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ABSTRACT- This paper proposes a classification of three-revolute orthogonal manipulators 
that have at least one of their DH parameters equal to zero. This classification is based on the 
topology of their workspace. The workspace is characterized in a half-cross section by the 
singular curves. The workspace topology is defined by the number of cusps and nodes that 
appear on these singular curves. The manipulators are classified into different types with 
similar kinematic properties. Each type is evaluated according to interesting kinematic 
properties such as, whether the workspace is fully reachable with four inverse kinematic 
solutions or not, the existence of voids, and the feasibility of continuous trajectories in the 
workspace. It is found that several orthogonal manipulators have a “well-connected” 
workspace, that is, their workspace is fully accessible with four inverse kinematic solutions 
and any continuous trajectory is feasible. This result is of interest for the design of alternative 
manipulator geometries.  
KEYWORDS: Workspace, classification, design parameter, node, void, feasible trajectory. 

1 Introduction 

The workspace of general 3R manipulators has been widely studied in the past (see, for 
instance, [1-5]). The determination of the workspace boundaries, the size and shape of the 
workspace, the existence of holes and voids, the accessibility inside the workspace (i.e. the 
number of inverse kinematic solutions in the workspace), are some of the main features that 
have been explored. Today, most industrial manipulators are of the PUMA type; they have a 
vertical revolute joint followed by two parallel joints and a spherical wrist. Another 
interesting category of serial manipulators exists, which have any two consecutive joint axes 
orthogonal. We call these manipulators orthogonal manipulators. Instances of orthogonal 
manipulators are the IRB 6400C launched by ABB-Robotics in 1998 and the DIESTRO 
manipulator built at McGill University.  
Unlike PUMA type manipulators, orthogonal manipulators may have many different 
kinematic properties according to their links and joint offsets lengths, so it is interesting to 
classify them. Orthogonal 3R manipulators may be binary (only two inverse kinematic 
solutions) or quaternary (four inverse kinematic solutions), they may have voids or no voids 
in their workspace, they may be cuspidal or noncuspidal. A cuspidal manipulator is one that 
can change posture without meeting a singularity [6, 7]. Several conditions for a manipulator 
to be noncuspidal were provided in [8, 9] and a general necessary and sufficient condition for 
a 3-DOF manipulator to be cuspidal was established in [10], which is the existence of at least 
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one point, called cusp point, in the workspace where the inverse kinematics admits three equal 
solutions. 
In [11], the authors established a categorization of all generic 3R manipulators based on the 
homotopy classes of their singularities in the joint space. More recently, [12] attempted the 
classification of 3R orthogonal manipulators with no offset on their last joint. Three surfaces 
were found to divide the manipulator parameter space into cells with equal number of cusp 
points. The equations of these surfaces were derived as polynomials in the DH-parameters 
using Groebner Bases. The work of [12] was completed in [13] to take into account additional 
features in the classification, such as genericity. The authors of [14] established a 
classification of 3R orthogonal manipulators with no offset on their last joint, based on the 
work of [13], according to the number of cusps and node points. The parameter space was 
divided into nine cells where the manipulators have the same number of cusps and nodes in 
their workspace.  
About ten remaining families of 3R manipulators with at least one of their DH parameters 
equal to zero have not been classified yet. Because industrial manipulators usually have at 
least one parameter equal to zero, it is of practical interest to classify them. 
The purpose of this paper is to classify a family of 3R orthogonal manipulators that have at 
least one of their DH parameters equal to zero. This classification is based on the topology of 
their workspace. The workspace is characterized in a half-cross section by the singular curves. 
The workspace topology is defined by the number of cusps and nodes that appear on these 
singular curves. These singular points are interesting features for characterizing the 4-solution 
regions and the voids in the workspace. The manipulators are classified into different types 
with similar kinematic properties. Each type is evaluated according to interesting kinematic 
features such as, whether the workspace is fully reachable with four inverse kinematic 
solutions or not, the existence of voids, and the feasibility of continuous trajectories in the 
workspace. It is found that several orthogonal manipulators have a “well-connected” 
workspace [15], that is, the workspace is fully accessible with four inverse kinematic 
solutions and any continuous trajectory is feasible throughout the workspace. This result is of 
interest for the design of alternative manipulator geometries. 
Next section of this article presents the families of manipulators under study and recalls some 
preliminary results. The classifications are established in section 3. Section 4 analyzes the 
resulting classification and several interesting manipulator geometries are pointed out. Section 
5 concludes this paper.  

2 Preliminaries 

2.1 Orthogonal manipulators 

The manipulators studied, referred to as orthogonal manipulators, are positioning 
manipulators with three revolute joints in which the two pairs of adjacent joint axes are 
orthogonal. The length parameters are d2, d3, r2, r3�0 and d4>0 (d4 cannot be equal to zero 
because the resulting manipulator would be always singular). The angle parameters α2 and α3 
are set to –90° and 90°, respectively. The three joint variables are referred to as θ1, θ2 and θ3, 
respectively. They will be assumed unlimited in this study. The position of the end-tip is 
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defined by the three Cartesian coordinates x, y and z of the operation point P with respect to a 
reference frame (O, X, Y, Z) attached to the manipulator base. Figure 1 shows the architecture 
of the manipulators under study in the home configuration defined by θ1=θ2=θ3=0.  
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Fig. 1: A 3R orthogonal manipulator. 

2.2 Manipulators with geometric simplifications 

In the classification provided in [13,14], the only particular case considered was r3=0 with the 
remaining parameters being all different from zero. Here, we will treat all the other possible 
combinations of manipulators with at least one DH parameter equal to zero. The different 
combinations are depicted by the tree shown in Fig. 2, which yields ten families to analyze. 
Recall that we cannot have d4=0. 
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Fig. 2: The ten families of manipulators to analyze with at least one parameter equal to zero.  

2.3 Singular curves, cusp points and node points 

The singularities of a manipulator play an important role in its global kinematic properties 
[7, 8]. The singularities of a general 3R manipulator can be determined with the determinant 
of the Jacobian matrix det(J). For an orthogonal manipulator, det(J) takes on the following 
form [20] 
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where c2=cos(θ2) and  s2=sin(θ2), c3=cos(θ3) and  s3=sin(θ3). 
Since the singularities are independent of θ1, the contour plot of det(J)=0 can be displayed in 

2 3,π θ π π θ π− ≤ < − ≤ <  where they form a set of close curves. These curves divide the joint 
space into singularity-free domains called aspects [21]. The singularities can also be plotted in 
the workspace by searching for the points where the inverse kinematics has double roots [2], 
or using det(J)=0 and the direct kinematics. Because of its symmetry about the first joint axis, 
the workspace may be analyzed by its half cross-section defined by ( 2 2x yρ = + , z). When 
plotted in this section, the singularities define the internal and external boundaries curves of 
the workspace cross-section. Figure 3 illustrates the singularity curves for a 3R orthogonal 
manipulator with no offset along its last joint axis (r3=0). When r3=0, det(J) takes on the 
factored form det(J) = (d3 + d4c3)[d2s3 + (s3d3 – c3r2)c2]. The first factor defines two 
horizontal lines in the joint space (assuming d3≤d4, which is the case for the manipulator in 
Fig. 3). The singular line defined by θ3=+arccos(-d3/d4) maps onto one singular point in the 
workspace cross-section, which is located at the self-intersection of the internal singular 
boundary. The remaining singular line θ3=–arccos(-d3/d4) maps onto an isolated singular point 
in the workspace. One of the two singular curves defines the external boundary of the 
workspace and the other one defines the internal boundary.  

θ2

θ3

ρ

z

 
Fig. 3: The singular curves of a 3R orthogonal manipulator with d2=1, d3=3, d4=4, r2=2 and r3=0. 

An interesting classification criterion is the topology of the singular curves in the cross 
section of the workspace. A way of defining the topology of these curves is to enumerate their 
singular points, the cusp points and the node points [14, 16].  
A cusp point is one where the inverse kinematics admits three equal solutions [10]. A 3-DOF 
positioning manipulator can change its posture without meeting a singularity only by 
encountering a cusp point [10]. 
At a node point, the inverse kinematics admits two pairs of coincident inverse kinematic 
solutions [13]. Two singular curves intersect at a node point. For the manipulator shown in 
Fig. 3, the workspace features two cusps and three nodes. One of the nodes is at the self-
intersection of the internal boundary and the other two nodes are at the intersection of the 
internal boundary with the external boundary. These cusps and nodes define two regions with 
two inverse kinematic solutions and two regions with four inverse kinematic solutions. 
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The existence of cusps and nodes can be determined from the fourth-degree inverse kinematic 
polynomial of 3R manipulators, which can be written as a polynomial P(t) in ( )3tan / 2t θ=  
whose coefficients are function of the design parameters d2, d3, d4, r2 and r3 and of the 
variables 2 2R x y= +  and 2Z z=  (see [2] for instance). 
Node points appear when P(t) has two pairs of equal roots. A condition for P(t) to have two 
pairs of equal roots is 

 ( )

( ) 0

0

0

P t
P t
t

P
t

⎧
⎪ =
⎪
∂⎪ =⎨ ∂⎪

⎪ ∂⎛ ⎞Δ =⎜ ⎟⎪ ∂⎝ ⎠⎩

 (2) 

where Δ means the polynomial discriminant. Cusp points appear when P(t) has triple roots. A 
condition for P(t) to have triple roots is 
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P t
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P t
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⎪ =
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⎪∂
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2.4 Separating surfaces in the parameter space and classification of manipulator geometries 

The main results of [20] are briefly reviewed in this section. The parameter space of 
orthogonal manipulators was divided by separating surfaces, where the number of cusps or 
nodes changes. In other words, these surfaces are associated with transition manipulators and 
define several domains in the parameter space where all manipulators have the same number 
of cusps and nodes and the same pattern of singular curves. Consequently, moreover, all 
manipulators in a given domain of the parameter space will have the same number of 4-
solution regions and voids in their workspace. For example, all manipulators belonging to the 
same domain as the one shown in Fig. 3 will have no voids in their workspace and for all of 
them the internal boundary curve will look like a “fish” with the “tail” never cutting the 
external workspace boundary and the “head” always intersecting this boundary, thus defining 
two 4-solution regions and two 2-solution regions. Note that since the classification is based 
on the topology only, the size of these regions will depend on the value of the parameters.  
The separating surfaces were determined in two steps. The first step is a formal mathematical 
approach that consists in deriving the condition under which the number of solutions to (2) or 
(3) changes. This condition was solved using Groebner bases [12]. The second step is a 
numerical verification that aims at eliminating the spurious solutions. Since the manipulators 
that we want to classify here are such that d2=0 or d3=0 or r2=0, we know that their inverse 
kinematic polynomial can be written as a quadratic and, thus, it cannot admit triple roots 
[2, 17]. Consequently, we know that these manipulators will be always non-cuspidal. Thus, 
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the only separating surfaces of interest are those associated with a change in the number of 
nodes.  
The classification proposed in this paper is not a direct extension of the one that was 
conducted in [20]. First, in [20] all parameters were normalized by d2 to reduce the dimension 
of the problem, thus assuming d2=1. Second, the equations of the separating surfaces found in 
[20] may take degenerate forms when the value of one or more parameter is zeroed. Thus, a 
careful case by case analysis is required, which was not conducted before.  
The separating surfaces associated with a change in the number of nodes found in [20] are 
recalled below. For manipulators with r3=0, the separating surfaces were found to be defined 
by the following three equations (for d2=1) 

 

( )

( )

4

4 3

4

1( 1) :
2

( 2) :
1( 3) :
2

E d

E d d

E d

a b

a b

üïïïïïïïïýïïïïïïïïþ

= -

=

= +

  (4)  

with: 

 ( ) ( )2 22 2
3 2 3 21  and 1d r d ra b= + + = - +  (5) 

For an arbitrary d2, α and β take the following form:  

 ( ) ( )2 22 2
3 2 2 3 2 2 and d d r d d ra b= + + = - +  (6) 

For manipulators with r3≠0, the separating surfaces associated with a change in the number of 
nodes found in [20] are (for d2=1) 

 

⎫⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎪⎜ ⎟⎜ ⎟= + + − + − − αβ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎪⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎪
⎬
⎪⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟⎪⎜ ⎟= + + − + − + αβ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎭

2 2 2
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2 2 2

2 2 2
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2 2 2

1 1 1 1
2

1 1 1 1
2

r r r
d r d r

r r r

r r r
d r d r

r r r

 (7) 

 Σ = +2 2
3 24( 1) : d d r  (8) 

with α and β defined as in (5).  
Equations (7) were derived for r2≠0 and d2=1. For an arbitrary d2, Eqs (7) take the following 
form: 
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 (9) 

where α and β are defined as in Eqs. (6). 
In fact, the above two equations define the two (positive) roots of the following general 
equation: 

 
( )24 4 2 2 2 2 2 2 2 2 2 2 2

4 2 2 3 2 3 2 2 2 3 3 2 3 4

2 2 2 2 4 4 2 2 2 2 2 2 2
2 3 2 2 3 2 3 2 2 3 2 3 3

( 2) :
0

d r r d r r r d r d r d r d

d d r d r d r d r r d d r

−⎧ + − + − + −⎪Σ ⎨
⎪+ − + + − =⎩

 (10) 

In effect, solving Eq. (10) for d4
2 for strictly positive values of r2 yields Eqs. (9) with α and β 

defined as in (6). Because we may have r2=0 in the following classification, Eq. (10) will be 
used rather than Eqs. (9). 
In section 3, a case by case analysis of Eqs. (4), (8) and (10) will be conducted for the ten 
families of manipulators shown in Fig. 2. 

2.5 Feasibility of continuous trajectories in the workspace 

An important kinematic feature is the feasibility of continuous trajectories within the 
workspace. This feature is important for process tasks such as welding or cutting. For non- 
cuspidal manipulators, the regions of feasible continuous trajectories in the workspace are the 
images of the aspects under the kinematic map [18,19,21]. This is because this map being 
one-to-one from each aspect onto its image in the workspace, the preimage of any continuous 
trajectory of the workspace is a path in the joint space. The workspace of a manipulator is said 
to be t-connected if any continuous trajectory is feasible, which arises when one region of 
feasible continuous trajectories is found to be coincident with the whole workspace [18]. In 
[19], a general algorithm was proposed to plot the regions of feasible continuous trajectories 
in a cross section of the workspace. This algorithm works for both cuspidal and non-cuspidal 
manipulators.  
When the workspace is t-connected and composed of only one 4-solution region, it is said to 
be well-connected [15]. This is an interesting feature, which arises in Puma manipulators with 
equal link lengths [15]. It can be shown that if a given manipulator has a t-connected (resp. 
well-connected) workspace, then all manipulators belonging to the same domain of the 
parameter space will have a t-connected (resp. well-connected) workspace as well [20]. In the 
following classification, therefore, it will be sufficient to analyze the t-connectivity for one 
representative manipulator workspace in each domain of the parameter space. 

3 Classification of the ten families of manipulators 

In this section, we classify each family of manipulators shown in Fig. 2. Because nodes on the 
z-axis play no role in the number of 2-solution regions and 4-solution regions or in the t-
connectivity analysis [20], they need not be considered. For each family of manipulators, 
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Eqs. (4), (8) and (10) are rewritten by zeroing the value of one or more parameters. Then, the 
validity of the resulting equations must be carefully analyzed. A surface will have to be 
discarded if (i) it defines infeasible manipulators (e.g. d4=0), (ii) it is associated with the 
apparition of nodes on the z-axis only, or (iii) it becomes, for the family of manipulators 
considered, a spurious solution. Situation (iii) arises because the numerical verification that 
was used in [20] to eliminate the spurious solutions did not consider the particular cases 
shown in Fig. 2. In the following, for all families of manipulators studied, the validity of each 
surface was verified numerically by determining the number of nodes of three manipulators 
defined on the surface and close to it. If the number of nodes was found to be the same for all 
three manipulators, the equation of the surface was declared spurious and discarded. 
In the following classification, cases A through E define manipulators with r3=0 and at least 
one more parameter (different from d4) equal to zero (see Fig. 2). Thus, all these manipulators 
will be defined by at most three nonzero parameters. However, because it is always possible 
to normalize all parameters by one of them, only a 2-dimensional section of the parameter 
space needs be analyzed. Manipulator families associated with cases G, H and J are defined 
by only three parameters (see Fig. 2) and only a 2-dimensional section of the parameter space 
will be shown. For cases F and I, however, the manipulators have four nonzero parameters. 

3.1 Case A (d2=0, r2≠0, d3≠0 and r3=0) 

The first family of manipulators studied are defined by d2=0 and r3=0. In this case, d2=0 
=>α=β and (E1) yields d4=0, which is not possible. Replacing d2=0 and r3=0 in the last two 
equations of (4) yields 

 (E2): 4 3d d=  (11) 

 (E3): 2 2
4 3 2d d r= +  (12) 

The transition curves (E2) and (E3) divide the parameter space into three domains collecting 
manipulators with 0, 2 and 4 node points in their workspaces, respectively. Figure 4 shows, 
for r2=1, the parameter space with the three domains, the transition curves (E2) and (E3), the 
workspace of a manipulator in each domain and on each transition. For each workspace, the 
4-solution regions are filled in dark gray and the 2-solutions regions are in light gray. 
This family of manipulators is classified into the following three types in Fig. 4: 
• Type A1: The manipulators of this type have d3>d4. Their workspace admits no voids nor 

node points, it is composed of two 2-solution regions and one 4-solution region. Their 
workspace is t-connected. 

• Type A2: The manipulators of this type have d3<d4< 2 2
3 2d r+ . Their workspace admits two 

node points and no voids. Their workspace is t-connected. 

• Type A3: The manipulators of this type have d4 > 2 2
3 2d r+ . Their workspace admits four 

node points and no voids. Their workspace is not t-connected. 
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Fig. 4: Parameter space of case A and workspaces of the manipulators having the following parameters: Type A1 
(d3=2, d4=1.5 and r2=1); Type A2 (d3=2, d4=2.2 and r2=1.5); Type A3 (d3=2, d4=3 and r2=1). Transition A1-A2 

(d3=2, d4=2 and r2=1); Transition A2-A3 (d3=3, d4=5 and r2=4). 

3.2 Case B (d2=0, r2=0, d3≠0 and r3=0) 

These manipulators are such that d2=0, r2=0 and r3=0. Since d2=0, (E1) yields d4=0, which is 
not possible. Moreover, (E3) is equivalent to (E2). Thus the parameter space is divided, by the 
transition curve (E2), into two domains collecting the manipulators with 0 and 1 node points 
in their workspaces respectively. Replacing d2=0, r2=0 and r3=0 in (4) yields: 

(E2): 3 4d d=  (13) 

Figure 5 below shows the parameter space with two domains, the transition curve (E1), the 
workspace of a manipulator in each domain and on each transition.  
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Fig. 5: Parameter space of case B and workspaces of the manipulators having the following parameters: Type B1 

(d3=2 and d4=3); Type B1 (d3=2 and d4=1); Transition B1-B2 (d3=2 and d4=2). 
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This family of manipulators is classified into the following two types: 
• Type B1: The manipulators of this type have d3>d4. Their workspace has no voids and no 

node points; it is composed of only one 4-solution region. Their workspace is t-connected. 

• Type B2: The manipulators of this type have d4 > d3. Their workspace admits one node 
point and no voids. Their workspace is not t-connected. 

3.3 Case C (d2=0, r2≠0, d3=0 and r3=0) 

These manipulators are such that d2=0, d3=0 and r3=0. Then, (E1) and (E2) both yield d4=0, 
which is not possible. On the other hand (E3) plays no role because it is associated with the 
apparition of nodes on the z-axis. Thus, we have only one type of manipulators, which we call 
type C. Figure 6 shows the workspace of such manipulators. 
• Type C: The manipulators of this type do not admit voids nor node points in their 

workspace, which is composed of only one 4-solution region. Their workspace is t-
connected. Thus, it is also well-connected. 

ρ

z

4 sols
2 sols

 
Fig. 6: Workspace of the manipulator having the following parameters d4=2 and r2=1.5. 

3.4 Case D (d2≠0, r2=0, d3≠0 and r3=0) 

These manipulators are such that r2=0 and r3=0. Replacing r2=0 and r3=0 in (4) yields: 

 (E1): ( 4 2d d=  and 3 2d d> ) or ( 4 2d d=  and 3 2d d< ) (14)  

 (E2): 4 3d d=  (15) 

 (E3): ( 3 2d d=  and 4 2d d<  ) or ( 3 2d d=  and  4 2d d> ) (16) 

The transition curves (E1), (E2) and (E3) divide the parameter space into five domains 
collecting manipulators with 2, 0, 1, 2 and 0 node points in their workspaces, respectively. 
Figure 7 shows, for d2=1, the parameter space with the five domains, the transition curves 
(E1), (E2) and (E3), the workspace of a manipulator in each domain and on each transition. In 
this case, we have five types of manipulators, referred to as D1, D2, D3, D4 and D5: 
• Type D1: The manipulators of this type have d4 < d2 < d3. Their workspace admits one 

void and 2 node points. Their workspace is not t-connected. 

• Type D2: The manipulators of this type have d2 < d4 < d3. Their workspace does not admit 
voids nor node points. Their workspace is not t-connected. 

• Type D3: The manipulators of this type have d2 < d3 < d4. Their workspace admits one 
node point and no voids. Their workspace is not t-connected. 
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• Type D4: The manipulators of this type have d3 < d2 < d4. Their workspace admits two 
node points and no voids. Their workspace is not t-connected. 

• Type D5: The manipulators of this type have d3 < d4 < d2. Their workspace does not admit 
voids nor node points. Their workspace is t-connected. 

• Type D6: The manipulators of this type have d4 < d3 < d2. They are binary, that is, their 
workspace is composed of only one region, which is reachable with two inverse kinematic 
solutions. Their workspace admits one void and no node points. Their workspace is t-
connected. 
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d3Type D1

Type D2

Type D5

Ty
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 4

ρ

z
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2 sols
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ρ
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ρ

z
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ρρ

z
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2 sols
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ρ

z
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ρ

z

2 sols

ρ

z
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ρ
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Transition D3-D4

Transition D4-D5 Transition D5-D6

Transition D6-D1

E2

E1

E4

 
Fig. 7: Parameter space of case D and workspaces of the manipulators having the following parameters: Type D1 

(d3=1.4, d4=0.7 and d2=1); Type D2 (d3=2, d4=1.5 and d2=1); Type D3 (d3=2, d4=2.5 and d2=1); Type D4 
(d3=0.5, d4=2 and d2=1); Type D5 (d3=0.6, d4=0.7 and d2=1); Type D6 (d3=0.7, d4=0.5 and d2=1); Transition D1-

D2 (d3=2, d4=1 and d2=1); Transition D2-D3 (d3=2, d4=2 and d2=1); Transition D3-D4 (d3=1, d4=2 and d2=1); 
Transition D4-D5 (d3=0.5, d4=1 and d2=1); Transition D5-D6 (d3=0.6, d4=0.6 and d2=1); Transition D6-D1 

(d3=1, d4=0.5 and d2=1). 
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3.5 Case E (d2≠0, r2=0, d3=0 and r3=0) 

These manipulators are such that d3=0, r2=0 and r3=0. In this case, (E1) and (E2) both yield 
d4=0 and (E3) is associated with the apparition of nodes on the z-axis and, thus, is discarded. 
For this family, thus, we have only one type of manipulators, which we call Type E.  
• Type E (Fig. 8): The manipulators of this type do not admit voids nor node points in their 

workspace, which is composed of only one 4-solution region. The workspace is t-
connected. Thus, these manipulators have a well-connected workspace. 

ρ

z

4 sols

 
Fig. 8: Workspace of the manipulator having the following parameters d4=1.5 and d2=1. 

3.6 Case F (d2=0, r2≠0, d3≠0 and r3≠0) 

From now on (case F to case J), the parameter r3 is strictly positive. Thus, the equations to 
inspect are Eqs. (8) and (10). The first family with r3≠0 that we analyze here is defined by 
d2=0. Equation (10) appears to be an extraneous solution for this particular case as we verified 
numerically that it plays no role. On the other hand, Eq. (8) does play a role and divides the 
parameter space into two domains where the manipulators have 0 or 2 node points in their 
workspace, respectively. Figure 9 shows a section of the parameter space for r2=1 and an 
arbitrary value of r3 (the transition is independent of r3 since this parameter does not appear in 
Eq. (8)). The equation of the transition curve is exactly Eq. (8), which we recall below: 

 Σ = +2 2
3 24( 1) : d d r  (17) 

For this family, there are two types of manipulators, referred to as F1 and F2, respectively: 

• Type F1: The manipulators of this type have d4 < 2 2
3 2d r+ . Their workspace is free of 

voids and node points. It is composed of two 2-solutions regions and one 4-solution region. 
Their workspace is t-connected.  

• Type F2: The manipulators of this type have d4 > 2 2
3 2d r+ . Their workspace admits 2 node 

points and no voids. Their workspace is not t-connected. 
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ρ

z

ρ

z

d4

d3

Type F2

Type F1

E1

Type F2

4 sols
2 solsρ

z

4 sols
2 sols

Type F1

4 sols
2 sols

Transition F1-F2  
Fig. 9: Parameter space of case F and workspaces of the manipulators having the following parameters: Type F1 
(d3=2, d4=1.5, r2=1 and r3=1); Transition F1-F2 (d3=2, d4=2.24, r2=1 and r3=1); Type F2 (d3=1, d4=2, r2=1 and 

r3=1); 

3.7 Case G (d2=0, r2=0, d3≠0 and r3≠0) 

The manipulators of this case are such that d2=0 and r2=0. Replacing d2=0 and r2=0 in Eq. 
(10) yields d3=0 or d4=0 or r3=0. Thus, (Σ2) must be discarded.  On the other hand, Eq. (8) 
appears to be a spurious solution as we verified numerically that is plays no role. Thus, we 
have only one type of manipulators, which we call Type G: 
• Type G (Fig. 10): The manipulators of this type do not admit voids nor node points in their 

workspace, which is composed of only one 4-solution region. The workspace is t-
connected. Thus, these manipulators have a well-connected workspace. 

ρ

z

4 sols

 
Fig. 10: Workspace of the manipulator having the following parameters  

d3=1, d4=3, r2=0 and r3=1. 

3.8 Case H (d2=0, r2≠0, d3=0 and r3≠0) 

This family of manipulators is defined by d2=0 and d3=0. In this case, Eq. (10) is associated 
with the apparition of nodes on the z-axis. Like in the preceding case, Eq. (8) appears to be a 
spurious solution. Thus, we have only one type of manipulators, which we call Type H: 
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• Type H (Fig. 11): The manipulators of this type do not admit voids nor node points in their 
workspace, which is composed of only one 4-solution region. The workspace is t-
connected. Thus, these manipulators have a well-connected workspace. 

ρ

z

4 sols

 
Fig. 11: Workspace of the manipulator having the following parameters d3=0, d4=1, r2=3 and r3=1. 

3.9 Case I (d2≠0, r2=0, d3≠0 and r3≠0) 

This family of manipulators is defined by r2=0. Like in the preceding two cases, (Σ1) appears 
to be a spurious solution. Replacing r2=0 in Eq. (10) and normalizing by d2 yields: 

 (Σ2): 4d δ=  with
2

3
2
3

1
1

r
d

δ = +
−

 (18) 

The resulting equation depends on three parameters. However, it is possible to study 2-
dimensional sections of the parameter space. For a given value of r3, (Σ2) defines one or two 
transition curves depending on r3. When there are two curves, these two curves are located on 
each side of the asymptote d3=1 where (Σ2) is not defined, and which gives rise to an 
additional transition curve. For this family of manipulators, the maximum number of domains 
is four and can be shown in a section of the parameter space at a value of r3 where (Σ2) 
defines two curves. Figure 12 shows such a section (r3=0.5) with the four domains, the three 
transition curves and the workspace of a manipulator in each domain and on each transition. 
For this family, there are four types of manipulators, referred to as I1, I2, I3 and I4, 
respectively: 
• Type I1: The manipulators of this type have d3 > d2 and d4 >δ. Their workspace is free of 

voids and node points. Their workspace is not t-connected. 

• Type I2: The manipulators of this type have d3 > d2 and d4 <δ. Their workspace admits two 
node points and one void. Their workspace is not t-connected. 

• Type I3: The manipulators of this type have d3 < d2 and d4 >δ. Their workspace admits one 
void and no node points. Their workspace is t-connected. 

• Type I4: The manipulators of this type have d3 < d2 and d4 <δ. Their workspace admits two 
node points and one void. Their workspace is not t-connected. 
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Fig. 12: Parameter space of case I with r3=0.5 and workspaces of the manipulators having the following 

parameters: Type I1 (d2=1, d3=2.5 and d4=1.5); Type I2 (d2=1, d3=3 and d4=0.7); Type I3 (d2=1, d3=0.5 and 
d4=0.7); Type I4 (d2=1, d3=0.3 and d4=2); Transition I1-I2 (d2=1, d3=3 and d4=1); Transition I1-I3 (d2=1, d3=1, 

d4=4); Transition I2-I3 (d2=1, d3=1, d4=0.7); Transition I3-I4 (d2=1, d3=0.2, d4=0.8). 

3.10 Case J (d2≠0, r2=0, d3=0 and r3≠0) 

The manipulators of this case are such that r2=0 and d3=0. Equation (10) is associated with the 
apparition of nodes on the z-axis. On the other hand, Eq. (8) can be shown to be a spurious 
solution. For this family, thus, there is only one type of manipulators, which we call Type J. 
• Type J (Fig. 13): The manipulators of this type admit one void and no node points in their 

workspace, which is composed of only one 4-solution region. Their workspace is t-
connected. 

ρ

z

4 sols

 
Fig. 13: Workspace of the manipulator having the following parameters d2=1, d4=2, and r3=1. 
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4 Classification synthesis and discussion 

We have classifed the ten families of manipulators of Fig. 2 as function of the topology of 
their workspace. Overall, twenty two types of manipulators have been analyzed. For all 
manipulators of one given type, the following global kinematic properties are the same: (i) 
number of nodes (ii) number of voids (iii) number of 2-solution and 4-solutions regions (iv) t-
connectivity and well-connectivity of the workspace. The classification of the ten families is 
synthesized in Tab. 1 below. It is apparent that some manipulator types have better properties 
than others. Besides, several manipulator types have similar properties. From Tab. 1, we 
conclude that five manipulator types, namely, types B1, C, E, G and H, have a well-connected 
workspace (workspace is fully reachable with four inverse kinematic solutions and fully t-
connected) (Fig. 14). On the other hand, manipulator types A3, D1, D6, I2, I3 and I4 have 
poor kinematic performances and should be discarded by the designer. This is an interesting 
information for the design of alternative manipulator geometries. 

ρ

z

4 sols
2 sols

Type B1

ρ

z

4 sols
2 sols

Type C

ρ

z

4 sols

Type E

ρ

z

4 sols ρ

z

4 sols

Type G Type H  
Fig. 14: The five manipulator types with well-connected workspace. 

5 Conclusions 

In this article, the exhaustive classification and enumeration of all types of workspace 
topology was conducted for the ten families of orthogonal manipulators that have at least one 
geometric parameter equal to zero. Twenty-two different types of manipulators were 
identified, which have similar global kinematic properties. The resulting classification has 
shown that five manipulators type (types B1, C, E, G and H) have a well-connected 
workspace, which was shown in the past to be specific to Puma-type manipulators. These 
types are interesting candidates for the design of alternative manipulator geometries. 
Finally, it should be recalled that our classification relies only on the topology of the 
workspace. Other interesting kinematic features, such as the compactness of the workspace or 
the global conditioning index, were not analyzed. In fact, our classification can be regarded as 
a preliminary step in the design of new manipulators.  
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Type DH conditions Void Node 
points

4-solution 
region 

Workspace 
t-connected

Workspace 
well-connected 

B1   d2=0, r2=0, r3=0 
d3>d4 

0 0 All the 
workspace Yes Yes 

C  d 3=0, r3=0 0 0 All the 
workspace Yes Yes 

E  d 3=0, r2=0, r3=0 0 0 All the 
workspace Yes Yes 

G  d2=0, r2=0 0 0 All the 
workspace Yes Yes 

H  d2=0, d3=0 0 0 All the 
workspace Yes Yes 

A1  d2=0, r3=0, 
d4<d3 

0 0  Yes No 

D5  r2=0, r3=0, 
d3<d4< d2 

0 0  Yes No 

F1  
d2=0, 

d4 < 2 2
3 2d r+  0 0  Yes No 

D2  r2=0, r3=0, 
d2<d4< d3 

0 0  No No 

I1  r2=0, 
d3 > d2 and d4 >δ 0 0  No No 

B2  d2=0, r2=0, r3=0, 
d3<d4 

0 1 All the 
workspace No No 

D3  r2=0, r3=0, 
d2<d3< d4 

0 1  No No 

A2  
d2=0, r3=0, 

d3 <d4 < 2 2
3 2d r+  0 2  Yes No 

D4  r2=0, r3=0, 
d3<d2< d4 

0 2  No No 

F2   
d2=0, 

d4 > 2 2
3 2d r+  0 2  No No 

A3 
d2=0 , r3=0, 
d4 > 2 2

3 2d r+  0 4  Yes No 

D6  r2=0, r3=0, 
d4<d3< d2 

1 0 Null Yes No 

I3  r2=0, 
d3 < d2 and d4 >δ 1 0  Yes No 

J  r2=0 and d3=0 1 0 All the 
workspace Yes No 

D1  r2=0, r3=0, 
d4>d2> d3 

1 2  No No 

I2  r2=0, 
d3 > d2 and d4 <δ 1 2  No No 

I4  r2=0 1 2  Yes No 
Tab.1 All types and their kinematic properties. 
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A useful next step is a detailed inspection of the domains of the parameter space that are 
associated with the most interesting types, namely, types B1, C, E, G and H. This analysis can 
be conducted like in [20] on the basis of global kinematic indices such as workspace 
compactness and global conditioning index. The resulting analysis would make it possible to 
pinpoint small domains in the parameter space where the manipulators feature, in addition to 
a well-connected workspace, good workspace compactness or good global conditioning. 
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