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as it lacks a contribution of the same order related to the external boundary (see Bonnet, 2006a, for a similar study in 3-D linear acoustics). This error can be explained as follows. Equation (37) ) contribution to u ε and is in fact non-local as it is expressed in terms of quantities on ∂Ω rather than higher-order gradients of u at x.

The incorrectness of result ( 37) can be further demonstrated on a simple analytical example. Consider the 2-D domain Ω ε enclosed by two concentric circles of radii ε and a, i.e. ∂B ε = {(r, θ) r = ε} and ∂Ω = {(r, θ) r = a} in terms of polar coordinates (r, θ). The solution u ε of the Laplace equation with boundary conditions

u ,n = 0 (r = ε), u ,n ≡ q = cos θ (r = a)
and the corresponding reference solution u when there is no hole are respectively given (up to an arbitrary additive constant) by

u ε (r, θ) = a 2 a 2 -ε 2 r + ε 2 r cos θ, u(r, θ) = r cos θ (ii)
Note that the reference solution u is such that ∇u(x) = cos θe r -sin θe θ and ∇∇u(x) = 0. Then, a simple calculation gives

ψ(Ω ε ) = 1 2 Ωε ∇u ε .∇u ε dV - ∂Ω qu ε ds = - 1 2 ∂Ω qu ε ds = - πa 2 2 a 2 + ε 2 a 2 -ε 2 Expanding ψ(Ω ε ) to order O(ε 4 ) gives ψ(Ω ε ) = - πa 2 2 -πε 2 - π a 2 ε 4 + o(ε 4 ) (iii)
while equation ( 37) incorrectly gives the expansion as

ψ(Ω ε ) = - πa 2 2 -πε 2 -0 × ε 4 + o(ε 4 ) (iv)
Note that the error in (iv) vanishes as ∂Ω is rejected to infinity, i.e. as the influence of the external boundary goes away. This is analogous to secondary reflection effects in small-obstacle approximations for wave problems.

Topological expansion: Dirichlet condition on the hole. The topological expansion (38) is also not correct. Expansion (38) states that

ψ(Ω ε ) = ψ(Ω) + π -1 Log ε [u(x)] 2 + π ∇u(x) 2 ε 2 + o(ε 2 ). (v)
However, another simple analytical example again allows to show that the second term in (v), is not correct. With the domain Ω ε defined as before, the solution u ε of the Laplace equation with boundary conditions

u = 0 (r = ε), u = A (r = a)
and the corresponding reference solution u are respectively given by

u ε (r, θ) = A Log (r/ε) Log (a/ε) , u(r, θ) = A
The potential energy is therefore

ψ(Ω ε ) = 1 2 Ωε ∇u ε .∇u ε dV = 1 2 ∂Ω ∂u ε ∂n u ε ds = πA 2 Log (a/ε) = πA 2 Log a -Log ε .
Expanding the above result in powers of -1/Log ε yields

ψ(Ω ε ) = πA 2 -1 Log ε + Log a -1 Log ε 2 + o -1 Log ε 2 (vi) Expansion (vi) implies that 1 ε 2 ψ(Ω ε ) -ψ(Ω) -π -1 Log ε [u(x)] 2 -→ ∞ (ε → 0)
(noting that ψ(Ω) = 0 for this example) which directly contradicts expansion (v), i.e. (38), except possibly in the special case a = 1.
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