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Abstract— This paper is dealing with the receding horizon
optimal control techniques having as main goal the reduction
of the computational effort inherent to the use of on-line op-
timization routines. The off-line construction of the explicit
solution for the associated multiparametric optimization
problems is advocated with a special interest in the presence
of nonlinearities in the constraints description. The proposed
approach is a geometrical one, based on the topology of
the feasible domain. The resulting piecewise linear state
feedback control law has to accept a certain degree of
suboptimality, as it is the case for local linearizations or
decompositions over families of parametric functions. In
the presented techniques, this is directly related to the
distribution of the extreme points on the frontier of the
feasible domain.

Keywords— Predictive control, constraints, parameterized
polyhedra.

I. INTRODUCTION

Conceiving optimal control policies implies the use of
an infinite horizon for accounting the system behavior for
coping with all the possible system evolutions. However,
the infinite horizon will lead in a general case to an infinite
number of optimization variables. Adding the presence of
constraints and eventually the structural problems inher-
ited from the model used for the prediction, one can have
the picture of the difficulties in implementing such an
infinite horizon optimal control algorithm.

The Model-based Predictive Control (MPC) is the prac-
tical methodology which uses an optimization based phi-
losophy but only emulates the infinite horizon by sliding
the prediction window [2], [3]. It leads by consequence
to a tractable computational framework with interesting
constraints handling capabilities.

The control action ut at state xt is obtained from the
control sequence k∗

u = [uT
t , . . . , uT

t+N−1]
T as a result of

the optimization problem:

min
ku

ϕ(xt+N ) +
N−1∑
k=0

l(xt+k, ut+k)

subj. to : xt+1 = f(xt) + g(xt)ut;
h(xt,ku) ≤ 0

(1)

constructed for a finite prediction horizon N , cost per
stage l(.), terminal weight ϕ(.), the system dynamics
described by f(.), g(.) and the constraints written in a
compact form using elementwise inequalities on functions
linking the states and the control actions, h(.).

The present paper deals with the case when ϕ and l
are quadratic functions of x and ku, f and g are linear,
leading to an optimisation problem :

k∗
u = arg min

ku

0.5kT
u Hku + kT

u Fx (2){
Ainku ≤ bin + Binx

f (x,ku) � 0

Unfortunately, the control sequence k∗
u is optimal only

for a single initial condition - xt and produces an open-
loop trajectory which contrasts with the need for a feed-
back control law. This drawback is overcome by solving
the local optimization (1) for every (measured) state, thus
indirectly producing a state feedback law. However, taking
into account that the measurements can be available faster
than the optimal control sequence becomes available (as
output of the optimization solver), an important informa-
tion can be lost with irreversible consequences on the
closed-loop performances.

The system state can be interpreted as a vector of
parameters, and the problems to be solved are part of
the multiparametric optimization programming family [4].
From the cost function point of view, the parametriza-
tion is somehow easier to deal with, the unconstrained
optimum being kuc

u = H−1Fx. The parametrization of
the feasible domain is more difficult to deal with. The
approach adopted in the following uses the concept of
parameterized polyhedra for the convex sets and Voronoi
partitions of the parameters space for the non-convex case.

This is equivalent to constraints linearization, their
activation with respect to the optimum search being then
readily expressed [1] (as long as the Abadie’s constraints
qualification holds). Indeed, the KKT optimality condi-
tions can be used for characterizing the partitions of the
state space for the control law. From the computational
point of view, this is the technique which assures the
less computational effort [5]. From the point of view
of the feasible domain topology, the dual representation
generators/constraints can bring useful information.

One can find in the literature alternative techniques
for explicit solution construction in the case of nonlinear
systems. The main assumption consists in the convexity
of the optimisation problem. In [6] a linearization is done
over a specific class of functions (polynomial), in [7] a
sampling of the parameters space is performed or one



can replace directly the nonlinear bounds of the feasible
domain by an approximated linearized one [8].

II. FROM FINITE TIME OPTIMAL CONTROL TO
MULTIPARAMETRIC OPTIMIZATION

MPC implies the minimization of a cost index based on
the predicted plant evolution. The first part of the optimal
control sequence is effectively applied after the ”receding
horizon principle”.

A. Optimal control

Consider the discrete linear time-invariant system in a
state-space description:{

xt+1 = Axt + But

yt = Cxt
, t ∈ N

+ (3)

where xt ∈ R
n and ut ∈ R

m are the state and control
vector. It is assumed throughout that the pair (A,B)
is stabilizable. At each sampling time, the current state
(assumed to be available) xt = xt|t can be used to find the

optimal control sequence k∗
u =
[
uT

t|t , · · · , uT
t+Ny−1|t

]T
:

k∗
u = arg min

ku

xT
t+Ny|t Pxt+Ny|t +

+
Ny−1∑
k=0

{
xT

t+k|t Qxt+k|t + uT
t+k|t Rut+k|t

}
(4)

subject to:
xt+k+1|t = Axt+k|t + But+k|t , k � 0
g
(
ut+k|t , xt+k|t

)
� γ, 0 � k � Ny − 1

ut+k|t = KLQRxt+k|t + e, Nu � k � Ny − 1

where Q = QT � 0 and R = RT > 0 are the
weighting matrices and the pair

(
Q1/2, A

)
is detectable.

The inequality constraints are fully described by the
Lipschitz function, g and by γ ∈ R

q . The prediction
horizon - Ny , the control horizon Nu � Ny- together
with Q and R are the knobs of the control design. KLQR

is the stabilizing feedback control gain for unconstrained
linear systems calculated using the solution of a discrete
algebraic Riccati equation:

P = Q + AT PA−KT
LQR

(
R + BT PB

)
KLQR

KLQR =
(
R + BT PB

)−1
BT PA

(5)

and e is the new input vector, calculated as:

e =
(
C (I −A + BKLQR)−1

B
)−1

yc (6)

with yc the desired output.
The optimization problem presented here is a modified

version of the constrained infinite horizon linear quadratic
problem where both the cost index and the inequality con-
straints are defined along an infinite prediction horizon.
The fact that the explicit constraints cover here only the
instants until Ny is due to the implicit terminal conditions
implying that the choice of Ny is made such that the
usage of ut+k|t = KLQRxt+k|t + e will not trespass
the feasible region for k � Ny . Constructive methods

exist to determine the appropriate Ny for each specific
system and set of constraints. The overall optimisation
problem is tractable with standard quadratic methods as
it has p = m · Ny decision variables and (q + m) Ny

constraints (with q - the number of inequality constraints).
Compacting the state involved in the optimization

problem (2) as x =
[
xT

t+1|t , · · · , xT
t+Ny|t
]T

and noting
x = xt|t the cost function could be rewritten in the matrix
formulation as:

k∗
u = arg min

ku

xT Qx + xT Q̄x + kT
u R̄ku (7)

subject to : {
h (x,x,ku) � γ̄

J · ku = K̄ · x + ē

where Q̄ = diag [Q, · · · , Q, P ] ∈ R
Nyn×Nyn, R̄ =

diag [R, · · · , R] ∈ R
Nym×Nym,

K̄ =
[

0(Ny−Nu)m×Nun diag [KLQR, · · · ,KLQR]
]

J =
[

0(Ny−Nu)m×Num I(Ny−Nu)m

]

ē =

 e
...
e

 ∈ �(Ny−Nu)m×1, γ̄ =


γ
γ
...
γ

 ∈ �Nyq×1

h (x,x,ku) =

 g
(
x, ut|t
)

...
g
(
xt+Ny−1|t , ut+Ny−1|t

)
 .

The system’s state evolution can be transformed in a
compact form:

x = Φx + Γku (8)

with

Φ =


A
A2

...
ANy

 ∈ �Nyn×n

and

Γ =


B 0n×m 0n×m · · · 0n×m

AB B 0n×m · · · 0n×m

A2B AB B · · · 0n×m

...
...

...
. . .

...
ANy−1B ANy−2B ANy−3B · · · B


The optimization problem (2) within MPC becomes:

k∗
u = arg min

ku

kT
u Hku + 2kT

u Fx + xT Gx (9)

subject to {
f (x,ku) � bin

Aeqku = beq + Beqx

with H = R̄+ΓT ·Q̄·Γ, F = ΓT ·Q̄·Φ, G = Q+ΦT ·Q̄·Φ,
bin = γ̄, Aeq = J − K̄ · Γ, Beq = K̄ · Φ, beq = ē and
f (x,ku) = h (x,Φ · x + Γ · ku,ku).



III. PARAMETRIZATION OF POLYHEDRAL DOMAINS

A. Double representation

A mixed system of linear equalities and inequalities
defines a polyhedron [9]. In the parameter free case,
it is represented by the equivalent dual (Minkowski)
formulation:

P = {ku ∈ R
p |Aeq ku = beq;Ainku ≤ bin}

⇐⇒ P = conv.hullV + coneR + lin.spaceL︸ ︷︷ ︸
generators

(10)

where conv.hullV denotes the set of convex combina-
tions of vertices V = {v1, . . . ,vϑ}, coneR denotes
nonnegative combinations of unidirectional rays in R =
{r1, . . . , rρ} and lin.spaceL = {l1, . . . , lλ} represents a
linear combination of bidirectional rays (with ϑ, ρ and λ
the cardinals of the related sets). This dual representation
[12] in terms of generators can be rewritten as:

P =
{

ku ∈ R
p|ku =

ϑ∑
i=1

αivi +
ρ∑

i=1

βiri +
λ∑

i=1

γili;

0 ≤ αi ≤ 1,
ϑ∑

i=1

αi = 1 , βi ≥ 0 , ∀γi

}
(11)

with αi, βi, γi the coefficients describing the convex, non-
negative and linear combinations in (10).

Numerical methods like the Chernikova algorithm [10]
are implemented for constructing the double description,
either starting from constraints (10) either from the gen-
erators (11) representation.

B. The parametrization

A parameterized polyhedron [11] is defined in the
implicit form by a finite number of inequalities and
equalities with the note that, in both cases, the affine part
depends linearly on a vector of parameters x ∈ R

n:

P(x) =
{
ku(x) ∈ R

p |Aeq ku = Beqx + beq;
Ainku ≤ Binx + bin}

=
{

ku(x)| ku(x) =
ϑ∑

i=1

αi(x)vi(x)

+
ρ∑

i=1

βiri +
λ∑

i=1

γili

}
0 ≤ αi(x) ≤ 1,

ϑ∑
i=1

αi(x) = 1 , βi ≥ 0 , ∀γi.

(12)

This dual representation of the parameterized polyhe-
dral domain reveals the fact that only the vertices are
concerned by the parametrization (resulting the so-called
parameterized vertices - vi(x)), whereas the rays and the
lines do not change with the parameter’s variation. In
order to effectively use the generators representation in
(12), several aspects have to be clarified regarding the
parametrization of the vertices (see for exemple [11] and
the geometrical toolboxes like POLYLIB [13]).

Indeed the projections are to be computed for all the n-
faces, those which are degenerated are to be discarded and
all the others are stored as validity domains - Dvi

∈ R
n,

for the parameterized vertices that they are identifying:

Dvi
= Projn

(
Fn

j (P̃ )
)

(13)

Once the parameterized vertices are identified and their
validity domain stored, the dependence on the parameters
vector can be found using the supporting hyperplanes for
each n-face:

vi(x) =
[

Aeq

Āinj

]−1 [
Beq

B̄inj

]
x +
[

beq

b̄inj

]
(14)

where Āinj
, B̄inj

, b̄inj
represent the subset of the

inequalities, satisfied by saturation for Fn
j (P̃ ). The inver-

sion is well defined as long as the faces with degenerate
projections are discarded.

IV. MULTIPARAMETRIC OPTIMIZATION

In (9), the optimization problem acts in the space of
future control actions while the current state vector x
influences the unconstrained optimum and the affine part
of the constraints, acting as a parameter. This dependance
transforms the classical optimization problem in a multi-
parametric one (the use of ”multiparametric” syntagm is
for discriminating the case when the parameter is scalar).

A. A mature framework

A popular class of control problems described by (9)
presents quadratic cost functions and linear constraints:

k∗
u = arg min

ku

0.5kT
u Hku + kT

u Fx

subject to : Ainku ≤ bin + Binx
(15)

This is known in the literature as the multiparametric
quadratic problem (mpQP) and its optimality conditions
(Karush-Kuhn-Tucker) are resumed by:

• Primal feasibility:

Aink∗
u � Binx + bin (16)

• Dual feasibility:{
Hk∗

u + FT x + AT
inµ = 0

µ � 0
(17)

• Complementary slackness:

µT (Aink∗
u −Binx− bin) = 0 (18)

B. Explicit solution for mpQP

Exploiting these conditions the global solution can be
explicitly represented by a piecewise linear and continu-
ous function [14], [15]:

k∗
u(x) = Ki ∗ x + κi, for x ∈ Di , i ∈ I (19)

with I ⊂ N the index set for all combinations of
constraints (Āin, B̄in, b̄in) saturated by a local optimum.
The linear dependence is assured by:

Ki = H−1ĀT
in(ĀinH−1ĀT

in)−1(B̄in + ĀinH−1FT )−
−H−1FT ;

κi = H−1ĀT
in(ĀinH−1ĀT

in)−1bin,
(20)

and the regions Di are convex polyhedra in R
n defined

by:{
(AinKi −Bin)x ≤ bin − κi

−(ĀinH−1ĀT
in)−1(ĀinH−1FT x + b̄in + B̄inx) ≥ 0

(21)



the second set of inequalities being originated by the
positiveness of the Lagrange multipliers (µi ≥ 0).

MPC uses only the first component of this optimal
solution:

uMPC(x) = KMPC
i ∗ x + κMPC

i , with i s.t. x ∈ Di ,
(22)

and KMPC
i , κMPC

i the first components of Ki, κi.

C. A topological approach

The piecewise linear structure of the optimal solution
can be obtained also by using the parameterized vertices
(14) associated to the set of active constraints [16]. In
this case the main idea is to consider the unconstrained
optimum:

kuc
u (xt) = H−1Fxt

and its position with respect to the feasible domain given
by a parameterized polyhedron as in (12).

If a simple transformation is performed:

k̃u = H1/2ku

then the isocost curves of the quadratic function are trans-
formed from ellipsoid into circles centered in k̃uc

u (xt) =
H−1/2Fxt. Further one can use the Euclidean projec-
tion in order to retrieve the explicit solution. Indeed if
the unconstrained optimum k̃uc

u (xt) is contained in the
feasible domain P̃(xt) then it is also the solution of the
constrained case, otherwise existence and uniqueness are
assured as follows:

Proposition: For any exterior point k̃u(xt) /∈ P̃(xt),
there exists an unique point characterized by a minimal
distance with respect to k̃uc

u (xt). This point satisfies:

(k̃uc
u (xt)− k̃∗

u(xt))T (k̃u − k̃∗
u(xt)) � 0,∀k̃u ∈ P̃(xt)�

The construction mechanism uses the parameterized
vertices in order to split the regions neighboring the
feasible domain in zones characterized by the same type
of projection. In figure 1 a simple example is given
starting from the parameterized polyhedron P in the
extended space (argument and parameters), the regions
with the same type of projection are found and finally the
explicit solution in terms of a piecewise linear function
of parameters is obtained.

V. HANDLING NONLINEARITIES

Consider now the case of mixed type of constraints
(linear/nonlinear):

k∗
u = arg min

ku

0.5kT
u Hku + kT

u Fx (23){
h (x,ku) � 0

Ainku ≤ bin + Binx

An important point to note is the quadratic form of the
cost function which offers interesting structural properties
(convexity, uniqueness of the unconstrained optimum).
This is not restricting the generality for control systems
described by (3) as long as the usual choice for the cost
function is the ”sum of squared error weighted by (norm
2) control effort”.

A. Optimality conditions for nonlinear constraints

Let x̄ be a feasible parameter vector. The KKT opti-
mality conditions can still be formulated as:

• Primal feasibility:{
h (x̄,ku) � 0
Ainku ≤ bin + Binx̄

(24)

• Dual feasibility:{
Hku + FT x̄ + AT

inµ +∇ku
h(x̄,ku)T ν = 0

µ � 0, ν � 0
(25)

• Complementary slackness:

[µT νT ]
[

Ainku −Binx̄− bin

h (x̄,ku)

]
= 0 (26)

The difference resides in the fact that the KKT condi-
tions are only necessary and not sufficient for optimality
due to the presence of nonlinearity.

B. The topology of the feasible domain

Indeed the sufficiency is lost due to the lack of con-
straint qualification (the Abadie constraint qualification
holds automatically for the linear constraints but needs
additional assumptions for the nonlinear case, see the next
theorem).

Theorem (KKT sufficient conditions) [1]: Let x = x̄
and the associated feasible domain U(x̄) be a nonempty
set in R

Nym described by the constraints in (23), with
hi(x̄,ku) : R

Nym → R, the components of h(x̄,ku).
Let k∗

u ∈ U(x̄) and let I = {i : hi(x̄,k∗
u = 0)} ,J ={

j : Ainj
k∗

u −Binj
x̄− binj

= 0)
}

. Suppose the KKT
conditions hold, such that:

Hk∗
u + FT x̄ +

∑
µjA

T
inj

+
∑

νi∇ku
hi(x̄,k∗

u)T = 0
(27)

If hi is quasiconvex at k∗
u for i ∈ I, then this is a global

solution to the problem (23)�
Due to these problems, up to date, the explicit solutions

for the general nonlinear multiparametric programming
case were not tackled. Only for convex nonlinearities
approximate explicit solutions were proposed [7].

In the following a solution based on linear approxima-
tion of feasible domains is proposed. This will answer
the question regarding the optimality of a solution with
piecewise linear structure.

C. Preliminaries for linear approximations of mixed lin-
ear/nonlinear feasible domains

The idea is to exploit the existence of linear constraints
in (23) and construct exact solutions as long as the
unconstraint optimum can be projected on them. In a
second stage if the unconstrained optimum is projected
on the convex part of the nonlinear constraints, then an
approximate solution is obtained by their linearization.
Finally if the unconstrained optimum has to be projected
on the nonconvex nonlinear constraints then a Voronoi
partition is used to construct the explicit solution.

Before detailing the algorithms several useful tools
have to be introduced:



(a) A feasible domain as a parame-
terized polyhedron

(b) The neighboring zones with differ-
ent projection laws

(c) Explicit solution as a piecewise
linear function

Fig. 1. From the feasible domain as a parameterized polyhedron to the explicit solution

1) Gridding of the parameter space: The parameters
(state) space is sampled in order to obtain a representative
grid G. The way of distributing the points in the state
space may follow a uniform distribution, logarithmic
or tailored according to the a-priori knowledge of the
nonlinearities.

Figure 2 illustrates two common types of gridding,
the linear and the spherical one (note that the linear
distribution of points can be very conservative for large
dimensions spaces).

Fig. 2. Example of grid of the parameters space

For each point of the grid x ∈ G a set of points on
the frontier of the feasible domain D(x) can be obtained
Vx by the same kind of parceling. By collecting Vx for
all x ∈ G a distribution of points VG in the extended
arguments+parameters space is obtained.

2) Convex hulls: A basic operation is the construction
of the convex hull (or a convenable approximation) for
the feasible domain in (23). Writing this parameterized
feasible domain as:

D(x) =
{
ku

∣∣∣∣ h (x,ku) � 0
Ainku ≤ bin + Binx

}
(28)

and using the distribution of points on the frontier VG , one
can define in the extended (argment+parameters) space a
convex hull CVG :

CVG =
{[

ku

x

]
∈ R

mNy+n

∣∣∣∣∃ [ kui

xi

]
,

i = 1..mNy + n + 1,kui
∈ VG ,

t.q.

[
ku

x

]
=

mNy+n+1∑
i=1

λi

[
kui

xi

]
,

mNy+n+1∑
i=1

λi = 1;λi ≥ 0 }

(29)

3) Voronoi partition: The Voronoi partition is the
decomposition of a metric space R

n in regions associated
with a specified discrete set of points.

Let S = {s1, s2, ..., sν} be a collection of ν points in
Rn. For each point si a set Vi is associated such that⋃

i Vi = Rn. The definition of Vi will be:

Vi = {x ∈ Rn|‖x− vi‖2 ≤ ‖x− vi‖2,∀j �= i} (30)

It can be observed that each frontier of Vi is part of the
bisection hyperplane between si and one of the neighbor
points sj . As a consequence of this fact, the regions
Vi are polyhedrons. Globally, the Voronoi partition is a
decomposition of space Rn in ν polyhedral regions.

D. Nonparameterized case

Notation:
F(X) The frontier of a compact set X
Int(X) The interior of a compact set X

Consider nonparameterized optimization problem with
mixed type of constraints:

k∗
u = arg min

ku

0.5kT
u ku + cT ku (31){

h (ku) � 0
Ainku ≤ bin + Binx

In relation with the feasible domain D of this optimiza-
tion problem one can define:

RL(D) The set of linear constraints in the defini-
tion of D

RNL(D) The set of nonlinear constraints in the def-
inition of D

S(R∗,ku) The subset of constraints in R∗ (either RL

either RNL) saturated by the vector ku

B(R∗,ku) The subset of constraints in R∗. violated
by the vector ku

Algorithm:
1) Obtain a set of points (V) on the frontier of the

feasible domain D
2) Construct the convex hull CV
3) Split the set V as Ṽ ∪ VL ∪ VNL ∪ V̂

• Ṽ ∈ F(CV) and CV = CV\Ṽ (those points in
V which lie on the frontier of CV but are not
vertices);



• VL ∈ V \ Ṽ , VL ∈ F(CV) and VL saturate at
least one linear constraint in (31)

• VNL ∈ V \ Ṽ , VNL ∈ F(CV) and VNL saturate
only nonlinear constraints in (31)

• V̂ ∈ Int(CV)
4) Construct the dual representation of CV . This will

be represented as an intersection of halfspaces H.
5) Split H in H ∪ Ĥ

• Ĥ ⊂ H such that ∃x ∈ CV with S(Ĥ, x) �= ∅
and B(RNL, x) �= ∅

• H = H \ Ĥ
6) Project the unconstrained optimum ku = −c on CV :

k∗
u ← ProjCV {−c}

(as it was illustrated in figure 1c)
7) If k∗

u saturates a subset of constraints K ⊂ Ĥ
a) Retain the set of points:

S =
{

v ∈ V̂|∀ku ∈ CV s.t.Sat(Ĥ,ku) = K;
B(RNL,ku) = Sat(RNL, v)}

b) Construct the Voronoi partition for the collec-
tion of points in S

c) Position k∗
u w.r.t. this partition and map the

suboptimal solution k∗
u ← v where v is the

vertex corresponding to the active region

8) If the quality of the solution is not satisfactory, im-
prove the distribution of the points V by augmenting
the resolution around k∗

u and restart from (2).

E. Explicit solution - taking into account the parametriza-
tion

Consider now the multiparametric optimization:

k∗
u = arg min

ku

0.5kT
u Hku + kT

u Fx (32)

{
h (x,ku) � 0

Ainku ≤ bin + Binx

and the set:

D =
{[

ku

x

]
∈ R

mNy+n

∣∣∣∣ h (x,ku) � 0
Ainku ≤ bin + Binx

}
Algorithm:

1) Grid the parameters space R
n and retain the feasible

nodes G
2) Obtain in the extended argument+parameters space

a set of points (VG) lying on the frontier of D
3) Construct the convex hull CV for the points in VG
4) Split the set VG as Ṽ ∪ VL ∪ VNL ∪ V̂

• Ṽ ∈ F(CV) and CV = CV\Ṽ (those points in
V which lie on the frontier of CV but are not
vertices);

• VL ∈ VG \ Ṽ , VL ∈ F(CV) and VL saturate at
least one linear constraint in (31)

• VNL ∈ VG \ Ṽ , VNL ∈ F(CV) and VNL

saturate only nonlinear constraints in (31)
• V̂ ∈ Int(CV)

5) Construct the dual representation of CV . This will
be represented as a intersection of halfspaces H.

6) Split H in H ∪ Ĥ
• Ĥ ⊂ H such that ∃x ∈ CV with S(Ĥ, x) �= ∅

and B(RNL, x) �= ∅
• H = H \ Ĥ

7) Project the set

U =
{[

ku

x

]∣∣∣∣ [ ku

x

]
=
[

H−1F
I

]
x,∀x ∈ R

n

}
on CV :

U∗ ← ProjCV U

8) If ∃x0 such that the point:[
k∗

u

x0

]
= U∗ ∩

{[
ku

x

]∣∣∣∣x = x0

}
saturates a subset of constraints

K(x0) = S

(
H,

[
ku

x0

])
⊂ Ĥ

then:

a) Construct

UNL(x0) =
{[

ku

x

]
∈ U

∣∣∣∣ [ k∗
u

x

]
∈ U∗

t.q. S

(
H,

[
ku

x0

])
= K(x0)

}
b) Perform:

U∗ = U∗\
{[

ku

x

]∣∣∣∣S(H,

[
ku

x0

])
= K(x0)

}
c) Retain the set of points:

S =
{

v ∈ V̂|∀
[

ku

x

]
∈ CV with

S(Ĥ,

[
ku

x

]
) = K(x0) ⇒

B(RNL, x) = S(RNL, v)}
d) Construct the Voronoi partition for the collec-

tion of points in S
e) Position UNL(x0) w.r.t. this partition and map

the suboptimal solution U∗
NL(x0)← UNL(x0)

by using the vertex v for each active region.[
k∗

u

x

]
= v ←

[
ku

x

]
else: jump to (10)

9) Return to point (8)
10) If the quality of the solution is not satisfactory,

improve the distribution of the points VG and restart
from (2).



VI. NUMERICAL EXAMPLE

A. Simple convex multiparametric nonlinear program

Consider the discrete-time linear system:

xt+1 =
[

0.9 1
0 1

]
xt +
[

1
−1

]
ut (33)

and a predictive control law with a prediction horizon of
three sampling times and a control horizon of two steps.
A nonlinear set of constraints will be also considered:

∑2
k=0 u2

t+k ≤ 1∑2
k=0 u2

t+k ≤ ln(
[

0 1
]
xt + 1)[

0 1
]
xt+k ≥ 0; k = 0, 1, 2

(34)

It is obvious that the topology of the feasible domain is
changing with the system dynamics, which means that the
state vector represents in fact a parameter. More precisely,
in our case only the second component of the state, xt is
influencing the shape of the feasible domain and thus one
can draw this dependence on the parameter as in figure 3.
Further this parameterized convex shape can be approxi-

Fig. 3. The nonlinear dependence of the feasible domain on the
parameters

mated with a set of parameterized linear inequalities and
obtain a double description of a parameterized polyhedron
as in figure 4(a). A precutting in zones with regular
shape (figure 4(b)) can help in the development of explicit
solution due to the important degree of redundancy.
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Fig. 4. (a) The approximation by a parameterized polyhedron; (b)
Regions in the parameters’ space corresponding to redundancy-free
constraints sets.

Finally the nonlinear MPC law for the system (33) and
the constraints (34) can be approximated by the explicit
solution found in terms of a piecewise linear control law
as in figure 5.

B. Example of non-Convex problem

Consider the MPC problem implemented using the first
control action of the optimal sequence:
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Fig. 5. Explicit solution as a piecewise linear function.

k∗
u = arg min

ku

Ny−1∑
i=0

xT
t+k|t Qxt+k|t + uT

t+k|t Rut+k|t +

+xT
t+Ny|t Pxt+Ny|t

(35)
with

Q =
[

10 0
0 1

]
;R =
[

2 0
0 3

]
;P =
[

13.73 2.46
2.46 2.99

]


xt+k+1|t =

A︷ ︸︸ ︷[
1 1
0 1

]
xt+k|t +

B︷ ︸︸ ︷[
1 0
2 1

]
ut+k|t k � 0[ −2

−2

]
� ut+k|t �

[
2
2

]
0 � k � Ny − 1

(u1
t+k|t )

2 +
(
u2

t+k|t − 2
)2

�
√

3 0 � k � Ny − 1

(u1
t+k|t )

2 +
(
u2

t+k|t + 2
)2

�
√

3 0 � k � Ny − 1

ut+k|t =
[

0.59 0.76
- 0.42 - 0.16

]
︸ ︷︷ ︸

KLQR

xt+k|t Nu � k � Ny − 1

One can observe the presence of both linear and nonlinear
constraints. By following the previous algorithm, in the
first stage, the partition of the state space is performed by
considering only the linear constraints (figure 6(a)).

(a) (b)

Fig. 6. a) Partition of the arguments space (linear constraints only). b)
Retention of the regions with feasible linear projections.

Each such region correspond with a specific projection
law. By simply verifying the regions where this projection
law obey the nonlinear constraints, the exact part of the
explicit solution is obtained (figure 6(b)).

Further, a distribution of points on the nonlinear fron-
tier of the feasible domain has to be obtained and the



associated Voronoi partition obtained. By superposing it
to the regions non covered at the previous step one obtain
a complete covering of the arguments space. Figure 7(a)
depicts such a complete partition for distribution of 10
points for each nonlinear constraint. Figure 7(b) augments
the density to 100 points.

(a) (b)

Fig. 7. a) Partition of the arguments space (nonlinear case) - 10 points
per nonlinear constraint. b) Partition of the arguments space (nonlinear
case) - 100 points per nonlinear constraint.

By correspondence, the figures 8(a) and 8(b) describe
the partition of the state space for the explicit solution.

(a) (b)

Fig. 8. a) Partition of the state space - 10 points per nonlinear constraint.
b) Partition of the state space - 100 points per nonlinear constraint.

Finally the complete explicit solution for the two cases
are described in figures 9(a) and 19(b). The discontinuities
are observable as well as the increase in resolution over
the nonlineairity with the augmentation of the number of
points in the Voronoi partition.

In order to give a give an image of the complexity it
must be said that the explicit solutions have 31 and 211
regions respectively and the computational effort was less
than 2s in the first case and 80s in the second case, mainly
spent in the construction of supplementary regions in the
Voronoi partition.

VII. CONCLUSIONS

The construction of explicit solution for receding hori-
zon optimal control problems was presented with a special
attention to the nonlinear constraints handling mechanism.
The geometrical approach exploits the topology of the
feasible domain. As long as the unconstraint optimum is
projected on a linear set of constraints one obtains the
exact solutions. For the regions where the unconstraint
optimum violates nonlinear constraints, a technique based
on Voronoi partition allows the construction of approxi-
mate explicit solution.

(a) (b)

Fig. 9. a) Explicit control law - 10 points per nonlinear constraint. b)
Explicit control law - 100 points per nonlinear constraint.

The degree of suboptimality for the solution under
active nonlinear constraints is directly related to the
distribution of the extreme points on the frontier of the
feasible domain. The presented algorithm can be used in
a recursive manner in order to improve the quality of the
explicit solution. However this is done with the price of
an increased complexity for the piecewise control law.
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