σ) 6∈ PolyPresentation-Cs.

Proof. (1), (2), (4) come from our results on GB(Σ). (3) One cannot learn Bn(λ)
without making a query outside the ball, that would involve a string of exponen-
tial length. (5) Characteristic samples for Bn(λ) and Bn+1(λ) cannot be different
over strings of polynomial (in log n) length. ⊓⊔

Theorem 8. 1. BALL(Σ) 6∈ PolyText-Ipe;
2. BALL(Σ) 6∈ PolyText-Mc.

Proof. We give the proof here for the case where the learning algorithm is deter-
ministic. If the algorithm is allowed to be randomized, a slightly more tedious
proof can be derived from this one. Suppose we have a Learner Alg and a polyno-
mial p() such that ∀G ∈ G,∀f ∈ Pres,#Mc(f) ≤ p(‖G‖). Let n be a sufficiently
large integer, and consider the subclass of targets Bk(λ) with k ≤ n. For each
target, we construct a presentation fk by running Alg in an interactive learning
session. At each step i, Alg produces hypothesis Hi, and we have to compute a
new string fk(i + 1). For this purpose, we use Algo. 2.

Algorithm 2: Compute fk(i)

Data: i, fk
i−1, H0 . . . Hi−1

Result: fk(i)
if i = 0 then return λ

else

if Hi−1 = Bk(λ) then

if Bk(λ) − fk
i−1 6= ∅ then return min(Bk(λ) − fk

i−1)
else return λ

else

if Hi−1 = Bj(λ) where j = max{|u| : u ∈ fk
i−1} then return aj+1

else return λ
end

end

Each presentation fk is a correct text presentation of its target Bk(λ), i.e.,
fk(N) = Bk(λ). Let us denote by m(k) = min{i ∈ N : fk(i) = ak}. For each k,
fk and fk+1 coincide on the same m(k) initial values. Then fn can be rewritten
as: λ, . . . , λ, a, . . . , a, . . . , an,. . . with: ∀j : 0 < j ≤ n,∀i ∈ {m(j − 1), ..,m(j)−
1}, fn(i) = fj(m(j−1)) = fj(i) = aj−1, and Alg makes a mind change just before
receiving new example ai. This proves that #Mc(fn) > p(log n). Therefore, given
any learning algorithm Alg and any polynomial p(), there is a n ∈ N such that
#Mc(fn) > p(log n). With similar arguments, we get #Ipe(fn) > p(log n). ⊓⊔

Theorem 9. BALL(Σ) ∈ PolyInformant-Mc

Proof. We prove that there is a Learner that just checks the data until it is sure
that there is only one possible consistent ball and therefore makes just one mind
change. Let Br(o) be the target ball, and 〈X+,X−〉 be a sample such that there
is a string u for which (1)aku, bku ∈ X+, (2) all supersequences of aku or of bku of
length |u|+1+k are in X− and (3) if u 6= λ, for each subsequence v of u of length
|u|−1, there is a supersequence of v of length |u|+k in X−. Note that (1) given a
ball Br(o), this sample always exists; (2) Checking if there is such a string u for a
sample X is in O(‖X‖); (3) All edit operations in a minimal path transforming o
into aku and bku are insertions: If not, by changing any non-insertion operation
by an insertion, we can build a string w such that d(o, w) = d(o, aku)∧w ∈ X−;
Therefore o ¹ u; (4) Since for each subsequence w of u there is a supersequence
of length |u| + k in X−, no proper subsequence of u is the centre. We conclude
that u = o and k = r. And of course the required conditions will be true at some
point of the presentation. ⊓⊔

7 Conclusion

Criterion GB(Σ) BALL(Σ)

PolyInformant-Pac No Theo. 1 No Theo. 7 (1)

PolyText-Pac No Theo. 2 No Theo. 7 (1)

PolyInformant-Ipe No Theo. 6 (1) No Theo. 7 (4)

PolyText-Ipe Yes Theo. 5 (1) No Theo. 8 (1)

PolyInformant-Mc Yes Theo. 6 (2) Yes Theo. 9

PolyText-Mc Yes Theo. 5 (2) No Theo. 8 (2)

PolyInformant-Cs Yes Theo. 6 (3) No Theo. 7 (5)

PolyText-Cs Yes Theo. 5 (3) No Theo. 7 (5)

PolyQueries-{Mq,Eq} No Theo. 3 No Theo. 7 (2)

PolyQueries-{Cq} Yes Theo. ([15]) No Theo. 7 (3)

An alternative to making a difference between BALL(Σ) and GB(Σ) is to
consider an intermediary collection of classes: For any polynomial p(), p()-good
balls are those balls Br(o) for which r ≤ p(|o|), and we denote by p() − GB(Σ)
the corresponding class. It seems that if most results for good balls transfer to
p()-good balls in a natural way, this is not systematically the case.

References

1. Gold, E.M.: Language identification in the limit. Information and Control 10(5)
(1967) 447–474

2. Gold, E.M.: Complexity of automaton identification from given data. Information
and Control 37 (1978) 302–320

3. Valiant, L.G.: A theory of the learnable. Communications of the Association for
Computing Machinery 27(11) (1984) 1134–1142

4. Angluin, D.: Queries and concept learning. Machine Learning Journal 2 (1987)
319–342

5. Jain, S., Osherson, D., Royer, J.S., Sharma, A.: Systems That Learn. MIT press
(1999)

6. Angluin, D.: Negative results for equivalence queries. Machine Learning Journal
5 (1990) 121–150

7. Pitt, L.: Inductive inference, DFA’s, and computational complexity. In: Analogical
and Inductive Inference. Number 397 in LNAI. Springer-Verlag (1989) 18–44

8. Li, M., Vitanyi, P.: Learning simple concepts under simple distributions. Siam J.
of Comput. 20 (1991) 911–935

9. Parekh, R.J., Honavar, V.: On the relationship between models for learning in
helpful environments. In: Proc. of Grammatical Inference: Algorithms and Appli-
cations (ICGI’00), LNAI 1891 (2000) 207–220

10. Kearns, M., Valiant, L.: Cryptographic limitations on learning boolean formulae
and finite automata. In: 21st ACM Symposium on Theory of Computing. (1989)
433–444

11. de la Higuera, C.: Characteristic sets for polynomial grammatical inference. Ma-
chine Learning Journal 27 (1997) 125–138

12. Zeugmann, T.: Can learning in the limit be done efficiently? In: Proc. of Algorith-
mic Learning Theory (ALT’03), LNCS 2842 (2003) 17–38

13. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Doklady Akademii Nauk SSSR 163(4) (1965) 845–848

14. Tantini, F., de la Higuera, C., Janodet, J.C.: Identification in the limit of
systematic-noisy languages. In: Proc. of Grammatical Inference: Algorithms and
Applications (ICGI’06), LNAI 4201 (2006) 19–31

15. Becerra-Bonache, L., de la Higuera, C., Janodet, J.C., Tantini, F.: Learning balls
of strings with correction queries. Technical report, University of Saint-Etienne,
http://labh-curien.univ-st-etienne.fr/ tantini/pub/bhjt07Long.pdf (2007)

16. Wagner, R., Fisher, M.: The string-to-string correction problem. Journal of the
ACM 21 (1974) 168–178

17. Crochemore, M., Hancart, C., Lecroq, T.: Algorithmique du Texte. Vuibert (2001)
18. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman (1979)
19. Warmuth, M.: Towards representation independence in pac-learning. In: Proc.

International Workshop on Analogical and Inductive Inference (AII’89), LNAI 397
(1989) 78–103

20. Kearns, M., Vazirani, U.: An Introduction to Computational Learning Theory.
MIT press (1994)

21. Pitt, L., Valiant, L.G.: Computational limitations on learning from examples.
Journal of the ACM 35(4) (1988) 965–984

22. Maier, D.: The complexity of some problems on subsequences and supersequences.
Journal of the ACM 25 (1977) 322–336

23. de la Higuera, C., Casacuberta, F.: Topology of strings: Median string is NP-
complete. Theoretical Computer Science 230 (2000) 39–48

24. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Control 39 (1987) 337–350

25. Angluin, D., Smith, C.: Inductive inference: theory and methods. ACM computing
surveys 15(3) (1983) 237–269

26. Greenberg, R.I.: Bounds on the number of longest common subsequences. Technical
report, Loyola University (2003)

27. Greenberg, R.I.: Fast and simple computation of all longest common subsequences.
Technical report, Loyola University (2002)

