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%BSTRACT straightforward. Theondition numbebf a given matrix, on the

The subject of this paper is a special class of three-degree- other hand, is well known to provide a measure of invertypiif
Of-freedom parallel manipulators. The singular configora of the matrix I]B]. Itis thus natural that this concept foundwvesy in

(\the two Jacobian matrices are first studied. The isotropec co  this context. Indeed, the condition number of the Jacobian m
ifigurations are then found based on the characteristic heoigt trix was proposed in|]4] as a figure of merit to minimize when
—this manipulator. The isoconditioning loci for the Jacobraa- designing manipulators for maximum accuracy. In fact, the-c
trices are plotted to define a global performance index atigw dition number gives, for a square matrix, a measure of tiativel
e comparison of the different working modes. The indexsthu roundoff-error amplification of the computed resul]s [3thwie-
esulting is compared with the Cartesian workspace sudade spect to the data roundoff error. As is well known, howeves, t

@e average of the condition number. dimensional inhomogeneity of the entries of the Jacobiaimixma
[B) prevents the straightforward application of the conditiomber
as a measure of Jacobian invertibility. T¢tgaracteristic length

1 Introduction was introduced i]5] to cope with the above-mentioned inbem

() Various performance indices have been devised to assessgeneity.

«—the kinetostatic performances of serial and parallel maatprs. In this paper we use theharacteristic lengtto normalize

LT he literature on performance indices is extremely rich ttanfi the Jacobian matrix of a three-dof planar manipulator arwto

QQhe limits of this paper, the interested reader being inMitelook culate the isoconditioning loci for all its working modes.

(Qt it in the references cited here. A dimensionless quaiitiex
as recently introduced ir[|[1] based on the ratio of the Jaco-
Qian determinant to its maximum absolute value, as appédab
ql)arallel manipulators. This index does not take into actthm
cation of the operation point of the end-effector, beeaihe
éwacobian determinant is independent of this location. Thefp
of the foregoing result is available if][2], as pertainingseial
manipulators, its extension to their parallel counterpasing

2 Preliminaries

A planar three-dof manipulator with three parallel PRR
chains, the object of this paper, is shown in Fig. 1. This ma-
nipulator has been frequently studied, in particularD[GThe
actuated joint variables are the displacements of the thirise
matic joints, the Cartesian variables being the positiactore
of the operation poinP and the orientatiof of the platform.
, o The trajectories of the poins define an equilateral triangle
*IRCCyN: UMR rf 6597 CNRSEcole Centrale de Nantes, Universite de

NantesEcole des Mines de Nantes .
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Figure 1.

A three-DOF parallel manipulator

whose geometric center is the poidf while the pointsBi, By
andBgz, whose geometric center is the pointlie at the corners

of an equilateral triangle. We thus hase= 11+ (i — 1)(211/3),
fori =1,2,3. Moreover| =1, = |, = I3, with |; denoting the
length of AiB; andr = r1 = ry = r3, with r; denoting the length

of B;jP, in units of length that need not be specified in the paper.
The layout of the trajectories of poindg is defined by the radius

R of the circle inscribed in the associated triangle.

2.1 Kinematic Relations
The velocityp of pointP can be obtained in three different
forms, depending on which leg is traversed, namely,

p = a1+ N1E(by — ay) + 6E(p — by) (1a)
p=ax+N2E(b2—az) +6E(p —by) (1b)
p = &+ N3E(b3 — as) + 6E(p — bg) (1c)

with matrix E defined as
0 -1
[1 79
The velocitya; of pointsA; is given by

Pi : [005(0“)

— P sin(ay)

=P = =pig
Pl ~ ™ } P

wheresg is a unit vector in the direction of thiéh prismatic joint.

We would like to eliminate the three idle joint ratgs, n»
andngz from eqs.ﬂla-c), which we do upon dot-multiplying the
former by(b; — &) ", thus obtaining

(b1 —a1)"p = (b1 —a1)" prer + (by—a1) BE(p—by) (2a)
(by—a2)"p = (b2 —az) " poex + (b2 — az)TQE(p —bz) (2b)
(b3 —ag)"p = (b3 —as) " pses + (b3 — ag)"OE(p — bs) (2c)

EquationsKlZa—c) can now be cast in vector form, namely,

: p1
At =Bp with tm and p=|p2 3)
P3

with p thus being the vector of actuated joint rates.

Moreover,A andB are, respectively, the direct-kinematics
and the inverse-kinematics matrices of the manipulatdinele
as

(b1 —a1)T —(bi—a1)TE(p—b)
A= (bz — az)T — (bz — az)T E(p — bz) (4a)
| (bs—a3)T —(bs—as)"E(p—ba)
I (bl — al)Tel 0 0
B = 0 (bz — az)Tez 0 ] (4b)
L 0 0 (bs—ag)Tes

WhenA andB are nonsingular, we obtain the relations
t=Jp, with J=A"'B and p=Kt
with K denoting the inverse aof.

2.2 Parallel Singularities

Parallel singularities occur when the determinant of matri
A vanishesg]. At these configurations, it is possible toveno
locally the operation poirfe with the actuators locked, the struc-
ture thus resulting cannot resist arbitrary forces, androbis
lost. To avoid any performance deterioration, it is necgsta
have a Cartesian workspace free of parallel singularitiést
the planar manipulator studied, such configurations arehesh
whenever the axe8;B;, A;B; and A3B3 intersect (possibly at
infinity), as depicted in Fid] 2.

In the presence of such configurations, moreover, the me
nipulator cannot resist a force applied at the interseqpioint.
These configurations are located inside the Cartesian ywackes
and form the boundaries of the joint Workspaﬂe [8].
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Figure 2. Parallel singularity Figure 3. Serial singularity

2.3 Serial Singularities

Serial singularities occur when ¢BY) = 0. In the presence
of theses singularities, there is a direction along whiclCaae-
sian velocity can be produced. Serial singularities defiree t

boundary of the Cartesian workspace. For the topology under

study, the serial singularities occur whenegl®r— ;)" e = 0 for
at least one value of as depicted in Fig] 3 fdr= 2.

3 Isoconditioning Loci
3.1 The Matrix Condition Number

We derive below the loci of equal condition number of the
matricesA, B andK. To do this, we first recall the definition
of condition number of am x n matrix M, with m< n, k(M).

This number can be defined in various ways; for our purposes,

we definex(M) as the ratio of the smallesis, to the largestg,
singular values o, namely,

K(M) = o

()

The singular valuegoi};' of matrix M are defined, in turn, as
the square roots of the nonnegative eigenvalues of theiymssit
definitemx mmatrix MM T.

3.2 Non-Homogeneous Direct-Kinematics Matrix

To render the matriA homogeneous, as needed to define its
condition number, each term of the third columnfofs divided
by the characteristic length [E], thereby deriving its normal-
ized counterpard:

_ [(bi—a)T —(bi—a)TE(p—ba)/L
A= |(bz—a)" —(b2—ax) E(p—by)/L (6)
(bz—ag)T —(b3—ag)"E(p—bs)/L

which is calculated so as to minimizgA), along with the pos-
ture variablep1, p2 andps.

However, notice thaB is dimensionally homogeneous, and
need not be normalized.

3.3 Isotropic Configuration

In this section, we derive the isotropy condition dto de-
fine the geometric parameters of the manipulator. We shtdiob
also the valug of the characteristic length. To simpli#y and

B, we use the notation

|i = (bi fai) (7a)
ki = (bi—a) E(p—bi) (7b)
m = (bi—a)’e (7c)
Yi = LABiP (7d)
We can thus write matrices andB as
_ |I —kg/L m 0 O
A= I; —ka/L B=|0mO (8)
11 —ks/L 0 0m

Whenever matriXB is nonsingular, that is, whem # 0, fori =
1,2,3, we have

. |I/m1 —kl/(L ml)
K=|l;/m —k/(Lmy)
13/mg —ka/(L mg)
Matrix J, the normalizedJ, is isotropic if and only ifKK ' =
2 13.3fort>0andk =J %) ie,

({11 +Kf/L?)/mf =17 (9a)

(I312+K5/L?) /mg =12 (9b)

(1313+K5/L?) /mg = 12 (9c)

(M 12+ kiko/L2) /(mump) = 0 (9d)

(M 13+ keks/L?)/(mymg) = 0 (9e)

(12134 koka/L?)/(mpmg) = O (9f)
From eqs|]9a-f), we can derive the conditions below:

]| = [ll2]] = [13]] (10a)

|lp —bal| = [|p —bz|| = [|p — bs]| (10b)

M, =1013=1113 (10c)

MMy = MyMg = MpMs (10d)

In summary, the constraints defined in the dg}.(10a-d) are:
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o PivotsB; should be placed at the vertices of an equilateral tri- 3.5 Working Modes

angle;

o Segment#\B; form an equilateral triangle;

o The trajectories of poin#; define an equilateral triangle an
hencel =l =1, = |3.

Notice that the foregoing conditions, except the secondwaee
assumed in 82.

3.4 The Characteristic Length

The characteristic length is defined at the isotropic corfigu
ration. From eqs[]9d-f), we determine the value of the attera
istic length as,

By applying the constraints defined in eEts.(Qa—d), we catewri
the characteristic lengthin terms of angley, i.e.

L = V2rsin(y)

wherey =y =y = y3, was defined in ed]7d) aryd [0 2r.

This means that the manipulator under study admits several

isotropic configurations, two of which are shown in Figs. Ad a
b, whereas the characteristic lengitbf a manipulator is unique
[Q]. Whenyis equal tart/2, Fig. 4aj.e., whenA;B; is perpendic-
ular toB;P, the manipulator finds itself at a configuration furthest
away from parallel singularities. To have an isotropic ogunfa-
tion furthest away from serial singularities, we have twadie
tions: &' E(bj —a) = 0 andr = R/2.

Figure 4. Two isotropic configurations with two values of P

The manipulator under study has a diagonal inverse
kinematics matrix8, as shown in eq.(5b), the vanishing of one
of its diagonal entries thus indicating the occurrence oéréas
singularity. The set of manipulator postures free of thigdkof
singularity is termed a working mode. The different working
modes are thus separated by a serial singularity, with afset ¢
postures in different working modes corresponding to aariss
kinematics solution.

The formal definition of the working mode is detailedﬁh [8].
For the manipulator at hand, there are eight working modes, &
depicted in Fig. 5.

Figure 5. The eight working modes of the 3P RRmanipulator

However, because of symmetries, we can restrict our stud
to only two working modes, if there are no joint limits. Indke
working mode 1 is similar to working mode 5, because for the
first one, the signs of the diagonal entriesBoére all negative,
and for the second are all positive. A similary reasoningidia
cable to the working modes 2-6, 3-7 and 4-8; likewise, thekwor
ing modes 3-4 and 7-8 can be derived from the working mode:
2 and 6 by a rotation of 120and 240, respectively. Therefore,
only the working modes 1 and 2 are studied. We label the corre
sponding matrices a&;, B;, K; for theith working mode.

3.6 Isoconditioning Loci
For each Jacobian matrix and for all the poses of the end
effector, we calculate the optimum conditioning accordmthe
orientation of the end-effector. We can notice that for arngre
tation of the end-effector, there is a singular configuratio

Figure [§ depicts the isoconditioning loci of matfx

We depict in Fig[]7 the isoconditioning loci of matiix We
notice that the loci of both working modes are identical. sTiki
due to both the absence of joint limits on the actuated j@nts
the symmetry of the manipulator. For one configuration, only
the signs ofm, change from a working mode to another, but the
condition numbek is computed from the absolute valuesf

Copyright 0 2002 by ASME
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Figure 6. Isoconditioning loci of the matrix (a) Kl and (b) Kz with R/r =
2andl/r=2
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Figure 7. Isoconditioning loci of the matrix (a) B1 and (b) B2 with R/r =
2andl/r=2

The shapes of the isoconditioning IgciEf(Fig. 8) are sim-
ilar to those of the isconditioning loci &&; only the numerical
values change.

Vi yr

2.0 2.0
1.5
1.0 | (e
0.5 i.‘;

1.5
1.0
0.5

0.0 0.0
05 -0.5
-1.0 -1.0
-1.5 -1.5
2.0 -2.0

(a) (b)

Figure 8. Isoconditioning loci of the matrix (a) Kl and (b) Kz with
R/r=2andl/r=2

matricesA andK decreases regularly around the isotropic con-
figuration. The isoconditioning loci resemble concentiicles.
However, for the second working mode, the isoconditionoa |

of both matricesA andK resemble ellipses.

The characteristic length depends om. Two indices can
be studied according to parameir(i) the area of the Cartesian
workspace, called, and (ii) the average of the conditioning,
calledk.

The first index is identical for the two working modes. Fig-
ure[d depicts the variation &as a function oR/r, for | /r = 2.

Its maximum value is reached wh&yir = 0.5.

e —
0.6 ~
0.4 .

0.2

~.

~.

0 1,

05 1.5 25 35 45  Ri

Figure 9. Variation of S as a function of R/r, with | /r =2

For the three matrices studiadcan be regarded as a global
performance index. This index thus allows us to compare th
working modes. Figsurds]1p,]11 and 12 defi@), kK(B) and
K(K), respectively, as a function &/r, with | /r = 2.

0.7

—— 1z(Xl)
0.6 - K(A7)
0.5 4
0.4
0.3
0.2 e
0.1

0 »
L L LI — T— T T » R/
05 1.5 25 35 45

Figure 10. K(A1) and K(A) as a function of R/r, with | /r = 2

The value ofk(A;) increases witlR. At the opposite, the
maximum value oK (A;) is reached wheR/r = 2. For both the
working modes studied(B1) andk(B;) are identical folR/r
fixed. For the first working mode, the minimum valuekgK ;)
and the maximum area of Cartesian workspaoecur at differ-

For the first working mode, the condition number of both ent values oR/r. This means that we must reach a compromise

5
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Figure 11. K(B1) and K(B2) as a function of R/r, with | /r = 2

0.5 ——K(K)
0.4 - — E(Kz)
0.3 -
0.2 .
0.1
O T T T T T T T T T T ; R/r
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Figure 12. K(K1) and K(K?) as a function of R/r, with | /r = 2

under these two indices. For the second working mode, tlere i
an optimum oK (K>) close to the optimum of, for R/r = 2.

4 Conclusions

We produced the isoconditioning loci of the Jacobian ma-
trices of a three-PRR parallel manipulator. This concejmde
general, it can be applied to any three-dof planar paraléeiipx
ulator. To solve the problem of nonhomogeneity of the Jeaobi
matrix, we used the notion of characteristic length. Thigyta
was defined for the isotropic configuration of the manipulato
The isoconditioning curves thus obtained characterizegfe
ery posture of the manipulator, the optimum conditioningdib
possible orientations of the end-effector. This index isipared
with the area of Cartesian workspace and the conditioning av
erage. The two optima being different, it is necessary to find
another index to determine the optimum values. The resélts o
this paper can be used to choose the working mode which is best
suited to the task at hand or as a global performance inder whe
we study the optimum design of this kind of manipulators.
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