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Abstract Today’s needs for more capable enterprise systems in a short timeframe is leading 
more organizations toward the integration of existing component-systems into broader 
intra-organizational enterprise-systems and their integration into inter-organizational 
systems of enterprise-systems. Although important R&D efforts lead to a general consensus 
that Enterprise Modelling and IT Systems Interoperability are keys to Enterprise Integration 
to align the human-intensive infrastructure with the information-intensive architecture, 
these integration issues are not handled well in traditional systems engineering practices. 
Bridging the gap from an integrated system to a system of interoperable systems for 
architecting such broader enterprise-systems or complex systems of enterprise-systems 
requires ‘multiple scale system thinking’ to be fully comprehended beyond the ‘system 
process’ template of traditional systems engineering. This survey paper discusses some key 
problems, trends and accomplishments for Enterprise Integration with a systemic approach 
before advocating the System of Systems (SoS) paradigm to explore some rationales and 
forecasts in research and engineering. Copyright © 2007 IFAC 
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1. INTRODUCTION 
 
Today’s needs for more capable enterprise systems in a 
short timeframe are leading more organizations toward 
the integration of existing component-systems into 
broader intra-organizational or inter-organizational 
enterprise-systems. The remaining challenge of 
enterprise integration (EI) is to provide the right 
information at the right place at the right time for 
decision-making by integrating these heterogeneous 
information-intensive product-systems to achieve 
vertical business-to-manufacturing as well as 
horizontal business-to-business integration (Giachetti, 
2004). Advances in information technologies (IT) 
applications interoperability facilitate implementation 
issues but are not efficient to support the single 
enterprise as well as the networked enterprise to move 
from tightly coupled systems based on enterprise 
application integration (EAI) to loosely coupled 
systems based on service-oriented architectures (SOA).  
 
The integration in manufacturing paradigm (CIM 
concept) which underlies the global optimality of a 
monolithic enterprise-system fail to face this evolution, 
mainly because the related modelling frameworks are 
not appropriate to solve problems that continually 
change as they are being addressed. The intelligence in 
manufacturing paradigm (IMS concept) which is 
addressing the complexity to architect heterarchical 
enterprise-systems has difficulty to demonstrate its 
efficiency in real industrial environment (Marik et al., 
2007), mainly because of the lack of a modelling 
framework to define, to develop, to deploy and to test 
self-organizing systems (Valckenaers 2003).  
 
Enterprise modelling (EM) to the large meaning of the 
set of models necessary to manage the ontological 
issues related to control an organisation behaviour fails 
to penetrate the enterprise world despite important 
R&D efforts (Chapurlat, 2007). Modelling in 
enterprise based on model-driven systems engineering 
(MDSE) is not a current practice. A rough model, 
rather semantically poor, is built on demand for a 
specific project to deliver a specific solution, even if 
this solution is parameterized from a generic 
component-system. Indeed, a component-system is a 
combination of hardware and software but also 
knowledge packaged by a vendor (COTS) as a product-
system to offer generic facilities. This product-system 
is then customized to perform specific stated purposes 
for a target enterprise-system to deliver its own 
(different) product-system. The modelling work is 
generally made by an external actor consulting in IT 
organization and the resulting enterprise-component 
tightly couples the parameterized application, its 
related engineering and the associated enterprise 
knowledge. Thus, enterprise-systems are supplier-
intensive and each enterprise-component is not easily 
adaptable by the internal actors without an enterprise-
system model.   
 

These integration issues are not handled well in 
traditional systems engineering templates (SE) because 
of the increasing complexity to architect enterprise-
systems as a whole for each opportunistic 
collaboration; this from the bottom set of 
heterogeneous component systems to the system of 
systems (SoS) that integrates them, while they continue 
to exist on their own missions (Maier, 1998).  
 
We agree that the essence of enterprise integration is 
the recursively interoperation of constituent systems to 
compose a system to achieve a specific purpose in a 
given context (Carney at al., 2005).  
 
The related interoperability relationship can be 
implemented in several ways to compose a fully, 
tightly or loosely integrated system or a SoS depending 
on the adaptability of the constituent systems and the 
assigned mission. Bridging the gap from an integrated 
system to a system of interoperable systems underlies 
knowledge-intensive organizational and cultural issues 
beyond technological ones requiring multi scale 
modelling frameworks to cope with the limitations of 
human abilities to face complexity (Bjelkemyr et 
Lindberg, 2007). Understanding the partition between 
the ordered (directed) domain of what is known or 
knowable and the un-ordered (emergent) domain of 
what can be patterned from interactions perceptions is 
of importance to engineer a system of enterprise-
systems with a SoS-like perspective (Fig. 1).   

 
Fig. 1. Components connection strength of Cynefin 
domains (Kurtz and Snowden, 2003) 
 
While the SoSE paradigm is still in its infancy, some 
frameworks are being developed for decision-making 
and cost-effective management issues to face the 
emerging SoS problems (Gorod et al., 2007). 
Nevertheless, pragmatic issues cope with unclear bot-
top (bottom-up, top-down) approaches to point that the 
fundamental template of any SE project must progress 
from the top down to satisfy the intended mission of a 
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unique target-SoS, even if bottom-up engineering 
decisions are made to reuse existing systems (Cocks, 
2006).   
 
All these considerations remain research and 
development open issues pointing that the notion of 
system must be revisited in a multi scale system 
thinking to be fully comprehended (Kuras and White, 
2005) beyond the system process and  the single scale 
system thinking templates of traditional systems 
engineering. 
 
This paper overviews in section 2 some Enterprise 
integration issues (Vernadat, 2007) based on the 
knowledge gained in major European projects related 
to interoperability (Panetto, 2007) (Doumeights et al., 
2007). Section 3 deals with our main results and 
ongoing research works to explore some SoSE aspects 
of product-driven systems control by prototyping an IT 
architecture in which the product itself is active to 
interoperate with enterprise-systems to ensure a 
B2M2B service (Fig. 2). Industrial transfers of this 
approach exhibit complementary SoS properties and 
improve this partial understanding of why should be 
made for better SoSE practices in EI. Thus, 
conceptualization trends and open issues are discussed 
in section 4 before to conclude.  

 
2. ENTERPRISE INTEGRATION ISSUES 

 
Integration is generally considered to go beyond mere 
interoperability to involve some degree of functional 
dependence. While interoperable systems can function 
independently, an integrated system loses significant 
functionality if the flow of services is interrupted. An 
integrated family of systems must, of necessity, be 
interoperable, but interoperable systems need not be 
integrated. Integration also deals with organisational 
issues, in possibly a less formalised manner due to 
dealing with people, but integration is much more 
difficult to solve, while interoperability is more of a 
technical issue. 
Compatibility is something less than interoperability. It 
means that systems/units do not interfere with each 
other’s functioning. But it does not imply the ability to 
exchange services. Interoperable systems are by 
necessity compatible, but the converse is not 
necessarily true. To realize the power of networking 
through robust information exchange, one must go 
beyond compatibility. 
In sum, interoperability lies in the middle of an 
“Integration Continuum” between compatibility and 
full integration. It is important to distinguish between 
these fundamentally different concepts of 
compatibility, interoperability, and integration, since 
failure to do so, sometimes confuses the debate over 
how to achieve them. While compatibility is clearly a 
minimum requirement, the degree of 
interoperability/integration desired in a joint family of 
systems or units is driven by the underlying operational 
level of those systems. 

2.1. Enterprise-system architecting  
 
The problems of enterprise applications interoperability 
can be defined according to various points of view and 
perspectives.  These aspects correspond to modelling 
frameworks, with, as a common point, an implicit or 
explicit perspective of evolution according to a linear 
scale  the more an application is interoperable with 
another and thus higher in a value scale, the more it 
relates to a high level of abstraction of the models and 
their semantics.  For this reason, an interoperability 
development process is often classified in so-called 
"levels of interoperability" in the literature. 
A widely recognized model for information systems 
interoperability is, ‘Levels of Information Systems 
Interoperability’ (LISI) (C4ISR, 98).  LISI focuses on 
the increasing levels of sophistication of systems 
interoperability (Isolated systems, connected 
interoperability in a peer-to-peer environment, 
Functional interoperability in a distributed 
environment, Domain based interoperability in an 
integrated environment; Enterprise based 
interoperability in a universal environment. LISI 
focuses on technical interoperability and the 
complexity of interoperations between systems. The 
model does not address the environmental and 
organizational issues that contribute to the construction 
and maintenance of interoperable systems. 
Acknowledging this limitation, Clark and Jones (1999) 
proposed the Organizational Interoperability Maturity 
model (OIM), which extends the LISI model into the 
more abstract layers of command and control support 
(Independent, Ad hoc, Collaborative, Integrated, 
Unified). Beyond this organisational interoperability, 
the type of content of the exchange flows is also an 
issue. To cope with it, the NATO C3 Technical 
Architecture (NC3TA) Reference Model for 
Interoperability (NATO, 2003) focuses on technical 
interoperability and establishes interoperability degrees 
and sub-degrees (Unstructured Data Exchange, 
Structured Data Exchange, Seamless Sharing of Data, 
Seamless Sharing of Information). The degrees are 
intended to categorize how operational effectiveness 
could be enhanced by structuring and automating the 
exchange and interpretation of data.  
Moreover, at a conceptual level, Tolk (2003) has 
developed the Levels of Conceptual Interoperability 
(LCIM) Model that addresses levels of conceptual 
interoperability that go beyond technical models like 
LISI. Systems interoperability is not only a technical 
problem (as stated by LISI or LCIM) but also deals 
with organisational issues (OIM). These aspects of 
interoperability are coherent with the definitions 
proposed by the European Interoperability Framework 
(EIF, 2004), which considers three aspects of 
interoperability (Organisational, Semantic, Technical). 
 
While choosing a framework is a necessary condition 
for facilitating interoperability engineering because 
they are representing best practices in the domain of 
interoperable systems engineering. 
 



2.2. Enterprise-system modelling 
 
Enterprise modelling is the set of activities or 
processes used to develop the various parts of an 
enterprise-system model to address some desired 
modelling finality. It can also be defined as the art of 
“externalising” enterprise knowledge, i.e. representing 
the enterprise in terms of its organisation and 
operations (e.g. processes, behaviour, activities, 
information, object and material flows, resources and 
organisation units, and system infrastructure and 
architectures). The finality is to make explicit facts and 
knowledge that add value to the enterprises or can be 
shared by business applications and users. The prime 
goal of enterprise-system modelling is not only to be 
applied for better enterprise integration but also to 
support analysis of an enterprise, and more specifically, 
to represent and understand how the enterprise works, 
to capitalize acquired knowledge and know-how for 
later reuse, to design (or redesign) a part of the 
enterprise, to analyse some aspects of the enterprise (by 
e.g. economic analysis, organization analysis, 
qualitative or quantitative analysis,...), to simulate the 
behaviour of (some part of) the enterprise, to make 
better decisions about enterprise operations and 
organization, or to control, coordinate and monitor 
some parts of the enterprise. 
 
The intensive production of tools, implementing 
various different enterprise-system modelling 
languages, has led to a Tower of Babel situation in 
which the many tools, while offering powerful and 
distinct functionalities, are unable to interoperate and 
can hardly or not at all communicate and exchange 
models. This is a serious drawback for awareness, 
acceptance and wide use of the EM technology since 
enterprises cannot capitalise from previous modelling 
efforts. This situation hinders true enterprise 
integration, interoperability, and sharing enterprise 
knowledge. 
Enterprise-system Modelling is an engineering 
discipline closely related to computerised systems. As 
such, it requires the combined use of Enterprise 
Modelling Software Environments (EMSE), Enterprise 
Modelling Languages (EML), and Enterprise 
Engineering Methodologies (EEM). According to this 
point of view, there exist a lot of fragmented 
approaches to enterprise modelling (including 
Methodologies, Languages and Tools). Enterprise-
system modelling approaches may also have very 
different objectives and needs. 
 
Moreover Enterprise-system models are dependent of 
the systems engineering that produces them. This 
engineering includes best practices related to a specific 
domain that fail to take advantage to the enterprise 
modelling world-wide research. While standard 
initiatives and European R&D projects are trying to 
solve the problem of managing heterogeneous 
information coming from different systems by 
formalising the technical knowledge related to products 

technical data and their processes, they are not yet 
dealing with reference enterprise-system modelling 
engineering, key drawback for loose integration. With 
the support of a product-driven IT architecture, we will 
revisit some definitions related to systems, system-of-
systems, and systems engineering through the 
conceptualisation of these concepts in order to reach a 
common understanding on its semantics.  
 

3.  SYSTEM OF ENTERPRISE-SYSTEMS CASE-
STUDY 

 
Important research issue is that the complexity of SoS-
like designs makes formal proof of their performance 
and capabilities impractical. Research developments 
must be tested in emulated enterprise-systems 
reflecting the size and complexity of the real world. 
beyond the toy test cases. Our focus is to prototype a 
product-driven IT architecture to conceptualize system 
integration issues for research purposes in order to 
improve SoSE practices for industrial transfer issues. 
The main modelling concept  is to make the product 
interactive as the ‘controller’ of the manufacturing 
enterprise’s resources for enabling ‘on the fly’ 
interoperability relationships between existing product-
systems and ensuring coherence between the physical 
and information flows all through the product life-cycle 
(Fig. 2) . 

 
 

Fig. 2. Product-driven manufacturing enterprise-
wide control (Morel et al., 2003) 

 
3.1. B2M2B case-study 

 
This IT architecture is composed of a set of enterprise 
systems (PDM, ERP, MES, and SFC) distributed on 
two sites in Italy and France. This case-study emulates 
a networked product development and manufacturing 
virtual enterprise whose objective is to design, produce 
and sell products made from assembly of elementary 
components. The prototype will take advantage of new 
IT technologies and architecture such as SOA (Service 
Oriented Architecture), web services, and embedded 
systems. The active products (smart products) are, by 
definition (Wong et al., 2007), loosely coupled to 
maintain resilient relationships with the ERP-MES-
PDM-SFSC systems by synchronizing transactions 



throughout a sort of product centric Enterprise Service 
Bus (ESB). Other works deal with a benchmarking 
platform to emulate industrial case-studies and to 
evaluate the performance of product-driven controls for 
hybrid centralized/decentralized decision-making 
purposes (Gouyon, 2004) (Simao, 2005) (Pannequin, 
2007). 
 
The studied enterprise-system is the ‘system of interest’ 
related to a new mission to ensure the product 
traceability for which an architectural solution must be 
prototyped from the existing enterprise-systems. 
  

3.2. B2M2B system modelling 
 
Our approach is a particular interpretation of the HMS 
paradigm (Morel et al., 2003) aiming to implement the 
interoperability relationship at a MES level as a 
product-holon (a system) to ensure a recursive 
interoperation between the systems (ERP, PDM) which 
process the services (information) and the resources 
(SFC) which transform the goods.  
 
The related concept of holon has been formalized as an 
aggregation of an information object and a physical 
object to be implemented in a commercial CASE tool1 
through a generic meta-model (Fig. 3). This BPM tool 
contains a business process analysis tool, modelling 
tools, design environments and some SE templates. 
This BPM tool has also its own meta-model that 
described all concepts and objects ready to use as well 
as all relationships that exist between those concepts. 
This meta-model has been customized and specialised 
for embedding our holon concept and thus integrating 
it into existing business process diagrams. 
 

 
 
Fig. 3. Meta-model of a Holon 
 

                                                 
1 MEGA Suite, MEGA International, www.mega.com 

The proposed model-driven approach for modelling 
product information, along its lifecycle, is to ensure the 
completeness of such model with regard to the various 
networked enterprises applications that will 
interoperate with it. The first assumption of our work is 
a necessary synchronous modelling of product material 
views and product informational views (Baïna, et al, 
2008). Indeed, in a manufacturing enterprise 
environment, information and material flows are often 
considered separately, however information is always 
referring to a physical exchange and, conversely, 
material flows are always accompanied with some 
information. Throughout its lifecycle, the product 
evolves in a dual way, a physical product that is subject 
of physical processes, and an informational product 
that combines all information collected about product 
states during its lifecycle and product information 
needed for production control, quality assessment and 
traceability management. Moreover, our aim is more to 
simplify the modelling of different aspects of the 
product (information and material) by considering the 
aggregation of information about the product and the 
conceptual view all applications may have about it. 
‘Information contents’ are perceived as holons (whole 
and part) at the ‘scope row’ of the Zachman framework 
(Zachman, 1987) (Sowa and Zachman, 1992) 
independently of their nature (data, event, material …) 
to identify the core processes perform by the business 
and where they operate. Our adaptation of the Zachman 
framework is defined by a sequence of artefacts 
represented by a specific cell in matrix. The transition 
from one cell to one other is based on syntactic 
transformations or semantics mapping between models 
(Baina 2006). 

On-going works concerns the definition of the 
information model necessary to the product-holon to 
become an active object. With such information, it may 
be interoperable per se with the many applications 
involved in manufacturing enterprises and, as far as it 
embeds knowledge about itself, storing all its technical 
data, it will be able to act as a common source of 
understanding between enterprises applications. The 
first step in this direction is endeavouring existing 
standards related to product technical data modelling 
(Fig. 4) for the definition of products information, 
allowing a non ambiguous model to represent 
knowledge and concepts, processable by the many 
enterprise applications adopted in manufacturing 
environment.  



 
 
Fig. 4. PDM model instatiation     
 
We are formalising this information model as a 
Product Ontology, thus including domain heuristics, 
able to express and share product knowledge among 
systems (Tursi, et al, 2007). This explicit specification 
of our shared conceptualization (Gruber, 1993) allows 
the formalization of the semantics of objects, 
formalizing and identifying the modelling concepts, 
their dynamic behaviour and discovering their inter-
relative mappings (Fig. 5), through FOL rules. 
 
The increasing performance of the infotronics 
technology (agent on RFID) is expected making a 
concrete sense in near future to our product-driven 
control paradigm as a contribution to the paradigm the 
order is the product for product oriented manufacturing 
systems for reconfigurable enterprises based on 
distributed automation2. 
 

 
 
Fig. 5. Mapping discovery through DL Lite 
formalisation 
 

4.  DISCUSSION ON SYSTEM-OF ENTERPRISE-
SYSTEMS ISSUES  

 
These above sections show that enterprise-systems are 
reaching a certain size and level of complexity, so that 
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traditional modelling and engineering approaches are 
not sufficient for addressing all relevant issues (ordered 
domain of figure 1).  
 
The component-systems that constitute a system-of 
enterprise-systems were not designed to work together; 
each component-system may be of different age and 
technology; the system of systems has no clear lead 
system that is a system that will oversee the integration 
of the systems. 
 
The notion of system, central to all the above 
paradigms and to systems engineering for practical 
purposes, must be revised to accept the idea that 
exploring the un-ordered (emergent order) domains 
(Waldrop, 1992) is a way to support decision-making 
in the varied dynamical contexts of SoSE when moving 
from strong central connections to weak ones (Fig. 1, 
from right to left).  
 

4.1. Characterization issues 
 
Many definitions are being amended with a number a 
required properties (Sage and Cuppan, 2001) (Fisher, 
2006) to make SoS a candidate rationale artefact to 
distinguish a very large and complex socio-technical 
system of interoperable enterprise-systems from a 
monolithic non-SoS (Carlock and Fenton, 2001).  
 
Although their socio-technical complexity seems 
smaller than for systems commonly exemplified as 
SoS, we explored this promising artefact on four 
industrial case studies for enterprise information-
intensive systems modelling issues in order to improve 
our understanding of why these Enterprise-systems 
seems exhibit SoS properties and how their SE 
processes should evolve.  
 
These observations fit more or less with the five 
Maier’s criteria related to the basic qualitative traits of 
SoS and the three derivative implications proposed by 
(DeLaurentis et al, 2006). But the key question is that 
the limitations of human abilities when facing 
complexity could be the source of the observed SoS 
properties for this class of problems. (Bjelkemyr et 
Lindberg, 2007). On one hand, selected architectures 
for each solution result rather of an ad-hoc adjustment 
of the requirements to stay within constraints of the 
existing family of systems according to the SoS process 
vision of (Cocks, 2006). On another hand, some 
exhibited emergent behaviours underlie that several 
capabilities have been left unsatisfied and that the SoS 
thinking to share the interoperation between the 
existing systems is beyond the traditional template.  
 
Another key question is the resilient attribute of the 
product-system designed, manufactured and delivered 
by a system-of enterprise-systems which should be by 
itself resilient to disruptions such as cost-effective 
pressures. Among many traits close to those of SoS, the 
system resilience is dependent of the largely human-
intensive infrastructure to be able to function as a 



whole and of the information management system to be 
architected as a whole (Jackson, 2007). Emergence 
(emergent behaviour) is then perceived as an 
unexpected characteristic of a SoS and must be check 
by preserving the interoperability relationships between 
the component-systems for adaptability issues. That 
could be the role of the active product in our case-study 
to re-synchronise on the fly the connectivity between 
the component-systems considered as resources for 
each product-system mission.  
 
These considerations clearly underscore that these SoS-
like are beyond just complicated systems and 
consequently their engineering beyond traditional 
templates. In advance of a practical SoSE framework, 
our first action of transfer to industry is the 
development of perennial partnerships based on the 
recruitment of doctors-engineers trained on MDSE to 
increase systemic expertise. This cultural issue is 
generally admitted as a basic to cope with complex-
systems engineering as exhibited by SoS-like 
problems.   
 

4.2. Conceptualization issues 
 
Previous works  (Mayer, 1995) conceptualized on the 
basis of the General Systems Theory (Simon, 1990) 
that a system is the normal (positive) result of 
emergence within any SE process leading to an ad-hoc 
solution based on heuristics and normative guidelines 
such as ISO/IEC 152883. The engineered-system as 
result of an engineering-system is a part 
- emerging from a contextual whole which is the 

atomic relationship between the user-system (the 
environment) and the delivered product-system (the 
desired finality) ; 

- Growing as a molecule by refining the successive 
relationships in guided directions with regards to the 
purpose to achieve. 

 
The concept of design patterns was initially proposed 
by (Alexander, 1979). Later, this concept moved into 
the field of software engineering for the design of new 
applications reusing generic structures (Coad, 1992). 
In particular, the patterns were proposed after 
observing that a great number of software applications 
were based on the same principles. Their knowledge 
thus leads to significantly reduced design effort. 
Nowadays, the main design patterns are gathered in the 
reference catalogue of (Gamma et al., 1995). The 
catalogue describes 23 fundamental models to build the 
architecture of complex systems. It capitalizes a major 
part of the know-how acquired from object-oriented 
software engineering by describing how to reuse 
structural and behavioural patterns. These patterns are 
then used to design systems that are more intelligible, 
more flexible and above all more generic. 
Buschmann et al.  (1996) present also a set of 
architectural patterns. This catalogue describes the 
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styles of organization and interaction at a higher level 
of abstraction—by presenting layered architectures, for 
example. 
The description of a design pattern includes 
- A name, to identify the pattern and to extend the 
vocabulary used to describe the architecture. 
- An intention, to summarize what the design pattern 
does with the problem solved and the conditions of use. 
- A context (or motivation), to illustrate how the 
components of the pattern respond to the design 
problem. 
- A detailed description of the pattern, with a graphical 
representation of its structure, a specification of the 
different components, directions for use, particularities 
of the pattern. 
- A range of applicability, to present the situations in 
which the design pattern can be applied. 
- An example of use. 
 
Today, the concept of design pattern moves from 
software engineering to other domains business 
systems, information systems, control systems 
(Cloutier and Verma, 2007)). Coplien and Schmidt 
(1995) propose a set of design patterns dedicated to 
these particular domains. The convergence between 
software engineering and control engineering is 
possible because the models and the processes 
considered are described at a high level of abstraction 
everything is modelled by objects (processes, 
controllers, interactions, etc.). (Shaw, 1995), 
(Fischwick, 1996) and (Sanz and Zalewski, 2000) have 
shown several examples which illustrate this 
convergence.  
 
Our going works aim to approximate the content of this 
conceptualisation by intuitively selecting the composite 
pattern (Fig. 6)) and by deriving it to find similarities 
and to add contextual details (semantics) at each step of 
a MDSE process (Fig.7).  
 
 

Composite
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Fig. 6. The composite pattern 
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Fig. 7. Normal emergence of a system 
 
This fundamental composite pattern reveals that, 
recursively, an element (the composite called here user-
system and then engineering-system) may relate to 
other elements (the components called here engineered-
system) in a hierarchical relationship.  The recursive 
relationship will stop when reaching an elementary 
element (the leaf, called here the product-system). The 
common semantics of this kind of relationship is 
composed of but, when using this pattern, this 
relationship may be adapted to the context of the 
system to be modelled.  
 
For example, the architecture of the studied SoS-like is 
approximated to this composite pattern to which the 
added semantics to the initial derived pattern classifies 
it as a kind of “loosely coupled system”, which is an 
aggregation of other component systems. These 
components may be either, recursively, other loosely 
coupled systems or tight couple systems till one reach a 
leaf in this recursive relationship. This leaf is a fully 
integrated system that is considered as an elementary 
element where components, if they exist, are 
completely hidden. Coming back to some definitions, a 
tightly coupled system is a system composed of 
elementary elements, visible but so tightly linked 
together that the modification of one of them may 
cause trouble to the high order system that embeds it.  
 
By definition, this relationship is recursive (even 
fractal) as any system is produced by another higher 
system, answering specific requirements. For a 
dedicated project, the target system is the final 
produced system, in this recursively loop. 
Deriving the “composite” design pattern results then to 
this model, on the right side of the figure 8, where a 
project system produces a target system by putting in 
place systems engineering practices to transform initial 
requirements to technical ones, and thus defining what 
the target system is.  
The challenge for the studied SoSE-like relies with 
weak emergence (Bedau, 1997) to perceive (in the un-
ordered domain), to pattern and to check (in the 
ordered domain) added behaviours due to the 
interactions between the component-systems. This 
must be led by extensive SysML-driven requirements 

analysis (System Modelling Language4) adding more 
details than current practices and experiments such as 
HMS/MAS simulation to track self-organizing patterns 
in order to improve components-systems adaptability. 
 
Another analogy in search of the biology of systems 
has been recently proposed by (Sauser and Boardman, 
2007); they visit the notion of Holon (Koestler, 1967), 
that which is both whole and part simultaneously, in 
order to make stark contrasts between systems (of 
parts) and SoS.  
 
This dualism has been previously addressed by (Kuras, 
2005) to make explicit the role of the environment for a 
multi scale definition of a system 
 
                        S ≡ {patternc}; H 
 
This expression means that a system, S, is a set 
{patternc} along with something called a Holon 
considered as a conceptualization operator to select, 
aggregate and distinguish the subset of relevant 
patterns of S available at this scale of 
conceptualisation.  
Patternc makes up the content our conceptualization 
approximated by the composite pattern to which 
detailed are added (Fig. 3) to make the active product 
possibly a system for product-centric connectivity. This 
composite pattern is further explored to define the SE 
process for MDSE purposes (Fig. 8). Our intent is to 
point out that theses SoSE processes meet those of the 
HMS community on the design of complex emergent 
systems (Valckenaers et al., 2003). Such model may be 
considered as a SoIS pattern (System of Interoperable 
Systems) that may be instantiated and derived for 
specific modelling purpose. The resulting specific 
model then provides elicitation of systems interfaces, 
classifying systems components through a generic 
upper ontology and defining their interoperation 
relationships. 
 
Similarly, the SE process is modelled with the 
composite, transforms initial requirements, coming 
from a client, to technical requirements and constraints 
that define a target system to be produced. 
 

4.3. Architecting and modelling issues 
 
The conceptualization of both the engineered and 
engineering systems needs their models to be fully 
coherent. Indeed, the recursive relationship as stated 
previously allows the specification of these systems 
with different refinements levels. Each of those 
refinement levels is then defined taking into account 
different points of view: from stakeholders to systems 
engineers ones. Each of these views specifies either a 
component of the engineered system, or a composite 
part of it. These many views must then be guided 

                                                 
4 OMG SysML, System Modeling Language, 
www.sysml.org 



though best practices, formalized into a modelling 
framework. The Zachman framework (ZFW) 
(Zachman, 1987) (Sowa and Zachman, 1992) meets 
our modelling requirements because of its multi-views 
and multi-abstraction levels definitions. Indeed, this 
framework has theoretical foundations in the domain of 
Model-Driven Engineering (MDE) (McGovern, et al. 
2003), domain that mainly suggests best practices and 
practical tools for modelling a system through models 
transformation, mapping and linking. This engineering 
process, involving different actors, from systems 
specification to design and implementation stages is 
obviously recursive. This implies composite and 
structured definitions along with coherent models 
transformation. 
 
As already presented in recent work (Panetto, et al. 
2007), the Zachman framework may adapted and 
derived to take into account, recursively, many points 
of view. One single Zachman matrix is not sufficient to 
model a whole complex engineered system together 
with its engineering one. Better, when such system is 
composed of sub-systems and when, moreover, it may 
also be considered as a multi scale SoIS, the 
recursiveness of the framework (Fig. 9), based on the 
composite pattern, ensures, by design, the effective 
coherence between systems models in a SoS-like 
context. 
 
The engineering system (project system) finality is to 
derive the composite pattern and to instantiate generic 
models (including generic frameworks), for a specific 
project. The resulting instantiated models are then 
recursivelly embbeded into Zachman frameworks 
instances (Fig. 10). Our going work aims to explore the 
recursive composite loop. This loop is endding when 
from an engeneered system view, the framework 
specifies the basic components (fully integrated 
systems) models (Fig. 9). To be coherent with SE 
practices, this last level of conceptualization 
instantiates the Zachman framework embbeding 
models based on SysML, a UML profile based on 
UML2 (Fig. 11). 
 
However, while the recursive composite loop allows, 
from an engineering system view, to simplify the 
human understanding of SoS-like hierarchical models, 
it also emphasizes the inherent complexity of such 
SoS-like, from an engineered system view. In order to 
border this complexity, one of the main research 
challenges concerns the quantitative measure of SoS-
like complexity related to the connectivity property 
between enterprise-systems (Coll-Plexity European 
project5) (Schuh, et al., 2006) and the level of 
interoperability between enterprise-systems basic 
components (Ford, et al., 2007). 
 
 

                                                 
5 Coll-Plexity FP6 STREP N° 12781 (Collaborations as 
Complex Systems) 

5. CONCLUSION 
 
The focus of this paper is mainly the evolution of 
Enterprise Integration as the evolution of the 
interoperation complexity between existing enterprise 
and components systems architected as a SoS-like to 
achieve a specific purpose in a given context.  Current 
approaches to interoperability for Enterprise 
Integration issues are examined as solutions to combine 
and implement enterprise-systems relationships. 
Nevertheless, these solutions are not sufficient when 
the number of relationships expand because of ad-hoc 
interfaces that do not take into account existing 
standards.  
 
The enterprise system that we considered in the paper 
is the system of interest. In a system-of-systems, the 
number of possible combinations of interactions among 
the systems is theoretically infinite. System 
“unravelling” have an intelligence of their own as they 
expose hidden connections, neutralize redundancies, 
and exploit chance circumstances for which no system 
engineer might plan. In this paper, we propose a new 
paradigm for system-of-systems design. 
 
Rather than decomposing each system within the 
system-of-systems in a functional fashion, we treat the 
system-of-systems as a single entity that is comprised 
of abstract classes. 
 
We demonstrate how our paradigm can be used both to 
avoid the introduction of accidental complexity and to 
control essential complexity by applying object-
oriented concepts of decentralized control flow, 
minimal messaging between classes, implicit case 
analysis, and information-hiding mechanisms. We 
argue that our paradigm can aid in the creation of 
sound designs for the system-of-systems in contrast to 
creating a federation of systems through a highly 
coupled communication medium. 
 
 



 
 
Fig. 8. Systems Engineering model-driven pattern 
 
 

 
Fig. 9. Composite pattern-based recursive frameworks 
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Fig. 10.  From generic models and frameworks to the recursive modelling hierarchy 
 

 
 
Fig. 11. UML2 and SysML mapped onto the Zachman framework 
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