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ABSTRACT
The subject of this paper is a special class of three-degree-

of-freedom parallel manipulators. The singular configurations of
the two Jacobian matrices are first studied. The isotropic con-
figurations are then found based on the characteristic length of
this manipulator. The isoconditioning loci for the Jacobian ma-
trices are plotted to define a global performance index allowing
the comparison of the different working modes. The index thus
resulting is compared with the Cartesian workspace surfaceand
the average of the condition number.

1 Introduction
Various performance indices have been devised to assess

the kinetostatic performances of serial and parallel manipulators.
The literature on performance indices is extremely rich to fit in
the limits of this paper, the interested reader being invited to look
at it in the references cited here. A dimensionless quality index
was recently introduced in [1] based on the ratio of the Jaco-
bian determinant to its maximum absolute value, as applicable to
parallel manipulators. This index does not take into account the
location of the operation point of the end-effector, because the
Jacobian determinant is independent of this location. The proof
of the foregoing result is available in [2], as pertaining toserial
manipulators, its extension to their parallel counterparts being

∗IRCCyN: UMR n◦ 6597 CNRS,École Centrale de Nantes, Université de
Nantes,École des Mines de Nantes

straightforward. Thecondition numberof a given matrix, on the
other hand, is well known to provide a measure of invertibility of
the matrix [3]. It is thus natural that this concept found itsway in
this context. Indeed, the condition number of the Jacobian ma-
trix was proposed in [4] as a figure of merit to minimize when
designing manipulators for maximum accuracy. In fact, the con-
dition number gives, for a square matrix, a measure of the relative
roundoff-error amplification of the computed results [3] with re-
spect to the data roundoff error. As is well known, however, the
dimensional inhomogeneity of the entries of the Jacobian matrix
prevents the straightforward application of the conditionnumber
as a measure of Jacobian invertibility. Thecharacteristic length
was introduced in [5] to cope with the above-mentioned inhomo-
geneity.

In this paper we use thecharacteristic lengthto normalize
the Jacobian matrix of a three-dof planar manipulator and tocal-
culate the isoconditioning loci for all its working modes.

2 Preliminaries
A planar three-dof manipulator with three parallel PRR

chains, the object of this paper, is shown in Fig. 1. This ma-
nipulator has been frequently studied, in particular in [6-7]. The
actuated joint variables are the displacements of the threepris-
matic joints, the Cartesian variables being the position vector p
of the operation pointP and the orientationθ of the platform.

The trajectories of the pointsAi define an equilateral triangle
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Figure 1. A three-DOF parallel manipulator

whose geometric center is the pointO, while the pointsB1, B2

andB3, whose geometric center is the pointP, lie at the corners
of an equilateral triangle. We thus haveαi = π +(i −1)(2π/3),
for i = 1,2,3. Moreover,l = l1 = l2 = l3, with l i denoting the
length ofAiBi andr = r1 = r2 = r3, with r i denoting the length
of BiP, in units of length that need not be specified in the paper.
The layout of the trajectories of pointsAi is defined by the radius
R of the circle inscribed in the associated triangle.

2.1 Kinematic Relations
The velocityṗ of point P can be obtained in three different

forms, depending on which leg is traversed, namely,

ṗ = ȧ1 + η̇1E(b1−a1)+ θ̇E(p−b1) (1a)

ṗ = ȧ2 + η̇2E(b2−a2)+ θ̇E(p−b2) (1b)

ṗ = ȧ3 + η̇3E(b3−a3)+ θ̇E(p−b3) (1c)

with matrixE defined as

E =

[

0 −1
1 0

]

The velocityȧi of pointsAi is given by

ȧi = ρ̇i
ρρρi

||ρρρi ||
= ρ̇i

[

cos(αi)
sin(αi)

]

= ρ̇iei

whereei is a unit vector in the direction of theith prismatic joint.

We would like to eliminate the three idle joint ratesη̇1, η̇2

and η̇3 from eqs.(1a-c), which we do upon dot-multiplying the
former by(bi −ai)

T , thus obtaining

(b1−a1)
T ṗ = (b1−a1)

T ρ̇1e1 +(b1−a1)
T θ̇E(p−b1) (2a)

(b2−a2)
T ṗ = (b2−a2)

T ρ̇2e2 +(b2−a2)
T θ̇E(p−b2) (2b)

(b3−a3)
T ṗ = (b3−a3)

T ρ̇3e3 +(b3−a3)
T θ̇E(p−b3) (2c)

Equations (2a-c) can now be cast in vector form, namely,

At = Bρ̇ρρ with t =

[

ṗ
θ̇

]

and ρ̇ρρ =





ρ̇1

ρ̇2

ρ̇3



 (3)

with ρ̇ρρ thus being the vector of actuated joint rates.
Moreover,A andB are, respectively, the direct-kinematics

and the inverse-kinematics matrices of the manipulator, defined
as

A =





(b1−a1)
T − (b1−a1)

TE(p−b1)
(b2−a2)

T − (b2−a2)
TE(p−b2)

(b3−a3)
T − (b3−a3)

TE(p−b3)



 (4a)

B =





(b1−a1)
Te1 0 0

0 (b2−a2)
Te2 0

0 0 (b3−a3)
Te3



 (4b)

WhenA andB are nonsingular, we obtain the relations

t = Jρ̇ρρ, with J = A−1B and ρ̇ρρ = Kt

with K denoting the inverse ofJ.

2.2 Parallel Singularities
Parallel singularities occur when the determinant of matrix

A vanishes [8-9]. At these configurations, it is possible to move
locally the operation pointP with the actuators locked, the struc-
ture thus resulting cannot resist arbitrary forces, and control is
lost. To avoid any performance deterioration, it is necessary to
have a Cartesian workspace free of parallel singularities.For
the planar manipulator studied, such configurations are reached
whenever the axesA1B1, A2B2 andA3B3 intersect (possibly at
infinity), as depicted in Fig. 2.

In the presence of such configurations, moreover, the ma-
nipulator cannot resist a force applied at the intersectionpoint.
These configurations are located inside the Cartesian workspace
and form the boundaries of the joint workspace [8].
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Figure 2. Parallel singularity

90°

Figure 3. Serial singularity

2.3 Serial Singularities
Serial singularities occur when det(B) = 0. In the presence

of theses singularities, there is a direction along which noCarte-
sian velocity can be produced. Serial singularities define the
boundary of the Cartesian workspace. For the topology under
study, the serial singularities occur whenever(bi −ai)

Tei = 0 for
at least one value ofi, as depicted in Fig. 3 fori = 2.

3 Isoconditioning Loci
3.1 The Matrix Condition Number

We derive below the loci of equal condition number of the
matricesA, B and K . To do this, we first recall the definition
of condition number of anm×n matrix M , with m≤ n, κ(M).
This number can be defined in various ways; for our purposes,
we defineκ(M) as the ratio of the smallest,σs, to the largest,σl ,
singular values ofM , namely,

κ(M) =
σs

σl
(5)

The singular values{σi}m
1 of matrix M are defined, in turn, as

the square roots of the nonnegative eigenvalues of the positive-
definitem×mmatrixMM T .

3.2 Non-Homogeneous Direct-Kinematics Matrix
To render the matrixA homogeneous, as needed to define its

condition number, each term of the third column ofA is divided
by the characteristic lengthL [10], thereby deriving its normal-
ized counterpartA:

A =





(b1−a1)
T − (b1−a1)

TE(p−b1)/L
(b2−a2)

T − (b2−a2)
TE(p−b2)/L

(b3−a3)
T − (b3−a3)

TE(p−b3)/L



 (6)

which is calculated so as to minimizeκ(A), along with the pos-
ture variablesρ1, ρ2 andρ3.

However, notice thatB is dimensionally homogeneous, and
need not be normalized.

3.3 Isotropic Configuration
In this section, we derive the isotropy condition onJ to de-

fine the geometric parameters of the manipulator. We shall obtain
also the valueL of the characteristic length. To simplifyA and
B, we use the notation

l i = (bi −ai) (7a)

ki = (bi −ai)
TE(p−bi) (7b)

mi = (bi −ai)
Tei (7c)

γi = 6 AiBiP (7d)

We can thus write matricesA andB as

A =





lT1 −k1/L
lT2 −k2/L
lT3 −k3/L



 B =





m1 0 0
0 m2 0
0 0 m3



 (8)

Whenever matrixB is nonsingular, that is, whenmi 6= 0, for i =
1,2,3, we have

K =





lT1 /m1 −k1/(L m1)
lT2 /m2 −k2/(L m1)
lT3 /m3 −k3/(L m3)





Matrix J, the normalizedJ, is isotropic if and only ifKK
T

=

τ2 13×3 for τ > 0 andK = J
−1

, i.e.,

(lT1 l1 +k2
1/L2)/m2

1 = τ2 (9a)

(lT2 l2 +k2
2/L2)/m2

2 = τ2 (9b)

(lT3 l3 +k2
3/L2)/m2

3 = τ2 (9c)

(lT1 l2 +k1k2/L2)/(m1m2) = 0 (9d)

(lT1 l3 +k1k3/L2)/(m1m3) = 0 (9e)

(lT2 l3 +k2k3/L2)/(m2m3) = 0 (9f)

From eqs.(9a-f), we can derive the conditions below:

||l1|| = ||l2|| = ||l3|| (10a)

||p−b1|| = ||p−b2|| = ||p−b3|| (10b)

lT1 l2 = lT2 l3 = lT2 l3 (10c)

m1m2 = m1m3 = m2m3 (10d)

In summary, the constraints defined in the eqs.(10a-d) are:
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◦ PivotsBi should be placed at the vertices of an equilateral tri-
angle;

◦ SegmentsAiBi form an equilateral triangle;
◦ The trajectories of pointAi define an equilateral triangle an

hence,l = l1 = l2 = l3.

Notice that the foregoing conditions, except the second one, were
assumed in §2.

3.4 The Characteristic Length
The characteristic length is defined at the isotropic configu-

ration. From eqs.(9d-f), we determine the value of the character-
istic length as,

L =

√

−k1k2

lT1 l2

By applying the constraints defined in eqs.(9a-d), we can write
the characteristic lengthL in terms of angleγ, i.e.

L =
√

2r sin(γ)

whereγ = γ1 = γ2 = γ3, was defined in eq.(7d) andγ ∈ [0 2π].
This means that the manipulator under study admits several

isotropic configurations, two of which are shown in Figs. 4a and
b, whereas the characteristic lengthL of a manipulator is unique
[2]. Whenγ is equal toπ/2, Fig. 4a,i.e., whenAiBi is perpendic-
ular toBiP, the manipulator finds itself at a configuration furthest
away from parallel singularities. To have an isotropic configura-
tion furthest away from serial singularities, we have two condi-
tions:eT

i E(bi −ai) = 0 andr = R/2.

(a) (b)

g2

g3

g1

g2

g3

g1

P P

Figure 4. Two isotropic configurations with two values of ρ

3.5 Working Modes
The manipulator under study has a diagonal inverse-

kinematics matrixB, as shown in eq.(5b), the vanishing of one
of its diagonal entries thus indicating the occurrence of a serial
singularity. The set of manipulator postures free of this kind of
singularity is termed a working mode. The different working
modes are thus separated by a serial singularity, with a set of
postures in different working modes corresponding to an inverse
kinematics solution.

The formal definition of the working mode is detailed in [8].
For the manipulator at hand, there are eight working modes, as
depicted in Fig. 5.

(5) (6) (7) (8)

(1) (2) (3) (4)

Figure 5. The eight working modes of the 3PRRmanipulator

However, because of symmetries, we can restrict our study
to only two working modes, if there are no joint limits. Indeed,
working mode 1 is similar to working mode 5, because for the
first one, the signs of the diagonal entries ofB are all negative,
and for the second are all positive. A similary reasoning is appli-
cable to the working modes 2-6, 3-7 and 4-8; likewise, the work-
ing modes 3-4 and 7-8 can be derived from the working modes
2 and 6 by a rotation of 120◦ and 240◦, respectively. Therefore,
only the working modes 1 and 2 are studied. We label the corre-
sponding matrices asA i , Bi , K i for the ith working mode.

3.6 Isoconditioning Loci
For each Jacobian matrix and for all the poses of the end-

effector, we calculate the optimum conditioning accordingto the
orientation of the end-effector. We can notice that for any orien-
tation of the end-effector, there is a singular configuration.

Figure 6 depicts the isoconditioning loci of matrixA.
We depict in Fig. 7 the isoconditioning loci of matrixB. We

notice that the loci of both working modes are identical. This is
due to both the absence of joint limits on the actuated jointsand
the symmetry of the manipulator. For one configuration, only
the signs ofmi change from a working mode to another, but the
condition numberκ is computed from the absolute values ofmi .
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Figure 6. Isoconditioning loci of the matrix (a) A1 and (b) A2 with R/r =
2 and l/r = 2
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Figure 7. Isoconditioning loci of the matrix (a) B1 and (b) B2 with R/r =
2 and l/r = 2

The shapes of the isoconditioning loci ofK (Fig. 8) are sim-
ilar to those of the isconditioning loci ofA; only the numerical
values change.
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Figure 8. Isoconditioning loci of the matrix (a) K1 and (b) K2 with

R/r = 2 and l/r = 2

For the first working mode, the condition number of both

matricesA andK decreases regularly around the isotropic con-
figuration. The isoconditioning loci resemble concentric circles.
However, for the second working mode, the isoconditioning loci
of both matricesA andK resemble ellipses.

The characteristic lengthL depends onr. Two indices can
be studied according to parameterR: (i) the area of the Cartesian
workspace, calledS , and (ii) the average of the conditioning,
calledκ.

The first index is identical for the two working modes. Fig-
ure 9 depicts the variation ofSas a function ofR/r, for l/r = 2.
Its maximum value is reached whenR/r = 0.5.

0

0.2

0.4

0.6

0.5 1.5 2.5 3.5 4.5 R/r

Figure 9. Variation of S as a function of R/r , with l/r = 2

For the three matrices studied,κ can be regarded as a global
performance index. This index thus allows us to compare the
working modes. Figsures 10, 11 and 12 depictκ(A), κ(B) and
κ(K), respectively, as a function ofR/r, with l/r = 2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R/r
0.5 1.5 2.5 3.5 4.5

Figure 10. κ(A1) and κ(A2) as a function of R/r , with l/r = 2

The value ofκ(A1) increases withR. At the opposite, the
maximum value ofκ(A2) is reached whenR/r = 2. For both the
working modes studied,κ(B1) andκ(B2) are identical forR/r
fixed. For the first working mode, the minimum value ofκ(K1)
and the maximum area of Cartesian workspaceS occur at differ-
ent values ofR/r. This means that we must reach a compromise
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Figure 11. κ(B1) and κ(B2) as a function of R/r , with l/r = 2
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Figure 12. κ(K1) and κ(K2) as a function of R/r , with l/r = 2

under these two indices. For the second working mode, there is
an optimum ofκ(K2) close to the optimum ofS , for R/r = 2.

4 Conclusions
We produced the isoconditioning loci of the Jacobian ma-

trices of a three-PRR parallel manipulator. This concept being
general, it can be applied to any three-dof planar parallel manip-
ulator. To solve the problem of nonhomogeneity of the Jacobian
matrix, we used the notion of characteristic length. This length
was defined for the isotropic configuration of the manipulator.
The isoconditioning curves thus obtained characterize, for ev-
ery posture of the manipulator, the optimum conditioning for all
possible orientations of the end-effector. This index is compared
with the area of Cartesian workspace and the conditioning av-
erage. The two optima being different, it is necessary to find
another index to determine the optimum values. The results of
this paper can be used to choose the working mode which is best
suited to the task at hand or as a global performance index when
we study the optimum design of this kind of manipulators.
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