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Abstract : We report on the electrostatic complexation between polyelectrolyte-neutral 

copolymers and oppositely charged 6 nm-crystalline nanoparticles. For two different dispersions 

of oxide nanoparticles, the electrostatic complexation gives rise to the formation of stable 

nanoparticle clusters in the range 20 – 100 nm. It is found that inside the clusters, the particles are 

“pasted” together by the polyelectrolyte blocks adsorbed on their surface. Cryo-transmission 

electronic microscopy allows to visualize the clusters and to determine the probability 

distributions functions in size and in aggregation number. The comparison between light 

scattering and cryo-microscopy results suggests the existence of a polymer brush around the 

clusters.   

 

Journal of Colloid and Interface Science 22-May-06 / Revised version 10-Jul-06
 

@ 
 jean-francois.berret@paris7.jussieu.fr 

 

 

I - Introduction 

Since the pioneering works by Kataoka and Harada [1,2], it has been recognized that attractive 

interactions between polyelectrolyte-neutral diblock copolymers and oppositely charges species 

result in the formation of new type of colloids. These colloids called polyion complex micelles 

[3] or colloidal complexes [4] form spontaneously by electrostatic self-assembly with a core-

corona microstructure. With polyelectrolyte-neutral copolymers, the complexation is controlled 

by the appropriate choice of the polymer, its molecular weight and by the molecular weight ratio 

between the two blocks. Optimal conditions for complexation have been determined 
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experimentally. These conditions are reached when the degree of polymerization of the neutral 

block is 2 - 5 times that of the charged block. So far, the specimens examined with respect to 

copolymer complexation comprise synthetic [5] and biological [1,6] macromolecules, multivalent 

counterions [7,8], surfactant micelles [4,9-11]. The formation of the mixed aggregates is 

generally understood as the result of a nucleation and growth mechanism of a microphase made 

from the oppositely charged constituents. This growth is arrested at a size which is fixed by the 

dimension of the polymer. Other complexation approaches using nanoparticles and polymers 

have also received attention recently [12-14]. 

 

In this communication, we report that the electrostatic complexation is effective with crystalline 

nanoparticles of size less than 10 nm. In order to demonstrate the generality of the approach, two 

different types of nanoparticles were considered. We have investigated anionically modified 

dispersions of cerium and iron oxide nanoparticles stabilized by citric acid. Using cryo-

transmission electronic microscopy (cryo-TEM), we are taking advantage of the strong electronic 

contrast of the metallic atoms to visualize directly the mixed polymer-nanoparticle aggregates. 

We show that the particles are aggregated in densely packed clusters of size 20 – 100 nm, and we 

demonstrate that the clusters are surrounded by a neutral polymer corona. We also derive the 

probability distribution functions of aggregation numbers (i.e. the number of nanoparticles per 

cluster) and discuss the mechanisms of cluster formation.  

 

 

II - Experimental 

The first system investigated in this work is a dispersion of cerium oxide nanocrystals (nanoceria) 

provided to us by Rhodia. The cerium oxide nanoparticles (! = 7.1 g·cm
-3

) suspensions were 

synthesized as cationic fluorite-like nanocrystals in nitric acid at pH 1.4. The synthetic procedure 

involves thermohydrolysis of an acidic solution of cerium-IV nitrate salt at high temperature, 

resulting in homogeneous precipitation of a cerium oxide nanoparticle pulp [15]. The size of the 

particles was controlled by addition of hydroxide ions during the thermohydrolysis. High 

resolution transmission electron microscopy have shown that the nanoceria consist of isotropic 

agglomerates of 2 - 5 crystallites with typical size 2 nm and faceted morphologies, and wide-

angle x-ray scattering confirmed the crystalline fluorite structure of the nanocrystallites [15]. 

Cryo-TEM images of single nanoparticles are displayed in Fig. 1 (top three photographs). An 

image analysis performed on 350 particles allowed to determine the probability distribution 

function (pdf) in size for the nanoceria. This distribution was found to be well-accounted for by a 

log-normal function, with a most probable diameter D0[!-CeO2] = 6.9 ± 0.3 nm and a the 

polydispersity s = 0.15 ± 0.03. From this distribution, the radius of gyration and the 

hydrodynamic diameter were calculated [16] to be 

! 

RG[CeO2 ] = 3.5 nm and 

! 

DH[CeO2 ] = 8.6 nm, 

in good agreement with the direct x-ray and light scattering determinations (which are at 3.5 nm 

and 9.8 nm, respectively [15]). 

 

The second dispersion investigated contains superparamagnetic nanoparticles of maghemite (!-

Fe2O3). The iron oxide nanoparticles (! = 5.1 g·cm
-3

) were synthesized by alkaline co-

precipitation of iron II and iron III salts [17] and sorted according to size by successive phase 
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separations [18]. The size distribution was monitored by vibrating sample magnetometry [19] and 

cryo-TEM experiments (image analysis on 470 particles). In both cases, the size distribution 

could be represented by a log-normal function with a most probable diameter D0[!-Fe2O3]= 6.3 ± 

0.3 nm and a polydispersity of 0.23 ± 0.03. Instances of single maghemite nanoparticles are 

illustrated in Fig. 1 (bottom). As for nanoceria, RG and DH were computed from this distribution 

and they were found in good agreement with the data obtained by neutron and light scattering 

(here, 

! 

RG[" # Fe2O3 ] = 3.1 nm and 

! 

DH[" # Fe2O3 ] = 11 nm [20]). 

 

 
Figure 1 : Cerium (top) and iron (bottom) oxide nanoparticles as observed by cryogenic transmission 

electron microscopy. The stability of the dispersions is ensured by electrostatic interactions mediated by 

citrate ligands adsorbed on the surface. Most probable diameters are D0 = 6.9 and 6.3 nm, respectively.  

 

At pH 7 - 8 the particles are stabilized by electrostatic interactions which are mediated by ligands 

(citric acid) adsorbed on the surface of the particles. For the two systems, we verified using "-

potential measurements that citrate-coated nanoparticles are negatively charged (" = - 40 mV for 

nanoceria and " = - 32 mV for maghemite) and opposite in sign with respect to the 

polyelectrolyte block used for complexation. The light scattering and zeta potential 

characterisations of particles and polymer-particle aggregates were performed using the Zetasizer 

Nano ZS from Malvern Instruments.  

 

The two types of nanoparticles described above were complexed with a polyelectrolyte-neutral 

diblock referred to as poly(trimethylammonium ethylacrylate)-b-poly(acrylamide). These 

copolymers, abbreviated as PTEA(5K)-b-PAM(30K) in the following were synthesized by 

controlled radical polymerization according to MADIX technology [21]. The chemical formulae 

of the monomers are given in Refs. [10,20]. PTEA is a strong polyelectrolyte and as such its 19 

monomers (average) are fully ionized. The monomers are positively charged at all pH-values. 

The same diblock copolymers have been utilized for complexation with anionic surfactant 

micelles [11,22]. Polymer-nanoparticle complexes were obtained by simple mixing of stock 

solutions prepared at the same weight concentration (c = 0.1 – 1 wt.%) and pH (pH 7 – 8). The 

relative amount of each component is monitored by the mixing ratio X, which is defined as the 

ratios of the volumes of nanoparticle solution added relative to the polymer solution. The 

solutions were prepared at the preferred mixing ratio XP (here, XP = 1 for both systems) i.e. at the 

ratio where all the components present in solution associate to form complexes. Protocols for 

mixing oppositely charged species in solutions have been described previously [22,23].  
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III – Results and Discussion 

Cryo-TEM was performed on mixed polymer-nanoparticle solutions for CeO2 and !-Fe2O3 and 

the results illustrated in Figs. 2 to 3 respectively. The photographs cover spatial fields that are 

approximately 0.6#0.4 µm
2
 and display clusters of nanoparticles. Large visual fields are here 

shown in order to emphasize that the clusters are well-dispersed, a result which is consistent with 

the direct observations of the solutions (no separation). For these two samples, dynamic light 

scattering (DLS) reveals a slightly polydisperse diffusive relaxation mode in the scattered light 

autocorrelation function, associated with hydrodynamic diameters 

! 

DH
DLS

[CeO
2
] = 75 nm  and 

! 

DH
DLS

[" # Fe2O3 ] = 70 nm. The values of the "-potential for the two aggregates are around zero (± 

5 mV), indicating that the positive and negative charges have been compensated in the 

complexation. Note that in the cluster state, the nanoparticles are stable over a broad range of pH 

(pH 3 – pH 10) and of ionic strengths (up to 0.2 M NaCl). The details of the colloidal stability of 

these hybrid colloids will be examined in a forthcoming paper.  

 

 
Figure 2 : Cryo-TEM images of mixed nanoparticle/polymer complexes obtained using PTEA-b-PAM 

diblock copolymers and D0 = 6.9 nm cerium oxide nanoparticles. The total concentration is c = 0.2 wt. % 

and X = XP (see text). Inset : zoom of two aggregates revealing the internal structure of the clusters. The 

white circle indicates the hydrodynamic size as determined by dynamic light scattering.  

 

In the cryo-TEM images, magnification of selected clusters (shown in squared insets) allow us to 

better distinguish the nanoparticles inside the aggregates. A closer inspection of Fig. 2 and 3 

reveals that the aggregates are slightly anisotropic, with their largest dimensions comprised 

between 20 and 100 nm. For the analysis of the cluster morphology, it is assumed that the clusters 

can be represented by ellipsoids of revolution, and that their bidimensional projections are 

ellipses with a major and a minor axis, noted a and b respectively. Based on the image analysis of 

nearly 200 aggregates, the pdf’s for the minor and major axis were obtained and the equivalent 

hydrodynamic diameter (maximum of the intensity distribution in DLS [16]) determined for each 

cluster population [20]. We found 

! 

DH
TEM

[CeO2 ] = 45 ± 5 nm and 

! 

DH
TEM

[" # Fe2O3 ] = 40 ± 5 nm. 

These values are lower by ~ 30 nm compared to the actual hydrodynamic diameter measured by 

light scattering for the same solutions. The difference between the light scattering and electron 
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microscopy data may suggest the existence of a polymer brush around the inorganic clusters. 

Note that the brush is not detected using microscopy because of the weak electronic contrast of 

the polymers with respect to water. Typical sizes for the whole polymer-nanoparticle aggregates 

are shown by circles in Figs. 2 and 3.  

 

 
Figure 3 : Same as in Fig. 2, but for clusters obtained using D0 = 6.3 nm iron oxide nanoparticles.  

 

From the cluster size and distributions, we then derive the corresponding pdf’s of aggregation 

numbers, as well as the number and weight average aggregation numbers 

! 

N 
n
 and 

! 

N 
w

 related to 

these distributions. The estimations of the aggregation numbers have been carried out by 

assuming that the clusters have an effective particle volume fraction $ = 0.3 [20]. The 

aggregation numbers are then computed according to the expression 

! 

N = " ab2 D
3 , where the 

upper bar refers to the average over the single particle distribution. This model is qualitatively 

consistent with results estimated by counting the particles directly on the cryo-TEM images. In 

Fig. 4, the aggregation number pdf’s obtained for cerium and iron nanoparticles are plotted in a 

semi-logarithmic representation as a function of the reduced quantity N/

! 

N 
n
. Both exhibit rather 

broad distributions which are approximated by an exponential function of the form : 

 

! 

P
n

N( ) ~ exp "N N 
n( )      (1) 

 

In the statistical arrays considered here, single unassociated particles were not observed and so 

Eq. 1 holds only for N > 1. From best fit calculations in Fig. 4, we found 

! 

N 
n
 = 25 ± 4 (CeO2) and 

16 ± 3 (!-Fe2O3), with polydispersities 

! 

N 
w

/

! 

N 
n
 = 1.7 and 2.1 respectively. At first, the existence 

of an exponential pdf for the aggregation numbers and the observation of a slightly polydisperse 

relaxation mode in the autocorrelation scattering function may appear contradictory. This is not 

the case. It can be demonstrated that the relationship that links the aggregation number and the 

volume of a cluster transforms Eq. 1 into a distribution in size which exhibits a clear maximum. 

The diameter at the maximum is proportional to 

! 

N 
n
. It is thus important to differentiate here 

pfd’s in aggregation number and in sizes as being distinct.  

 

The observation of a rather broad polydispersity for the cluster size deserves some comments. 

This could be due in a first place to the intrinsic polydispersity of the cerium or of the iron oxide 



Version uploaded on Cond-Mat 08-Aug-06 

6 

nanoparticles. The present results are for instance different from those obtained with surfactant 

micelles (complexed in the same conditions) for which the aggregation numbers were found to be 

narrowly distributed, with a polydispersity of 1.2 [11]. Experimental work is underway in order 

to verify the role of the particle polydispersity.  

 

 
Figure 4 : Probability distribution function of reduced aggregation numbers N/

! 

N 
n
 obtained for iron 

oxide and cerium oxide nanoparticle clusters. The statistics was established from a set of 200 aggregates 

for each system. The number of particles per cluster are 

! 

N 
n
 = 25 ± 4 (CeO2) and 16 ± 3 (!-Fe2O3). The 

straight line is calculated according to Eq. 1.  

 

Another assumption anticipates that the specific shape of the pdf’s (Eq. 1) is an indication for the 

mechanism of formation of the mixed polymer-nanoparticle aggregates. It is striking to note that 

there is a straightforward analogy between the present results and those found in surfactant 

solutions of wormlike micelles. In wormlike micelles, the self-assembly is spontaneous and the 

aggregation number distribution is an exponentially decreasing function [24,25]. The linear 

growth of the aggregates is explained in terms of an excess curvature energy of the amphiphiles 

located in the end-caps. Using geometrical arguments, surfactant are predicted to spontaneously 

associate into elongated micelles when the critical packing parameter   

! 

V/a0lC  is comprised 

between 1/3 and 1/2 [26]. In the previous expression, V is the volume of a molecule,   

! 

lC  its 

length and a0 the area of the polar head. Drawing the analogy further, we may now assume that 

the elementary building blocks in the complex formation can be described similarly, i.e. in terms 

of a critical packing ratio that takes into account the associating and interfacial constituents. In 

this model, a building block would comprise one nanoparticle and several copolymers, of the 

order of 10 in the present cases. A way to verify this assumption could be to modify the 

associating conditions, such as the molecular weight of the copolymers or the concentration.  

 

 

IV - Conclusion 

In conclusion, we have found that for two systems of nanoparticles, the electrostatic 

complexation using polyelectrolyte-neutral copolymers give very similar results, namely the 

formation of stable nanoparticle clusters. An important result of the investigation is the direct 
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visualization of clusters by electron microscopy and the evidence of the dense packing in the 

cores. This work suggests that controlled complexation with copolymers could be exploited in 

aqueous media to overcome the intrinsic instability of inorganic nanoparticles and for 

functionalization purposes. 
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