
HAL Id: hal-00168535
https://hal.science/hal-00168535v1

Submitted on 21 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

System of Enterprise-Systems Integration Issues: an
Engineering Perspective

Gérard Morel, Hervé Panetto, Frédérique Mayer, Jean-Philippe Auzelle

To cite this version:
Gérard Morel, Hervé Panetto, Frédérique Mayer, Jean-Philippe Auzelle. System of Enterprise-Systems
Integration Issues: an Engineering Perspective. IFAC Conference on Cost Effective Automation in
Networked Product Development and Manufacturing, IFAC-CEA’07, Oct 2007, Monterrey, Mexico.
pp.CDROM. �hal-00168535�

https://hal.science/hal-00168535v1
https://hal.archives-ouvertes.fr

SYSTEM OF ENTERPRISE-SYSTEMS INTEGRATION ISSUES AN ENGINEERING PERSPECTIVE.

Morel G. 1, Panetto H.1, Mayer F. 2, Auzelle J.P. 1

1 Centre de Recherche en Automatique de Nancy (CRAN - UMR 7039), Nancy-University, CNRS, France
{gerard.morel, jean-philippe.auzelle, herve.panetto}@cran.uhp-nancy.fr

2 ERPI, ENSGSI, Nancy-University, France
frederique.mayer@ensgsi.inpl-nancy.fr

Abstract Today’s needs for more capable enterprise systems in a short timeframe is leading
more organizations toward the integration of existing component-systems into broader
intra-organizational enterprise-systems and their integration into inter-organizational
systems of enterprise-systems. Although important R&D efforts lead to a general consensus
that Enterprise Modelling and IT Systems Interoperability are keys to Enterprise Integration
to align the human-intensive infrastructure with the information-intensive architecture,
these integration issues are not handled well in traditional systems engineering practices.
Bridging the gap from an integrated system to a system of interoperable systems for
architecting such broader enterprise-systems or complex systems of enterprise-systems
requires ‘multiple scale system thinking’ to be fully comprehended beyond the ‘system
process’ template of traditional systems engineering. This survey paper discusses some key
problems, trends and accomplishments for Enterprise Integration with a systemic approach
before advocating the System of Systems (SoS) paradigm to explore some rationales and
forecasts in research and engineering. Copyright © 2007 IFAC

Keywords: Enterprise Integration, Systems Interoperability, Systems Engineering, System
of Systems, Enterprise Modelling.

1. INTRODUCTION

Today’s needs for more capable enterprise systems in a
short timeframe are leading more organizations toward
the integration of existing component-systems into
broader intra-organizational or inter-organizational
enterprise-systems. The remaining challenge of
enterprise integration (EI) is to provide the right
information at the right place at the right time for
decision-making by integrating these heterogeneous
information-intensive product-systems to achieve
vertical business-to-manufacturing as well as
horizontal business-to-business integration (Giachetti,
2004). Advances in information technologies (IT)
applications interoperability facilitate implementation
issues but are not efficient to support the single
enterprise as well as the networked enterprise to move
from tightly coupled systems based on enterprise
application integration (EAI) to loosely coupled
systems based on service-oriented architectures (SOA).

The integration in manufacturing paradigm (CIM
concept) which underlies the global optimality of a
monolithic enterprise-system fail to face this evolution,
mainly because the related modelling frameworks are
not appropriate to solve problems that continually
change as they are being addressed. The intelligence in
manufacturing paradigm (IMS concept) which is
addressing the complexity to architect heterarchical
enterprise-systems has difficulty to demonstrate its
efficiency in real industrial environment (Marik et al.,
2007), mainly because of the lack of a modelling
framework to define, to develop, to deploy and to test
self-organizing systems (Valckenaers 2003).

Enterprise modelling (EM) to the large meaning of the
set of models necessary to manage the ontological
issues related to control an organisation behaviour fails
to penetrate the enterprise world despite important
R&D efforts (Chapurlat, 2007). Modelling in
enterprise based on model-driven systems engineering
(MDSE) is not a current practice. A rough model,
rather semantically poor, is built on demand for a
specific project to deliver a specific solution, even if
this solution is parameterized from a generic
component-system. Indeed, a component-system is a
combination of hardware and software but also
knowledge packaged by a vendor (COTS) as a product-
system to offer generic facilities. This product-system
is then customized to perform specific stated purposes
for a target enterprise-system to deliver its own
(different) product-system. The modelling work is
generally made by an external actor consulting in IT
organization and the resulting enterprise-component
tightly couples the parameterized application, its
related engineering and the associated enterprise
knowledge. Thus, enterprise-systems are supplier-
intensive and each enterprise-component is not easily
adaptable by the internal actors without an enterprise-
system model.

These integration issues are not handled well in
traditional systems engineering templates (SE) because
of the increasing complexity to architect enterprise-
systems as a whole for each opportunistic
collaboration; this from the bottom set of
heterogeneous component systems to the system of
systems (SoS) that integrates them, while they continue
to exist on their own missions (Maier, 1998).

We agree that the essence of enterprise integration is
the recursively interoperation of constituent systems to
compose a system to achieve a specific purpose in a
given context (Carney at al., 2005).

The related interoperability relationship can be
implemented in several ways to compose a fully,
tightly or loosely integrated system or a SoS depending
on the adaptability of the constituent systems and the
assigned mission. Bridging the gap from an integrated
system to a system of interoperable systems underlies
knowledge-intensive organizational and cultural issues
beyond technological ones requiring multi scale
modelling frameworks to cope with the limitations of
human abilities to face complexity (Bjelkemyr et
Lindberg, 2007). Understanding the partition between
the ordered (directed) domain of what is known or
knowable and the un-ordered (emergent) domain of
what can be patterned from interactions perceptions is
of importance to engineer a system of enterprise-
systems with a SoS-like perspective (Fig. 1).

Fig. 1. Components connection strength of Cynefin
domains (Kurtz and Snowden, 2003)

While the SoSE paradigm is still in its infancy, some
frameworks are being developed for decision-making
and cost-effective management issues to face the
emerging SoS problems (Gorod et al., 2007).
Nevertheless, pragmatic issues cope with unclear bot-
top (bottom-up, top-down) approaches to point that the
fundamental template of any SE project must progress
from the top down to satisfy the intended mission of a

Un-ordered domain Ordered domain

‘System Process’

 ‘Multi Scale
System’

‘Complex System’

‘Simple System’

‘Complicated System’

‘Simple Scale
System’

unique target-SoS, even if bottom-up engineering
decisions are made to reuse existing systems (Cocks,
2006).

All these considerations remain research and
development open issues pointing that the notion of
system must be revisited in a multi scale system
thinking to be fully comprehended (Kuras and White,
2005) beyond the system process and the single scale
system thinking templates of traditional systems
engineering.

This paper overviews in section 2 some Enterprise
integration issues (Vernadat, 2007) based on the
knowledge gained in major European projects related
to interoperability (Panetto, 2007) (Doumeights et al.,
2007). Section 3 deals with our main results and
ongoing research works to explore some SoSE aspects
of product-driven systems control by prototyping an IT
architecture in which the product itself is active to
interoperate with enterprise-systems to ensure a
B2M2B service (Fig. 2). Industrial transfers of this
approach exhibit complementary SoS properties and
improve this partial understanding of why should be
made for better SoSE practices in EI. Thus,
conceptualization trends and open issues are discussed
in section 4 before to conclude.

2. ENTERPRISE INTEGRATION ISSUES

Integration is generally considered to go beyond mere
interoperability to involve some degree of functional
dependence. While interoperable systems can function
independently, an integrated system loses significant
functionality if the flow of services is interrupted. An
integrated family of systems must, of necessity, be
interoperable, but interoperable systems need not be
integrated. Integration also deals with organisational
issues, in possibly a less formalised manner due to
dealing with people, but integration is much more
difficult to solve, while interoperability is more of a
technical issue.
Compatibility is something less than interoperability. It
means that systems/units do not interfere with each
other’s functioning. But it does not imply the ability to
exchange services. Interoperable systems are by
necessity compatible, but the converse is not
necessarily true. To realize the power of networking
through robust information exchange, one must go
beyond compatibility.
In sum, interoperability lies in the middle of an
“Integration Continuum” between compatibility and
full integration. It is important to distinguish between
these fundamentally different concepts of
compatibility, interoperability, and integration, since
failure to do so, sometimes confuses the debate over
how to achieve them. While compatibility is clearly a
minimum requirement, the degree of
interoperability/integration desired in a joint family of
systems or units is driven by the underlying operational
level of those systems.

2.1. Enterprise-system architecting

The problems of enterprise applications interoperability
can be defined according to various points of view and
perspectives. These aspects correspond to modelling
frameworks, with, as a common point, an implicit or
explicit perspective of evolution according to a linear
scale the more an application is interoperable with
another and thus higher in a value scale, the more it
relates to a high level of abstraction of the models and
their semantics. For this reason, an interoperability
development process is often classified in so-called
"levels of interoperability" in the literature.
A widely recognized model for information systems
interoperability is, ‘Levels of Information Systems
Interoperability’ (LISI) (C4ISR, 98). LISI focuses on
the increasing levels of sophistication of systems
interoperability (Isolated systems, connected
interoperability in a peer-to-peer environment,
Functional interoperability in a distributed
environment, Domain based interoperability in an
integrated environment; Enterprise based
interoperability in a universal environment. LISI
focuses on technical interoperability and the
complexity of interoperations between systems. The
model does not address the environmental and
organizational issues that contribute to the construction
and maintenance of interoperable systems.
Acknowledging this limitation, Clark and Jones (1999)
proposed the Organizational Interoperability Maturity
model (OIM), which extends the LISI model into the
more abstract layers of command and control support
(Independent, Ad hoc, Collaborative, Integrated,
Unified). Beyond this organisational interoperability,
the type of content of the exchange flows is also an
issue. To cope with it, the NATO C3 Technical
Architecture (NC3TA) Reference Model for
Interoperability (NATO, 2003) focuses on technical
interoperability and establishes interoperability degrees
and sub-degrees (Unstructured Data Exchange,
Structured Data Exchange, Seamless Sharing of Data,
Seamless Sharing of Information). The degrees are
intended to categorize how operational effectiveness
could be enhanced by structuring and automating the
exchange and interpretation of data.
Moreover, at a conceptual level, Tolk (2003) has
developed the Levels of Conceptual Interoperability
(LCIM) Model that addresses levels of conceptual
interoperability that go beyond technical models like
LISI. Systems interoperability is not only a technical
problem (as stated by LISI or LCIM) but also deals
with organisational issues (OIM). These aspects of
interoperability are coherent with the definitions
proposed by the European Interoperability Framework
(EIF, 2004), which considers three aspects of
interoperability (Organisational, Semantic, Technical).

While choosing a framework is a necessary condition
for facilitating interoperability engineering because
they are representing best practices in the domain of
interoperable systems engineering.

2.2. Enterprise-system modelling

Enterprise modelling is the set of activities or
processes used to develop the various parts of an
enterprise-system model to address some desired
modelling finality. It can also be defined as the art of
“externalising” enterprise knowledge, i.e. representing
the enterprise in terms of its organisation and
operations (e.g. processes, behaviour, activities,
information, object and material flows, resources and
organisation units, and system infrastructure and
architectures). The finality is to make explicit facts and
knowledge that add value to the enterprises or can be
shared by business applications and users. The prime
goal of enterprise-system modelling is not only to be
applied for better enterprise integration but also to
support analysis of an enterprise, and more specifically,
to represent and understand how the enterprise works,
to capitalize acquired knowledge and know-how for
later reuse, to design (or redesign) a part of the
enterprise, to analyse some aspects of the enterprise (by
e.g. economic analysis, organization analysis,
qualitative or quantitative analysis,...), to simulate the
behaviour of (some part of) the enterprise, to make
better decisions about enterprise operations and
organization, or to control, coordinate and monitor
some parts of the enterprise.

The intensive production of tools, implementing
various different enterprise-system modelling
languages, has led to a Tower of Babel situation in
which the many tools, while offering powerful and
distinct functionalities, are unable to interoperate and
can hardly or not at all communicate and exchange
models. This is a serious drawback for awareness,
acceptance and wide use of the EM technology since
enterprises cannot capitalise from previous modelling
efforts. This situation hinders true enterprise
integration, interoperability, and sharing enterprise
knowledge.
Enterprise-system Modelling is an engineering
discipline closely related to computerised systems. As
such, it requires the combined use of Enterprise
Modelling Software Environments (EMSE), Enterprise
Modelling Languages (EML), and Enterprise
Engineering Methodologies (EEM). According to this
point of view, there exist a lot of fragmented
approaches to enterprise modelling (including
Methodologies, Languages and Tools). Enterprise-
system modelling approaches may also have very
different objectives and needs.

Moreover Enterprise-system models are dependent of
the systems engineering that produces them. This
engineering includes best practices related to a specific
domain that fail to take advantage to the enterprise
modelling world-wide research. While standard
initiatives and European R&D projects are trying to
solve the problem of managing heterogeneous
information coming from different systems by
formalising the technical knowledge related to products

technical data and their processes, they are not yet
dealing with reference enterprise-system modelling
engineering, key drawback for loose integration. With
the support of a product-driven IT architecture, we will
revisit some definitions related to systems, system-of-
systems, and systems engineering through the
conceptualisation of these concepts in order to reach a
common understanding on its semantics.

3. SYSTEM OF ENTERPRISE-SYSTEMS CASE-
STUDY

Important research issue is that the complexity of SoS-
like designs makes formal proof of their performance
and capabilities impractical. Research developments
must be tested in emulated enterprise-systems
reflecting the size and complexity of the real world.
beyond the toy test cases. Our focus is to prototype a
product-driven IT architecture to conceptualize system
integration issues for research purposes in order to
improve SoSE practices for industrial transfer issues.
The main modelling concept is to make the product
interactive as the ‘controller’ of the manufacturing
enterprise’s resources for enabling ‘on the fly’
interoperability relationships between existing product-
systems and ensuring coherence between the physical
and information flows all through the product life-cycle
(Fig. 2) .

Fig. 2. Product-driven manufacturing enterprise-
wide control (Morel et al., 2003)

3.1. B2M2B case-study

This IT architecture is composed of a set of enterprise
systems (PDM, ERP, MES, and SFC) distributed on
two sites in Italy and France. This case-study emulates
a networked product development and manufacturing
virtual enterprise whose objective is to design, produce
and sell products made from assembly of elementary
components. The prototype will take advantage of new
IT technologies and architecture such as SOA (Service
Oriented Architecture), web services, and embedded
systems. The active products (smart products) are, by
definition (Wong et al., 2007), loosely coupled to
maintain resilient relationships with the ERP-MES-
PDM-SFSC systems by synchronizing transactions

throughout a sort of product centric Enterprise Service
Bus (ESB). Other works deal with a benchmarking
platform to emulate industrial case-studies and to
evaluate the performance of product-driven controls for
hybrid centralized/decentralized decision-making
purposes (Gouyon, 2004) (Simao, 2005) (Pannequin,
2007).

The studied enterprise-system is the ‘system of interest’
related to a new mission to ensure the product
traceability for which an architectural solution must be
prototyped from the existing enterprise-systems.

3.2. B2M2B system modelling

Our approach is a particular interpretation of the HMS
paradigm (Morel et al., 2003) aiming to implement the
interoperability relationship at a MES level as a
product-holon (a system) to ensure a recursive
interoperation between the systems (ERP, PDM) which
process the services (information) and the resources
(SFC) which transform the goods.

The related concept of holon has been formalized as an
aggregation of an information object and a physical
object to be implemented in a commercial CASE tool1
through a generic meta-model (Fig. 3). This BPM tool
contains a business process analysis tool, modelling
tools, design environments and some SE templates.
This BPM tool has also its own meta-model that
described all concepts and objects ready to use as well
as all relationships that exist between those concepts.
This meta-model has been customized and specialised
for embedding our holon concept and thus integrating
it into existing business process diagrams.

Fig. 3. Meta-model of a Holon

1 MEGA Suite, MEGA International, www.mega.com

The proposed model-driven approach for modelling
product information, along its lifecycle, is to ensure the
completeness of such model with regard to the various
networked enterprises applications that will
interoperate with it. The first assumption of our work is
a necessary synchronous modelling of product material
views and product informational views (Baïna, et al,
2008). Indeed, in a manufacturing enterprise
environment, information and material flows are often
considered separately, however information is always
referring to a physical exchange and, conversely,
material flows are always accompanied with some
information. Throughout its lifecycle, the product
evolves in a dual way, a physical product that is subject
of physical processes, and an informational product
that combines all information collected about product
states during its lifecycle and product information
needed for production control, quality assessment and
traceability management. Moreover, our aim is more to
simplify the modelling of different aspects of the
product (information and material) by considering the
aggregation of information about the product and the
conceptual view all applications may have about it.
‘Information contents’ are perceived as holons (whole
and part) at the ‘scope row’ of the Zachman framework
(Zachman, 1987) (Sowa and Zachman, 1992)
independently of their nature (data, event, material …)
to identify the core processes perform by the business
and where they operate. Our adaptation of the Zachman
framework is defined by a sequence of artefacts
represented by a specific cell in matrix. The transition
from one cell to one other is based on syntactic
transformations or semantics mapping between models
(Baina 2006).

On-going works concerns the definition of the
information model necessary to the product-holon to
become an active object. With such information, it may
be interoperable per se with the many applications
involved in manufacturing enterprises and, as far as it
embeds knowledge about itself, storing all its technical
data, it will be able to act as a common source of
understanding between enterprises applications. The
first step in this direction is endeavouring existing
standards related to product technical data modelling
(Fig. 4) for the definition of products information,
allowing a non ambiguous model to represent
knowledge and concepts, processable by the many
enterprise applications adopted in manufacturing
environment.

Fig. 4. PDM model instatiation

We are formalising this information model as a
Product Ontology, thus including domain heuristics,
able to express and share product knowledge among
systems (Tursi, et al, 2007). This explicit specification
of our shared conceptualization (Gruber, 1993) allows
the formalization of the semantics of objects,
formalizing and identifying the modelling concepts,
their dynamic behaviour and discovering their inter-
relative mappings (Fig. 5), through FOL rules.

The increasing performance of the infotronics
technology (agent on RFID) is expected making a
concrete sense in near future to our product-driven
control paradigm as a contribution to the paradigm the
order is the product for product oriented manufacturing
systems for reconfigurable enterprises based on
distributed automation2.

Fig. 5. Mapping discovery through DL Lite
formalisation

4. DISCUSSION ON SYSTEM-OF ENTERPRISE-
SYSTEMS ISSUES

These above sections show that enterprise-systems are
reaching a certain size and level of complexity, so that

2 www.pabadis-promise.org

traditional modelling and engineering approaches are
not sufficient for addressing all relevant issues (ordered
domain of figure 1).

The component-systems that constitute a system-of
enterprise-systems were not designed to work together;
each component-system may be of different age and
technology; the system of systems has no clear lead
system that is a system that will oversee the integration
of the systems.

The notion of system, central to all the above
paradigms and to systems engineering for practical
purposes, must be revised to accept the idea that
exploring the un-ordered (emergent order) domains
(Waldrop, 1992) is a way to support decision-making
in the varied dynamical contexts of SoSE when moving
from strong central connections to weak ones (Fig. 1,
from right to left).

4.1. Characterization issues

Many definitions are being amended with a number a
required properties (Sage and Cuppan, 2001) (Fisher,
2006) to make SoS a candidate rationale artefact to
distinguish a very large and complex socio-technical
system of interoperable enterprise-systems from a
monolithic non-SoS (Carlock and Fenton, 2001).

Although their socio-technical complexity seems
smaller than for systems commonly exemplified as
SoS, we explored this promising artefact on four
industrial case studies for enterprise information-
intensive systems modelling issues in order to improve
our understanding of why these Enterprise-systems
seems exhibit SoS properties and how their SE
processes should evolve.

These observations fit more or less with the five
Maier’s criteria related to the basic qualitative traits of
SoS and the three derivative implications proposed by
(DeLaurentis et al, 2006). But the key question is that
the limitations of human abilities when facing
complexity could be the source of the observed SoS
properties for this class of problems. (Bjelkemyr et
Lindberg, 2007). On one hand, selected architectures
for each solution result rather of an ad-hoc adjustment
of the requirements to stay within constraints of the
existing family of systems according to the SoS process
vision of (Cocks, 2006). On another hand, some
exhibited emergent behaviours underlie that several
capabilities have been left unsatisfied and that the SoS
thinking to share the interoperation between the
existing systems is beyond the traditional template.

Another key question is the resilient attribute of the
product-system designed, manufactured and delivered
by a system-of enterprise-systems which should be by
itself resilient to disruptions such as cost-effective
pressures. Among many traits close to those of SoS, the
system resilience is dependent of the largely human-
intensive infrastructure to be able to function as a

whole and of the information management system to be
architected as a whole (Jackson, 2007). Emergence
(emergent behaviour) is then perceived as an
unexpected characteristic of a SoS and must be check
by preserving the interoperability relationships between
the component-systems for adaptability issues. That
could be the role of the active product in our case-study
to re-synchronise on the fly the connectivity between
the component-systems considered as resources for
each product-system mission.

These considerations clearly underscore that these SoS-
like are beyond just complicated systems and
consequently their engineering beyond traditional
templates. In advance of a practical SoSE framework,
our first action of transfer to industry is the
development of perennial partnerships based on the
recruitment of doctors-engineers trained on MDSE to
increase systemic expertise. This cultural issue is
generally admitted as a basic to cope with complex-
systems engineering as exhibited by SoS-like
problems.

4.2. Conceptualization issues

Previous works (Mayer, 1995) conceptualized on the
basis of the General Systems Theory (Simon, 1990)
that a system is the normal (positive) result of
emergence within any SE process leading to an ad-hoc
solution based on heuristics and normative guidelines
such as ISO/IEC 152883. The engineered-system as
result of an engineering-system is a part
- emerging from a contextual whole which is the

atomic relationship between the user-system (the
environment) and the delivered product-system (the
desired finality) ;

- Growing as a molecule by refining the successive
relationships in guided directions with regards to the
purpose to achieve.

The concept of design patterns was initially proposed
by (Alexander, 1979). Later, this concept moved into
the field of software engineering for the design of new
applications reusing generic structures (Coad, 1992).
In particular, the patterns were proposed after
observing that a great number of software applications
were based on the same principles. Their knowledge
thus leads to significantly reduced design effort.
Nowadays, the main design patterns are gathered in the
reference catalogue of (Gamma et al., 1995). The
catalogue describes 23 fundamental models to build the
architecture of complex systems. It capitalizes a major
part of the know-how acquired from object-oriented
software engineering by describing how to reuse
structural and behavioural patterns. These patterns are
then used to design systems that are more intelligible,
more flexible and above all more generic.
Buschmann et al. (1996) present also a set of
architectural patterns. This catalogue describes the

3 www.incose.org

styles of organization and interaction at a higher level
of abstraction—by presenting layered architectures, for
example.
The description of a design pattern includes
- A name, to identify the pattern and to extend the
vocabulary used to describe the architecture.
- An intention, to summarize what the design pattern
does with the problem solved and the conditions of use.
- A context (or motivation), to illustrate how the
components of the pattern respond to the design
problem.
- A detailed description of the pattern, with a graphical
representation of its structure, a specification of the
different components, directions for use, particularities
of the pattern.
- A range of applicability, to present the situations in
which the design pattern can be applied.
- An example of use.

Today, the concept of design pattern moves from
software engineering to other domains business
systems, information systems, control systems
(Cloutier and Verma, 2007)). Coplien and Schmidt
(1995) propose a set of design patterns dedicated to
these particular domains. The convergence between
software engineering and control engineering is
possible because the models and the processes
considered are described at a high level of abstraction
everything is modelled by objects (processes,
controllers, interactions, etc.). (Shaw, 1995),
(Fischwick, 1996) and (Sanz and Zalewski, 2000) have
shown several examples which illustrate this
convergence.

Our going works aim to approximate the content of this
conceptualisation by intuitively selecting the composite
pattern (Fig. 6)) and by deriving it to find similarities
and to add contextual details (semantics) at each step of
a MDSE process (Fig.7).

Composite

Component

Leaf

*
child

0..1parent

Fig. 6. The composite pattern

User System

Engineered System

Product System

0..1

*

uses a

0..11

desires a

Engineering System

1

0..1 engineers

<<normal emergence>>

Fig. 7. Normal emergence of a system

This fundamental composite pattern reveals that,
recursively, an element (the composite called here user-
system and then engineering-system) may relate to
other elements (the components called here engineered-
system) in a hierarchical relationship. The recursive
relationship will stop when reaching an elementary
element (the leaf, called here the product-system). The
common semantics of this kind of relationship is
composed of but, when using this pattern, this
relationship may be adapted to the context of the
system to be modelled.

For example, the architecture of the studied SoS-like is
approximated to this composite pattern to which the
added semantics to the initial derived pattern classifies
it as a kind of “loosely coupled system”, which is an
aggregation of other component systems. These
components may be either, recursively, other loosely
coupled systems or tight couple systems till one reach a
leaf in this recursive relationship. This leaf is a fully
integrated system that is considered as an elementary
element where components, if they exist, are
completely hidden. Coming back to some definitions, a
tightly coupled system is a system composed of
elementary elements, visible but so tightly linked
together that the modification of one of them may
cause trouble to the high order system that embeds it.

By definition, this relationship is recursive (even
fractal) as any system is produced by another higher
system, answering specific requirements. For a
dedicated project, the target system is the final
produced system, in this recursively loop.
Deriving the “composite” design pattern results then to
this model, on the right side of the figure 8, where a
project system produces a target system by putting in
place systems engineering practices to transform initial
requirements to technical ones, and thus defining what
the target system is.
The challenge for the studied SoSE-like relies with
weak emergence (Bedau, 1997) to perceive (in the un-
ordered domain), to pattern and to check (in the
ordered domain) added behaviours due to the
interactions between the component-systems. This
must be led by extensive SysML-driven requirements

analysis (System Modelling Language4) adding more
details than current practices and experiments such as
HMS/MAS simulation to track self-organizing patterns
in order to improve components-systems adaptability.

Another analogy in search of the biology of systems
has been recently proposed by (Sauser and Boardman,
2007); they visit the notion of Holon (Koestler, 1967),
that which is both whole and part simultaneously, in
order to make stark contrasts between systems (of
parts) and SoS.

This dualism has been previously addressed by (Kuras,
2005) to make explicit the role of the environment for a
multi scale definition of a system

 S ≡ {patternc}; H

This expression means that a system, S, is a set
{patternc} along with something called a Holon
considered as a conceptualization operator to select,
aggregate and distinguish the subset of relevant
patterns of S available at this scale of
conceptualisation.
Patternc makes up the content our conceptualization
approximated by the composite pattern to which
detailed are added (Fig. 3) to make the active product
possibly a system for product-centric connectivity. This
composite pattern is further explored to define the SE
process for MDSE purposes (Fig. 8). Our intent is to
point out that theses SoSE processes meet those of the
HMS community on the design of complex emergent
systems (Valckenaers et al., 2003). Such model may be
considered as a SoIS pattern (System of Interoperable
Systems) that may be instantiated and derived for
specific modelling purpose. The resulting specific
model then provides elicitation of systems interfaces,
classifying systems components through a generic
upper ontology and defining their interoperation
relationships.

Similarly, the SE process is modelled with the
composite, transforms initial requirements, coming
from a client, to technical requirements and constraints
that define a target system to be produced.

4.3. Architecting and modelling issues

The conceptualization of both the engineered and
engineering systems needs their models to be fully
coherent. Indeed, the recursive relationship as stated
previously allows the specification of these systems
with different refinements levels. Each of those
refinement levels is then defined taking into account
different points of view: from stakeholders to systems
engineers ones. Each of these views specifies either a
component of the engineered system, or a composite
part of it. These many views must then be guided

4 OMG SysML, System Modeling Language,
www.sysml.org

though best practices, formalized into a modelling
framework. The Zachman framework (ZFW)
(Zachman, 1987) (Sowa and Zachman, 1992) meets
our modelling requirements because of its multi-views
and multi-abstraction levels definitions. Indeed, this
framework has theoretical foundations in the domain of
Model-Driven Engineering (MDE) (McGovern, et al.
2003), domain that mainly suggests best practices and
practical tools for modelling a system through models
transformation, mapping and linking. This engineering
process, involving different actors, from systems
specification to design and implementation stages is
obviously recursive. This implies composite and
structured definitions along with coherent models
transformation.

As already presented in recent work (Panetto, et al.
2007), the Zachman framework may adapted and
derived to take into account, recursively, many points
of view. One single Zachman matrix is not sufficient to
model a whole complex engineered system together
with its engineering one. Better, when such system is
composed of sub-systems and when, moreover, it may
also be considered as a multi scale SoIS, the
recursiveness of the framework (Fig. 9), based on the
composite pattern, ensures, by design, the effective
coherence between systems models in a SoS-like
context.

The engineering system (project system) finality is to
derive the composite pattern and to instantiate generic
models (including generic frameworks), for a specific
project. The resulting instantiated models are then
recursivelly embbeded into Zachman frameworks
instances (Fig. 10). Our going work aims to explore the
recursive composite loop. This loop is endding when
from an engeneered system view, the framework
specifies the basic components (fully integrated
systems) models (Fig. 9). To be coherent with SE
practices, this last level of conceptualization
instantiates the Zachman framework embbeding
models based on SysML, a UML profile based on
UML2 (Fig. 11).

However, while the recursive composite loop allows,
from an engineering system view, to simplify the
human understanding of SoS-like hierarchical models,
it also emphasizes the inherent complexity of such
SoS-like, from an engineered system view. In order to
border this complexity, one of the main research
challenges concerns the quantitative measure of SoS-
like complexity related to the connectivity property
between enterprise-systems (Coll-Plexity European
project5) (Schuh, et al., 2006) and the level of
interoperability between enterprise-systems basic
components (Ford, et al., 2007).

5 Coll-Plexity FP6 STREP N° 12781 (Collaborations as
Complex Systems)

5. CONCLUSION

The focus of this paper is mainly the evolution of
Enterprise Integration as the evolution of the
interoperation complexity between existing enterprise
and components systems architected as a SoS-like to
achieve a specific purpose in a given context. Current
approaches to interoperability for Enterprise
Integration issues are examined as solutions to combine
and implement enterprise-systems relationships.
Nevertheless, these solutions are not sufficient when
the number of relationships expand because of ad-hoc
interfaces that do not take into account existing
standards.

The enterprise system that we considered in the paper
is the system of interest. In a system-of-systems, the
number of possible combinations of interactions among
the systems is theoretically infinite. System
“unravelling” have an intelligence of their own as they
expose hidden connections, neutralize redundancies,
and exploit chance circumstances for which no system
engineer might plan. In this paper, we propose a new
paradigm for system-of-systems design.

Rather than decomposing each system within the
system-of-systems in a functional fashion, we treat the
system-of-systems as a single entity that is comprised
of abstract classes.

We demonstrate how our paradigm can be used both to
avoid the introduction of accidental complexity and to
control essential complexity by applying object-
oriented concepts of decentralized control flow,
minimal messaging between classes, implicit case
analysis, and information-hiding mechanisms. We
argue that our paradigm can aid in the creation of
sound designs for the system-of-systems in contrast to
creating a federation of systems through a highly
coupled communication medium.

Fig. 8. Systems Engineering model-driven pattern

Fig. 9. Composite pattern-based recursive frameworks

Systems
 Engineering

 Engineered System

Engineering System

1

0..1 defines

0..1

1 engineers

1

0..1

includes

T echnica l
 requirement

Use r System

Initia l requirement

Abstract System

 *

*

in relation with

system_i system_o

T ightly coup led
 System

}{ overlapping

}{ overlapping

}{ connex graph

Engineered System Engineering System

}{ complete, disjoint

Fully Integra ted
 System

2..*
elementary

0..1

composition of

}{ overlapping

Loosely coup led
 System

2..*

*

Environment System

Product System

<<weak
 emergence>>

0..1

1

desires a

SoS

aggregation of

SoSE

Client

0..1

1
provides

0..10..1

contracts

<<weak emergence>>

<<normal emergence>>

<<normal emergence>>1

0..1

Fig. 10. From generic models and frameworks to the recursive modelling hierarchy

Fig. 11. UML2 and SysML mapped onto the Zachman framework

REFERENCES

Alexander C. (1979). The Timeless Way of Building,

Oxford University Press, New York
Baïna, S. (2006). Model-driven interoperability product

oriented approach for enterprise-systems
interoperability. PhD Thesis, Henri Poincaré,
Nancy University (in French).

Baina S., Panetto H., Benali K. (2008). Product
oriented modelling and Interoperability issues. In
Manolopoulos, Y.; Filipe, J.; Constantopoulos, P.;
Cordeiro, J. (Eds.) Enterprise Information Systems
VIII, Lecture Notes in Business Information
Processing, Vol. 3, February, Springer, Berlin,
ISBN 978-3-540-77580-5

Bedau M. (1997) Weak emergence, philosophical
perspectives mind, causation and world. Vol. 11,
Blackwell Publishers.

Bjelkemyr et al. (2007) An engineering systems
perspective on system of systems methodology, 1st
Annual 2007 IEEE Systems Conference, Hawaii

Buschmann R., Meunier H., Rohnert P., Sommerland
M. (1996). Pattern-oriented Software Architecture
– A System of Patterns, Wiley, Chichester.

C4ISR Architectures Working Group report (1998).
Levels of Information Systems Interoperability
(LISI), DoD, February 1998, Washington, DC.

Carlock, P.G., and Fenton, R.E. (2001). Systems of
Systems (SoS) Enterprise Systems Engineering for
Information- Intensive Organizations. Systems
Engineering. 4/4, pp. 242–261.

Carney, D., Fischer D., & Place P. (2005). Topics in
Interoperability System-of-Systems Evolution,
Report CMU/SEI-2005-TN-002.

Chapurlat, V. (2007). Complex systems verification
and validation application to enterprise modelling.
Accreditation to supervise research, Montpellier 2
university (in French).

Clark, T. and R. Jones (1999). Organisational
Interoperability Maturity Model for C2, In
Proceedings of the Command And Control
Research And Technology Symposium (CCRTS),
June 29, July 1, Newport, RI, USA.

Cloutier R.J. and Verma D. (2007). Applying the
concept of patterns to systems architecture.
Systems Engineering Journal, 10/2, 138-154,
Willey

Coad P. (1992). Object-oriented patterns,
Communications of the ACM 35 (9), 152–159.

Cocks, D. (2006). How should we use the term "system
of systems" and why should we care? 16th Annual
International Symposium Proceedings, System
Engineering Shining Light on the Tough Issues,
Orlando.

Coplien J.O., Schmidt D.C. (1995). Pattern Language
of Program Design, Addison-Wesley, Reading

Csaji B.C., Monostori L. (2008). A Complexity Model
for Networks of Collaborating Enterprises. 17th
IFAC World Congress, July 6-11, Seoul, South
Korea

DeLaurentis Daniel, Fry Donald, et al. (2006).
"Modeling Framework and Lexicon for System-of-

Systems Problems." IEEE Transactions on
Systems, Man, and Cybernetics-Part A Systems
and Humans.

Doumeingts G., Mueller J., Morel G., Vallespir B.
(2007) Guest Editors, Book on Enterprise
Interoperability new Challenges and Approaches,
proceedings of I-ESA’06, Springer.

EIF (2004), European Interoperability Framework for
pan-European eGovernment Services,
Interoperable Delivery of European eGovernment
Services to public Administrations, Businesses and
Citizens (IDABC), November, Luxembourg.

Fischwick P.A. (1996). Toward a convergence of
systems and software engineering, Technical
Report 005, Department of Computer and
Information Science and Engineering, University
of Florida.

Fisher, D. A. (2006). An Emergent Perspective on
Interoperation in Systems of System, Carnegie
Mellon University.

Ford, T., Colombi, J., Graham, S., Jacques, D. (2007).
The Interoperability Score. Proceeding sof the 5th
Annual Conference on Systems Engineering
Research. March 14-16. Stevens Institute of
Technology Campus, Hoboken, New Jersey, USA

Gamma E., Helm R., Johnson R., Vlissides J. (1995).
Design Patterns Elements of Reusable Object-
Oriented Software, Addison-Wesley, Reading

Giachetti, R. E. (2004). A framework to review the
information integration of the enterprise.
International Journal of Production Research,
42(6), 1147–1166.

Giret A. and Botti V. (2004); Holons and Agents.
Journal of Intelligent manufacturing, 15, 645-659.

Gorod Alex, Ryan Gove, et al. (2007). System of
Systems Management A Network Management
Approach. IEEE International Conference on
System of Systems Engineering., San Antonio

Gouyon, D. (2004). Product Driven Control of
Manufacturing Execution Systems synthesis
techniques contribution. PhD Thesis, Henri
Poincaré, Nancy University (In French).

Gruber T.R. (1993). Toward principles for the design
of ontologies used for knowledge sharing. In
Formal Ontology in Conceptual Analysis and
Knowledge Representation (N. Guarino and R.
Poli, eds.), Kluwer Academic Publishers.

ISO 14528 (1999). Industrial Automation Systems –
Concepts and rules for Enterprise Models, TC
184/SC5/WG1, Geneva, Switzerland.

Jackson, S. (2007). System Resilience Capabilities,
Culture and Infrastructure. System Engineering
Key to Intelligence Enterprises. INCOSE 2007 -
17th Annual International Symposium
Proceedings, San Diego.

Koestler, A. (1967) The Ghost in the Machine.
London, UK: Arkana Books.

Kuras and White. (2005). A Multi-Scale Definition of a
System, MITRE Technical Report,
www.mitre.org.

Kurtz and Snowden. (2003) The new dynamics of
strategy sense-making in a complex and

complicated world. IBM Systems Journal, 42/3,
462-482.

McGovern J., Ambler S.W., Stevens M., Linn J.,
Sharan V., and Jo E. (2003). The Practical Guide
to Enterprise Architecture. Prentice Hall

Maier, M. W. (1998). "Architecting principles for
systems-of-system." Systems Engineering Vol.
1(4) 267-284.

Marik, V., Lazansky, J. (2007) Industrial applications
of agent technologies. Control Engineering
Practice.

Mayer F. (1995). Contribution to manufacturing
engineering: application to pedagogical
engineering within a CIME centre. PhD Thesis,
Henri Poincaré, Nancy University (in French).

Morel G., Panetto H., Zaremba M.B., and Mayer F.
(2003). Manufacturing Enterprise Control and
Management System Engineering paradigms and
open issues. In IFAC Annual Reviews in Control.
27/2, 199-209, Elsevier.

NATO Allied Data Publication 34 (ADatP-34) (2003).
NATO C3 Technical Architecture (NC3TA),
Version 4.0.

Panetto H. (2007). Towards a Classification
Framework for Interoperability of Enterprise
Applications. International Journal of CIM, 20/8,
727-740, Taylor & Francis, December, ISSN
0951-192X.

Panetto H., Baïna, S., Morel G. (2007). Mapping the
IEC 62264 models onto the Zachman framework
for analysing products information traceability a
case study. Journal of Intelligent Manufacturing,
18/5, 679-698, Springer Verlag, December, ISSN
0956-5515

Pannequin, R. (2007). Proposition of a benchmarking
environment of product-driven control
architectures. PhD Thesis. Henri Poincaré, Nancy
University (in French).

Sage, A. P. and C. D. Cuppan (2001). "On the Systems
Engineering and Management of Systems of
Systems and Federations of Systems."
Information, Knowledge, Systems Management
Vol. 2 (No. 4) 325-345.

Sanz R., Zalewski J. (2000). Pattern-based control
systems engineering using design patterns to
document, transfer, and exploit design knowledge,
IEEE Control Systems Magazine, 1–15.

Schuh, G., Sauer A., Döring S. (2006). Modelling
collaborations as complex systems. In:
Proceedings of the 4th International Industrial
Simulation Conference (ISC’2006), June 5-7, The
University of Palermo. Palermo, Italy, 168–174.

Shaw M. (1995). Beyond objects a software design
paradigm based on process control, ACM Software
Engineering Notes 20 (1), 27–38.

Simao, J. (2005). A contribution to the development of
a HMS simulation tool and proposition of a meta-
model for holonic control. PhD Thesis, Henri
Poincaré, Nancy University

Simon. (1990) Simon, H., 1996 Sciences of the
Artificial. 3rd edition. MIT Press.

Sowa J. F. and Zachman J. A. (1992). Extending and
Formalizing the Framework for Information
Systems Architecture, IBM Systems Journal, 31/3,
590–616

Tolk, Andreas. (2003) “Beyond Technical
Interoperability – Introducing a Reference Model
for Measures of Merit for Coalition
Interoperability.” In Proceedings of the 8th
International Command and Control Research and
Technology Symposium (ICCRTS), Washington,
DC, June 17-19, 2003.

Tursi A., Panetto H., Morel G., Dassisti M. (2007).
Ontology-based products information
interoperability in networked manufacturing
enterprises. IFAC Cost Effective Automation in
Networked in Product Development and
Manufacturing (CEA’2007), Monterrey NL,
México, October 2-5

Valckenaers, P., H. Van Brussel, et al. (2003). On the
design of emergent systems an investigation of
integration and interoperability issues. Engineering
Applications of Artificial Intelligence, 16, 377-
393, Elsevier

Vernadat F.B. (2007). Interoperable enterprise systems
Principles, concepts, and methods. In IFAC
Annual Reviews in Control. 31/1, 137-145,
Elsevier.

Wong, C., D. McFarlane, et al. (2002). The intelligent
product driven supply chain. IEEE International
Conference on Systems, Man and Cybernetics.

Zachman J. A. (1987). A Framework for Information
Systems Architecture, IBM Systems Journal, 26/3,
276–295

