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Verified Real Number Calculations:
A Library for Interval Arithmetic

Marc Daumas, David Lester, and César Mufioz

Abstract— Real number calculations on elementary functions about a page long and requires the use of several trigonizmetr
are remarkably difficult to handle in mechanical proofs. In this  properties.
paper, we show how these calculations can be performed withi 1, \any cases the formal checking of numerical calculations
a theorem prover or proof assistant in a convenient and hight . b h h ff futile: it is th
automated as well as interactive way. First, we formally estblish 'S SO cumbersome that the effort seems futile; it Is then
upper and lower bounds for elementary functions. Then, basz tempting to perform the calculations out of the system, and
on these bounds, we develop a rational interval arithmetic Wwere  introduce the results as axiorhddowever, chances are that
real number calculations take place in an algebraic settingin  the external calculations will be performed using floatiragnt
order to reduce the dependency effect of interval arithmet, ,hmetic. Without formal checking of the results, we will
we integrate two techniques: interval splitting and taylor series b fth fth lculati
expansions. This pragmatic approach has been developed, din NEVEr be sure of the correctness of the calculations.
formally verified, in a theorem prover. The formal development In this paper we present a set of interactive tools to automat
also includes a set of customizable strategies to automateaofs ically prove numerical properties, such as Form{ija (1)hiwit
involving explicit calculations over real numbers. Our ultimate 3 proof assistant. The point of departure is a collectiomwlr
goal s to provide guaranteed proofs of numerical propertis with 54\ \sner hounds for rational and non-rational operations
minimal human theorem-prover interaction. . )
_ _ _ ~ Based on provable properties of these bounds, we develop a
'”fd@;] Te;:-ms_ﬂ?eal number calculations, interval arithmetic,  rational interval arithmetic which is amenable to autowrati
proot checking, theorem proving The series approximations and interval arithmetic present
here are well-known. However, to our knowledge, this is the
. INTRODUCTION most complete formalization in a theorem prover of interval

Deadly and disastrous failures [1]-[3] confirm the shared/ithmetic that includes non-algebraic functions.
belief that traditional testing, simulation, and peerieavare ~ Our ultimate goal is to provide guaranteed formal proofs
not sufficient to guarantee the correctness of critical-sofff numerical properties with minimum human effort. As
ware. Formal Methods in computer science refers to a Set':\utoma_ted processes are bou_nd to fail on degenerate c;dses an
of mathematical techniques and tools to verify safety prop/@ste time and memory on simple ones, we have designed a
erties of a system design and its implementation function#ft of highly customizable proof strategies. The defaulies
requirements. In the verification of engineering applimadi of the pqrameters are sufficient in most simple cases. Haweye
such as aerospace systems, it is often necessary to perf8rfPmain expert can set these parameters to obtain a desired
explicit calculations with non-algebraic functions. Diesp 'eSult.eg., the accuracy of a particular calculation. _
all of the developments concerning real analysis in theorem!hiS paper merges and extends the results presented in

provers [4]-[8], the formal verification of the correctnesfs [10], [11]. The rest of this document is organized as follows
these calculations is not routine. Section[il defines bounds for elementary functions. Sedtipn
Take, for example, the formula presents a ratlongl interval arithmetic based on t_hesedmun_
SectlonE\}’ describes a method to prove numerical proposi-
27 <« Tgan(2= oz 1) tions. The implementation of this method in a theorem prover
180 — (180 - 180" @ i i i i i
v is described in Sectiop]V. Last section summarizes our work
where g is the gravitational force and = 250 knots is and compares it to related work.
the ground speed of an aircraft. This formula appears inThe mathematical development presented in this paper has
the verification of NASAs Airborne Information for Lateral peen written and fully verified in the Prototype Verification
Spacing (AILS) algorithm [9]. It states that the turn rate obystem (PVS) [1% PVS provides a strongly typed specifica-
an aircraft flying at ground speed with a bank angle of tion language and a theorem prover for higher-order logic.
35° is about3? per second. A direct proof of this formula is|t is developed by SRI International. Our development is
M. Daumas farc.daumas@lirmm.fr ) is with the LIRMM, CNRS, freely available on the I.nternet. The results on upper and
UM2 and ELIAUS, UPVD and he is supported in part by the PICS®68 lower bounds have been integrated to the NASA Langley PVS
theDCLNRtS- dester® K )is with the University of Manch Libraries’ and the rational interval arithmetic and the PVS
. Lester Qlester@cs.man.ac.u IS Wi e university o ancn- f : S H
ester, Oxford Road, Manchester M13 9PL, UK and he is suppartepart strategies for numerical propositions are available frora of
by the French Rgion Languedoc-Roussillon. . . o )
C. Mufioz unoz@nianet.org ) is with the National Institute of As a matter of fact, the original verification of NASAs AlLSgarithm

Aerospace, 100 Exploration Way, Hampton, VA 23666, USA amdih contained several such axioms. :
supported in part by he National Aeronautics and Space Adtrition 2pVS is available fronfttp://pvs.csl.sri.com |

under NASA Cooperative Agreement NCC-1-02043 and by thevéssity 3htt%://shemesh.Iarc.nasa.gov/fm/ftp/larc/
of Perpignan. PVS-Tibrary/pvslib.htim .
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the authord B. Trigonometric functions

For readability, we will use standard mathematical notetio e use the partial approximation by series.
along this paper and PVS notations will be limited to illasér

the use of the library. In the following, we use the first |ette sin(x,n) = zm:(—l)l‘l a!
of the alphabet:, b, ... to denote rational nhumbers, and the 7 P (2 —1)!
last letters of the alphabet.z,y, z to denote arbitrary real m1 91
variables. We usboldfacefor interval variables. Furthermore, sin(z,n) = Z (1)t x ,
if x is an interval variablex denotes its lower bound arx =1 (2 —1)!
denotes its upper bound. m+1 ey
cosa,n) = 1+ 3 (-5
i=1
m 21
Il. BOUNDS FORELEMENTARY FUNCTIONS ws(en) = 14 Z(_l)z (:;i)"

A PVS basic theory of bounds for square root and trigono-
metric functions was originally proposed for the verificati
of NASAs AILS algorithm [9]. We have completed it and
extended with bounds for natural logarithm, exponentiadl a
arctangent. The basic idea is to provide for each real fancti
f: R — R, functionsf : (R,N) — R and f : (R,N) — R

wherem = 2n if z <0; otherwise,m =2n+1.
Proposition 2: Va,n : sin(x,n) < sin(z) < sin(z,n).
Proposition 3: Vz,n : cos(z,n) < cos(x) < Tos(x,n).

closed undefQ, such that for allz, n C. Arctangent and =
_ We first use the alternating partial approximation by series
i(x,n) < i(xan—i_l)a (3) 2n+1 (_1)1
— — _ 2141 H
f(x,n—i—l) < f(xan)a B (4) —atan(x’n) - Z; T 22-—_”1 if 0<z<1,
lim f(z,n) = f(z) = lm f(z,n). ®) on )
atan(z,n) = Zx%*l%, if 0 <z <1

Formula [IZ) states that and f are, respectively, lower and i=1 e

upper bounds off, and formulas[{3),[{4), and](5) state thajye note that for: = 1 (which we might naively wish to use to

these bounds can ultimately be improved, as much as neeQﬁ_g-,neﬂ/Zl and hencer) the seriesi—%—i-%—%—k%—- .. does

by increasing the approximation parameter converge, but very slowly. Instead, we use the equajity:
For transcendental functions, we use taylor approximatiartan(1/5) —atan(1/239), that has much better convergence

series. We performed a coarse range reduction [13] since gieperties. Using this identity we can define boundsron

convergence of taylor series is usually best for small \&alue _

More elaborate range reduction techniques [14] would &igni m(n) = 16 atan(1,n) — 4 atan(1,n),

icantly enhance the speed and the accuracy of the functions (n) = 16 atan(1,n) — 4 atan(1,n).

defined in Sectionfs]Il ar{d]I1. All the stated propositionstis

section have been formally verified in the verification syste . _
PVS. Proposition 4: Vn: n(n) < m < 7(n).

Now, using properties of arctangent, we extend the range of
the function to the whole set of real numbers:

Il

A. Sguare root atan(0,n) = atan(0,n) = 0,
w(n 1 .
For square root, we use a simple approximation by Newton’s ~ atan(z,n) = # — atan(;, n), Iif 1<z,
method. Forz > 0, atan(z,n) = —atan(—x,n), if x <0,
S T 1 .
sqri(z,0) = xz+1, atan(zr,n) = @ - atan(;,n), if 1<,
S 1 -
sqrt(gmn + 1) = 5(1] + E), wherey = sqrt(xﬂl), atan(a:, n) = —atan(—a:, TL), if <0
Y
sqri(z,n) = —r
T sqrt(z, n) Proposition 5: Vz,n : atan(z,n) < atan(z) <
N atan(z, n).
_ Proposition 1 Vo > 0,n 0 0 < sart(z,n) < & < These are strict inequalities except whes 0.
Sqft(ﬂ_@a n)_- o _ The PVS definition of bounds oftan andw are presented
The first inequality is strict whem > 0. in Listing [l. PVS developments are organized in theories,

which are collections of mathematical and logical objects
“http://research.nianet.org/"munoz/Interval . such as function definitions, variable declarations, asioamd
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lemmas. Thatan _approx theory firstimports the definition
of the arctangent function. Then, it declares variablggpx

of typesnat (natural numbers)teal (real numbers), and
posreal (positive real numbers), respectively. For the scope
of the theory, these variables are implicitly universallyag-

tified. Though writing definitions, lemmas, theorems and-spBv/S Listing 1 Definition of bounds omtan and =

cially proofs in PVS requires some training, reading thesri
. . . . - . atan_approx: THEORY
is possible to anybody with a minimal background in logic. geciy

IMPORTING atan

D. Exponential
n: VAR nat
The series we use for the exponential function is x: VAR real
px: VAR posreal
exp(z) = —. atan_pos_lel_ub(n,x): real =
p() 2 i! atan_series_n(x,2*n)
1=

atan_pos_lel_Ib(n,x): real =

We could directly find bounds for negativefrom this series atan_series. n(x 2n+1)

as, in this case, the series is alternating. However, we will

subsequently find that it is convenient to show that our beund atan_pos_lel_bounds: LEMMA

for the exponential function are strictly positive, andstls not 0=x /mg’ o (rf X')Mf'-e'lasn (0 AND
true for allz < 0. Yet, this propertyholds for —1 < 2 < 0. atan(x) < atan_pos. lel_ub(n.x)

We define
pi_lbn(n): posreal =

2(n+1)+1 2 4*(4*atan_pos_lel_Ib(n,1/5) -
; t lel_ub(n,1/239
@(w,n) _ Z 57 if —1<z<0, atan_pos_lel_ub(n )
i=0 pi_ubn(n): posreal =
2(n+1) 2 4*(4*atan_pos_lel_ub(n,1/5) -
W(%n) _ = if —1<x<0. atan_pos_lel_Ib(n,1/239))
=0 pi_bounds: THEOREM
Using properties of the exponential function, we obtain P-PN(W < PIAND pi < pi_ubn(n)
bounds for the whole set of real numbers: atan_pos_lb(n,px): real =
IF px <= 1 THEN
e 0.n) = &m0.n) = 1 atan_pos_lel_lb(n,px)
exp(0,n) xp(0,7) o ELat
T —l= . pi_lbn(n)/2 - atan_pos_lel_ub(n,1/px)
exp(x,n) = eX_P(_m n) o, fe<-l ENDIF
1 ; atan b : =
_ _pos_ub(n,px): real =
oplen) = wrmny 70 IF px <= 1 THEN
" ~lz) atan_pos_lel_ub(n,px)
Feerany — =5 i _ ELSE
xp(z,n) = eXp(_ngJ ) , o<l pi_ubn(n)/2 - atan_pos_lel_Ib(n,1/px)
1 ENDIF
&p(z,n) = ——, ifaz>0.
p(@;n) exp(—z,n)’ atan_Ib(x,n): real =

IF x > 0 THEN atan_pos_Ib(n,x)
ELSIF x = 0 THEN O

Notice that unless we can ensure that all of the bounding ELSE -atan_pos_ub(n,-x) ENDIF

functions are strictly positive we will run into type-cheay atan_ub(x,n): real =

problems using the bound definitions far > 0, eg., IF x > 0 THEN atan_pos_ub(n,x)

1/exp(— is only defined providedxp(— 0. ELSIF x = 0 THEN 0

/=D x,n) i y P (—z,n) # ELSE -atan_pos_lb(n,-x) ENDIF
Proposition 6: Va,n : 0 < exp(r,n) < exp(z) <

exp(z, n). atan_bounds: THEOREM

These are strict inequalities except wher- 0. atan_lb(x,n) <= atan(x) AND

atan(x) <= atan_ub(x,n)

) END atan_approx
E. Natural Logarithm

For 0 < = < 1, we use the alternating series for natural
logarithm:

o0

In(z+1) = Z(_U”l“’”_,i.

: 2
=1



Therefore, we define and hide some technical parts. The theory defines the type

on i Interval as a record with fieldsib andlb of type rat
In(z,n) = Z(—l)”lﬁ, if1<z<2, (rational numbers), variablesy of typereal , variablen
i—1 ¢ of type nat , and variablesX,Y of type Interval
2n+1 ;
_ o (r—1) .
I(z,n) = Y (—1)”1%, ifl<az<2 PVS Listing 2 Definition of interval arithmetic
1=1

. . . . . Interval : THEORY
Using properties of the natural logarithm function, we @bta BegIN

In(l,n) = In(l,n) = 0 Interval : TYPE = [#

1 . b : rat,
In(z,n) = —1_n(;,n), if 0 <z <1, ub - rat
— — 1 . #]
In(z,n) = -In(—,n), fFO0<xz<l.

x X,y : VAR real

n : VAR nat
Finally, we extend the range to the whole set of positivesreal XY : VAR Interval
If x > 2, we find a natural numbez_n and real nu_mbey suc_h +XY): Interval = [[Ib(X)+Ib(Y).
thatz = 2™y and1 < y < 2, by using the following recursive ub(X)+ub(Y)[]
algorithm similar in spirit to Euclidean division: -(X,Y): Interval = [JIb(X)-ub(Y),
. : : - b(X)-Ib(Y)I]
Innat(x:posreal,k:posnat): [nat,posreal] = . _ u
if x < k then (0,x) -(X) : Interval = [|-ub(X),

-Ib(X))l]
else *(X,Y): Interval

'(iﬁflmy'g’) = Innat(x/k,k) in JX.Y): Interval = X * [[1/ub(Y),
endif 1)1
Abs(X): Interval = ...
We next prove the following property: Sq(X) : Interval = ...
Proposition 7: Vo > 1,k > 1: k™ <z < k™Ml y < (X.n): Interval = ...
k,z = k™y, where(m, y) = Innat _(z, k). U(X,Y) : Interval = [|min(Ib(X),Ib(Y)),
If (m,y) =Innat (2,z), we observe that max(ub(X),ub(Y))[]
In(z) = In(2™y) = mIn(2) + In(y).
END Interval
Hence,
In(z, = In(2, In(y,n), if z>2, . . .
:n(x n) mn :n( n) +:n(y n) , * If X is a PVS intervallb(X) is the lower bound and
In(z,n) = mln(2n)+In(y,n), if z>2. ub(X) is the upper bound oK. In PVS, we define the
Proposition 8: Va > 0,n: In(z,n) < In(z) < In(z,n). Syntactic sugar|xy[] to represent the intervalz,y].
These are strict inequa"ties except when- 1. Interval unionx U y, written in PVSX U Y, is defined as
the smallest rational interval that contains batlandy.
1. RATIONAL INTERVAL ARITHMETIC The four basic interval operations are defined as fol-

WS [17]:

Interval arithmetic has been used for decades as a standgr
tool for numerical analysis on engineering applications]1

. . . ; x+y = [x+y.X+7],
[16]. In interval arithmetic, operations are evaluated ange _ - x- - ]
of numbers rather than on real numbers(obosed) interval =~ ¥ 5. Yo% _XL L .
[a,b] is the set of real numbers betweerandb, i.e, XXy = [min{xy,x¥,Xy, Xy}, max{xy, Xy, Xy, Xy }|,
11 o
[a,b] = {z]a<az<b} x/y = xx[§,§], if yy > 0.

The boundsz and b are called thdower bound and upper
bound of [a,b], respectively. Note that ife > b, the interval
is the empty set. The notatidn] abbreviates the point-wise
interval [a, a]. x
Interval computations can be performed on the endpoints

We also define the unary negation, absolute value, and power
operators for intervals:

[
or on the center and the radius. For this work, we decided toXl = [min{|x], |§|}’max{|_5|’ X[}, if xx =0
work on rational endpoints. Trigonometric and transcetalen [x| = [0, max{[x|, [x|}], if xX <O0.
presented in Sectio] II. x", X" if x>0 orodd?n),

[
X", x"] if X <0 and eventh),

Listing [ shows a few definitions from the PVS the- x X
[0, max{x",X"}] otherwise

0
functions for interval arithmetic are defined using the lasin [1] if n=0,
ory Interval . Dots are used to simplify the presentation



Interval operations are defined such that they include tBe Square root, arctangent, exponential, and natural loga-
result of their corresponding real operations. This proper rithm

called theinclusion property. . Interval functions for square root, arctangent,exponen-
Proposition 9 (Inclusion Property for Basic Operators): If g and natural logarithm are defined for an approximation

x €xandy €y thenz®y € x®y, where® € {+,—, %, /}.  parameten > 0:

Moreover,—z € —x, |z| € |x|, andz™ € x", forn > 0. It B

is assumed thay does not contaird in the case of interval Vxln = [sart(x,n),sqrf(X, n)], if x >0,
division. [atan(x)], = [atan(x,n),atan(X,n)],
Listing E specifies this property in PVS. The propositioa x e = [a(n),7(n)]
is written x ## X. " o '
[exp(x)]n = [exp(x, n),exp(X, n)],
PVS Listing 3 Basic inclusion properties n(x)], = [nx,n),nxmn), ifx>0.
Add_inclusion : LEMMA As consequence of Propositi 5, 6, Hnd 8 in Segtion I,
X #E X AND y Y = ey #EE XY and the fact that these functig@lj}lalr:t incrEeasing, the@ above
Sub inclusion : LEMMA functions satisfy the following inclusion property.
X ## X AND y ## Y = xy ## X-Y Proposition 12: For all n, if € x then f(z) € [f(X)]n,

where f € {,/,atan, exp,In}. Moreover,w € [r],. It is
assumed thak is non-negative in the case of square root,
andx is positive in the case of natural logarithm.

Neg_inclusion : LEMMA
X ## X = -x ## -X

Mult_inclusion : LEMMA

% *
X ## X AND y ## Y = Xty ## X C. Trigonometric functions

Div_inclusion : LEMMA Parametric functions for interval trigonometric functssre

NOT O ## Y AND defined by cases analysis on quadrants where the functions

X ## X AND y ## Y = Xly ## XIY are increasing or decreasing. The mathematical definitioms
Abs_inclusion : LEMMA presented in Figurf 1.

X ## X = abs(x) ## abs(X) Note thatsin andcos are defined for the whole real line.

However, for anglesy such thatja| > & both functions will

Sq_inclusion : LEMMA return the interval—1, 1], a valid bound but not a very good

X X = sdx) ## sq(X) one. Furthermore, the expressien+ 5 in Formula [B) is
Pow_inclusion : LEMMA necessary to guarantee that lower and upper bounds of cosine

X ## X = x'n ## X'n are strictly positive in the interv{il—w, %’“5)], and thus,

the interval tangent function is always defined in that eér
The interval trigonometric functions satisfy the inclusio
The inclusion property is fundamental to interval arithimet property.

It guarantees that evaluations of an expression usingvaiter proposition 13: If 2 € x then f(z) € [f(x)],, where f €

arithmetic bound its exact real value. Any operation inmwee  (gin cos}. Moreover, ifx C [_E("2+5)’£(n2+5)], tan(z) €

arithmetic must satisfy the inclusion property with regpec [tan(x)] .

its corresponding real operation.

The next section proposes a method to prove numerical
A. Interval comparisons propositions based on the interval arithmetic described.he

There are several possible ways to compare intervals [18].
In this work, we use interval-rational comparisons andrirge V. MECHANICAL PROOFS OFNUMERICAL PROPOSITIONS

inclusions. Arithmetic expressions are defined by the following gram-

o . mar, whereV is an denumerable set of real variables:
a If X < a, similarly for

x <
x > a if x> a, similarly for
C

<,
>, e = a|lzxz|ete|e—e]| —e | exe|

efe | lel | e | Ve |m | sin(e) |

x €y ffy<xandx<y. cos(e) | tan(e) | exp(e) | In(e)| atan(e)
Proposition 10: Assume that: € x, a € Q
1) if x >1a thenz xia, for i € {<,<,>,>}, and ; E ]I\j

2) if x Cythenx €y.
We usex to denote>, >, <, or <, when is, respectively, Numerical propositionsP have either the forme; i es,
<, <, >, or >, wherex € {<,<,>,>}, or the forme € a, wherea is a
Proposition 11: If x 1 a andx % a, thenx is empty. constant interval (an interval with constant rational esidfs).
Notice that—(x 1 a) does not implyx t4 a. For instance, As usual, parentheses are used to group real and interval
[—1,1] is neither greater nor less than expressions as needed.



=8
3

[sin(sx, n), sin(%, n) it x C[-=, =),
. [sin(X, n), sin(x, )] else if x C [T% 7(n)),

[sin(x)], = [min{sin(x,n),sin(X,n)}, 1] else if x C[0,x(n)], (6)
—[sin(—x)]» else if x C[—x(n),0],
[-1,1] otherwise
{@Ez nﬁ,ﬁ(g, n)| | iff x C F),z((n))]b]
cos(—x)|n elseif xC|—xm(n),0],

[eos(x)ln = [min{cos(x,n), cos(X,n)}, 1] elseif xC [—#, #], 0
[-1,1] otherwise

[tan(x)], = [%(5, n+5), %(i, n+5)], ifxC[- E(n;- 5)7 E(n;— 5)] (8)

Fig. 1. Interval trigonometric functions

A context T is a set of hypotheses of the form € x.
A ground context is a context where all the intervals are
constant. In the following, we use logical judgments in the
sequent calculus style,g.,, I' = P, where all free variables
occurring inP are inI". The intended semantics of a judgment
I" = P is that the numerical propositioR is true under the
hypotheseg".

Given a context’, an approximation parameter, and an
expressiore, such that the free variables efare inT’, we
define the interval expressidal, by recursion ore.

3) Evaluatele]l = 0. If it evaluates to true, the following
judgment holds

r + [ef

n

> 0.

In that case go to stelp 5.

4) Evaluatele]l, t4 0. If this evaluates to true then fail. By
Propositior] }1, the judgmefit - [e] 1 0 cannot hold.
If [e]% 4 0 evaluates to false, increase the approximation
parameter and return to stfp 3.

5) By Theorenf]L,

[a]}ﬂI = |d, ' - ee [e]g.
[z]L = x, where(z €x) €T, 6) Proposition] 70 yields
[61 ® 62]2 - [61]2 ® [62]27 where® € {+v EReY /}7 I F exO.
el = (el 7) By definition
[~eln = el Yy cerniion
lell, = lell, I F el —eax0.
[ = [, 8) Therefore,
f@)n = [F(@)n T + e xeo.

where f € {sin, cos, tan, exp, In, atan}.

The method above can be easily adapted to judgments of

Theorem 1 (Inclusion): Let T' be a contextp an approxi- the formT" F e >a a. In this case, the interval expression
mation parameter, and a well-defined arithmetic expressionl¢l, C a is evaluated. If the expression evaluates to true, then

in T, i.e, side conditions for division, square root, logarithmthe original judgment holds by Th_eord]n 1 and Proposifidn 10.
and tangent are satisfied, Otherwise, the method should fail.

The general method isound, i.e, all the steps can be
effectively computed and each one is formally justified. In
particular, the propositiong]L i 0, [e]} 4 0, and[e]} C a
can be mechanically computed as they only involve rational
arithmetic and constant numerical values. The method is not
complete as it does not necessarily terminate. Even idnly
involves the four basic operations and no variables, it may b

We propose a general method to prove numerical propo#iat both[e], >0 and[e]}, 4 0 evaluate to false.
tions. First, consider a judgment of the form The absence of a completeness result is a fundamental
limitation on any general computable arithmetic. At a picedt
level, the problem arises because all we have available are
a sequence of approximations to the real numheend y;
providedx andy differ, with luck we will eventually have
a pair of approximations whose intervals do not overlap, and
hence we can return a result fon< y. However, ifx andy

I Feclel. 9
Proof: By structural induction one and proposi-

tions[4,[p,[1p, and 13. n

A. A general method for numerical propositions

I' F e1 X eg,

wherel" is a ground context.

1) Select an approximation parameter
2) Definee = e; — es.



are the same real number (note we might not necessarily geThe Splitting rule can be iterated to obtain a splitting for
the same sequence of approximations for bhotand y), we multiple variables. Note that the number of tiles generétgd
can never be sure whether further evaluation might resultimterval splitting is exponential in the number of variable

us being able to distinguish the numbers. Indeed, ifk; is the number of tiles of the first variable alone,
ko is the number of tiles of the second variables alone, and so
B. Dependency effect forth, the total number of tiles to be consideredfovariables

The dependency effect is a well-known behavior of interval is [T, ., k;.
arithmetic due to the fact that interval identity is lostierval The integration of the Splitting rule into the general metho
evaluations. This may have surprising results, for inganis straightforward. First, a splitting is computed for aegivset
x — x is [0] only if x is point-wise. Moreover, as we haveof variables inI". Then, the general method is applied to all
seen in Sectior] II}A, bothx > « andx < a may be cases. If the general method is successful in all of them, by
false. Additionally, interval arithmetic is subdistriibeg, i.e, Proposition[1}, the original judgment holds. Otherwise th
x X (y+2z) C x x y+x x z. In the general case the inclusionrmethod fails and a new splitting may be considered.
is strict and some dependency effects appear as soon as a
variable is used more than once in an expression. D. Taylor Series Expansions

For the method presented in Sectipn_I-A, it means that the

arrangement of the expressiennatters. For instance, assUM&g we will see in SectioElV, these kinds of simplifications are

Fhat Wtf Wint. to prove?the [(t).’ 1] '_. 2xz 2 f Thlsl performed by our PVS implementation of the general method.
IS préetly obvious In arithmetic as 1S a non-negafive rea " However, these simplifications may not be sufficient even for
Using our method, we first consider the arithmetic expres&gimple expressions such as« (1 — z), wherez € [0.1]. The
¢ = 2w —w and then construct the interval expreSSIOgubdistributivity property of interval arithmetic statémat the

r B i o
el = 2 x x FX’ wherex = [0, 1]. Fo_r any approximation ;o0 o evaluation ofr x (1 — x) is better than that of the
parameten, [e], evaluates t4—1, 2] Wh'ch IS nelther.greater equivalent expressiom — x2. Unfortunately, that evaluation
nor less thard. Therefore, the method will not terminate. Ong" good enough to prove thatx (1 — x) € [0,1/4]. In

\t:;: g)hnesri(;]earn?h,elf Ienslji/zﬁe?lfttgﬁtﬁrrgzaeteli erxepsre'srg\:v&emh_a:f/,e this case, as a domain expert knows, the optimal answer is
d pressio obtained with the equivalent expressibft — (1/2 —x)2. The

[z]E = [0,1] and [0, 1] > 0 evaluates to true. L L . :
’ P = solution is a lot less intuitive when non-algebraic funoare
A second observation is that because of the dependenc g 8

) . . . involved.
effect the width of intervals also matters. Consider aghi t ) . . :
. . Taylor’s theorem states thatradifferentiable function can
expressione = 2 x x — x. We have seen that the mtervalIO

evaluation of[e]T, for & € [0,1], results in[—1,2], which e approximated near a given point by a polynomial of degree
. A s o whose coefficients depend on the derivatives of the function
is not sufficient to prove thafe], > 0. On the other hand, "

the expressioric]! evaluates td--1/2, 1] whenz € [0,1/2] at that point. In interval arithmetic, taylor's theorem che

. expressed by the following deduction rule.
and it evaluates td0, 3/2] whenz € [1/2,1]. Therefore, we i ) . S
can prove that, forr ¢ [0,1], [e]5 € [-1/2,1] U [0,3/2], Proposition 15: Let x,xo,...,x, be strictly proper inter

. T D o vals, f a n-differentiable function on a variable € x, and
i.e, [e];, C€[—1/2,3/2], which is a better approximation thanC € x a constant,

[-1,2]. If we continue dividing the interval0, 1] and com-

Replacing x  —x by « can be done automatically. In fact,

puting the union of the resulting intervals, we can evemjyual Vo<i<n:t fO(c)ex;
prove thate]’, + ¢ > 0 for an arbitrary smalk > 0. zex F f(z) ex, [Taylor]
These observations lead to two enhancements of the general rex F f(x) e 1 o(xi x (x—1¢)")/d!

method. First, we could divide each interval In before The expression of Taylor’s rule shows that intervappears
applying the general technique. Second, we may want d@ly once in each term of orderfor i betweenl andn — 1
replace the original expression by an equivalent one thatggeventing any dependency effect duextdn a term alone.
less prone to the dependency effect. The term of orden suffers some dependency effectaslso
appears in the definition af,,. In most casesy = 2 is used
to cancel first order dependency effects as presented gEtin
In interval arithmetic, the dependency effect of the uniogyt in cases where the first derivatives nearly vanish or wher
of the parts is less than the dependency effect of the wholge evaluation of the last derivative introduces significan
Indeed, the simplest way to reduce the dependency effecljishendency effects, we compute more terms to reach some
to divide the interval variables into several tiles (subimals) petter bounds.
and to evaluate the original expression on these tiles adar  Using Taylor’s rule require more work than the Splitting
This technique is callethterval splitting or sub-paving and is  ryle. In particular, we need to provide intervats, . . ., x,,
expressed by the following deduction rule. _ and constant that satisfy the hypotheses of the rule. Eave
Proposition 14: LetI" be a contexte an expression whose choose the middle point of unless the user proposes another
free variables are: and those ifl’, e an interval expression, point. It follow immediately that € x. For0 < i < n, we
andx,xi,...,x, intervals such thak = J,,,, xi, choosex; = [f(c)], and, by Theorerfi 1, we hav&”)(c) €
Vi<i<n: zex,I F ece x;. Finally, we choose,, = [f(") (z)]L, whereTl is the context
reExX, I F ece z € x. By Theoren{]L, we havé + f("(z) € x,.

C. Interval splitting

[Splitting]




In order to prove the judgment € x + f(z) € a, we The key to prove this inequality is to prove that the function
consider the interval expressidif_, (x; x (x—c)")/i! C a for 3
a givenn. If it evaluates to true, then the original judgment G(z) = 5 In(l —z)
holds by Taylor’s rule and PropositilO. If the evaluation
returns false, the method fails and a higher expansion degfatisfiesG(0.5828) > 0. In PVS:
n may be considered. , G(X|x < 1): real = 3*/2 - In(1-X)
For better results, the evaluation®f_,(x; x (x—c)*)/i! C
a can be performed using the splitting technique. Contrary toA_and_S : lemma G(0.5828) > 0
the approach described in [19], we do not have to generatg/o
new taylor approximation for each tile. By using an interval
based taylor expansion, the same expression can be reused
for all the tiles. One single global taylor expansion has ¢o Bn this case, the optional parametedefs "G"  tells
validated, and the proofs for all the tiles simply consisain numerical  that the user-defined functio® has to be
interval evaluation of this expansion. We do not suffer fitne expanded before performing the numerical evaluation. The
taylor coefficients being irrational numbers, they are $ymporiginal proof of this lemma in PVS required the manual
given by interval expressions involving rational functon expansion of 19 terms of thie series.
Relying on rational interval arithmetic leads to concepyua The numerical strategy is aimed to practicality rather
simpler proofs. than completeness. In particular, it always terminate and i
is configurable for better accuracy (at the expense of perfor
Section[{} describes how the general method and its gxance).
tensions are implemented in the PVS theorem prover andlTermination is trivially achieved as the strategy does not
illustrates the practical use of the library with a few exdesp iterate for different approximations.e., step[ either goes
to step[b or fails. In other words, iiumerical does not

V. VERIFIED REAL NUMBER CALCULATIONS IN PVS succeed, it does nothing. Furthermomeimerical uses a
efault approximation parameter = 3, which gives an

. . . . . d

q Thle |ntderval arlthrSnTtE)c presel?tsd n lth|s pahperl_gas besgcuracy of about decimals for trigonometric functions.

cveloped as a PV lbrary ca d terya i’ This IDrary - However, the user can increase this parameter or set adtiffer
contains the specification of interval arithmetic desatibere approximation to each function according to his/her aagyra
and t_he formal proofs Of. |ts_ proper_hes_ We_ believe that eds and availability of computational power. Curreritigre
domain expert can use this library W'.th a ba5|c. knowledge f 1\ girect relation between the approximation parameter
theorem provers. Minimal P\,/S expertl§e IS requm?d as mbStES’nd the accuracy, as all the bounding functions have differe
the technical burden of proving numerical properties isadly convergence rates. On-going work aims to provide, an atesolu
implemented as proof strategies.

F—l A_and_S : PROOF (numerical :defs "G") QED

error of at mos2~? for any expression with a new approx-
imation parametep. The strategy has not been designed to
A. Strategies reuse past computations. Therefore, it will be prohibijive

The numerical  strategy is the basic strategy that imeéxpensive to_aut(_)matically iterarmme_rical _ to achie\_/e a
plements the general method and its extensions describef@l!l @pproximation on a complex arithmetic expression.
Section[1Y. For instance, Formufh 1 can be specified in Pvs!n order to reduce the dependency effect, tienerical

as follows (comments in PVS start with the symBéland strategy automatically rearranges arithmetic expressising
extend to the end of the line): a simple factorization algorithm. Due to the subdistriityi

property, the evaluation of factorized interval expressids
more accurate than that of non-factorized ones. A set of
lemmas of the NASA Langley PVS Libraries are also used

g : posreal = 9.8 %[m/s"2]
v : posreal = 250*0.514 %[m/s]

tr35: LEMMA as rewriting rules on arithmetic expressions prior to nucaér
(g*tan(35*pi/180)/v) * 180/pi evaluations. This set of lemmas is parameterizable and can
## [ 3, 3.1 ] be extended by the user. For instance, trigonometric fonsti

applied to notable angles are automatically rewritten trth
exact value. Thereforenumerical is able to prove that
We emphasize that, in PV&n andpi are the real math- sin(7/2) € 1, even if this proposition is not provable using our
ematical functiontan and constantr, respectively. Lemma interval arithmetic operators alone. Although it is notremtly

tr35 is automatically discharged by thmumerical  strat- implemented, this approach can also be used to normalize
egy, which can be entered interactively or in batch mode, aagles to the rangé-=, ] that is suitable for the interval

in this case, via the ProofLite library developed by one @& thtrigonometric functions in SectioC.

%]|- tr35: PROOF (numerical) QED

authors [20]. The splitting technique is implemented by allowing the
Another example is the proof of the inequality 4.1.3%iser to specify the number of tiles to be considered for each
in [13]: interval variable or a default value for all of them. The &gy

3 will evenly divide each interval. For example, the simple
Ve: 0<z<05828 = |In(l—2) < 5 expression in Sectiop IV}D can be proven to be in the range



atan(x) - r(x) ## [ 2", 27 []
50 T T T T T

[0,9/32] using a splitting of 16 subintervals.

T T T
Splitting —— |
Splitting Taylor 1 ——
Splitting Taylor 2 —s— o

fair : LEMMA
X ## [|0,1]] IMPLIES x*(1-x) ## []|0,9/32]]
%]|- fair : PROOF (instint :splitting 16) QED

time [s]

In this example we have used thiastint strategy.
This strategy is built on top ofnumerical and per-
forms some basic logic manipulations such as introduction
of real variables and interval constants. In this case, the

proof command(initint :splitting 16) is equiv- 0 12 12 15 18 20
alent to (then (skeep) (numerical :vars ("x" i

“[10,2]1" 16))) . It instructs PVS to introduce the real

variablex and then to applpumerical by splitting 16 times

the interval(0, 1]. Fig. 2. Time required to provean(z) — r(z) € [—1/30,1/30]

The taylor series expansion technique is implemented in
two steps. First, theaylor  strategy automatically proves

PropositionEIS for a particular functiofi and degreen. In The objective of this case study is to show that
the following example, we show thate x -z x (1 — ) € .
S22 o (x; x (x —¢)")/i!, provided thatx is strictly proper. € [=1/30,1/30] I atan(z) —r(z) € [-27",27"],
F(X) : MACRO Interval = X*(1-X) for different values of. The PVS specification of this problem
DF(X) : MACRO Interval = 1 - 2*X for some values of is presented in Listinf] 4. All the lemmas
D2F(X): MACRO Interval = [| -2 ] are automatically discharged by tiestint  strategy with
faylor : LEMMA different splitting and taylor’s expansion degrees. Asextpd
X ## X AND StrictlyProper?(X) IMPLIES taylor's expansions and splitting get better results thudittisig
x*(1-x) ## Taylor2[X](F,DF,D2F) alone. Moreover, second degree expansions are almostsalway

better than first degree expansions. This is not necessarily
the case as illustrated by lemmésr _atan _t1 _14 and

The keywordMACRGQells the theorem prover to automatifair _atan _t2 _14:fori = 14, a first degree expansion with
cally expand the definition of the function. The expressiofP splitting is enough to prove the property, while a second
Taylor2[X](F,DF,D2F) corresponds t97_,(x; x (x — degree expansion requires a splitting of 2.

¢))/i!, where F, DF, and D2F are the interval functions ©On a tilet of x, the width of the error expressida that

%]|- ftaylor : PROOF (taylor) QED

corresponding tof, it 1st, and its 2nd derivative. does not use taylor’'s theorem evaluated tors larger than
Finally, the strategyinstint  is called with the lemma the sum of the width of expressiomstan and R As the
ftaylor . derivative of the arctangent is betwe@®989 and1 on x, we

could expect that the width dR is at least twice the width
of tile t. Therefore, to obtain an error bound pf2—¢ 277
we cannot use tiles larger tham? and we will need at least

best : LEMMA
x ## [|0,1]] IMPLIES x*(1-x) ## [|0, 1/4]]

%|- best : PROOF 21/15 ~ 2¢- 14 tiles.

%|-  (instint :taylor "ftaylor") We use the same kind of simple calculation to show that

%|- QED sincele/ ()| < 2.37-10¢ we will need aboup’~'4# tiles of
width 2% 10°/2.37. This figures are accurate when we use

B. A simple case study second degree expansion but actual computations may eequir

o ) _ _ more tiles due to some dependency effects introduced when
The arctangent function is heavily used in aeronautic applje yse first degree expansions.

cations as itis fundam_ental to many Geodesic forn%l@ge _ Figurel]Z presents a summary of the time required to prove
common implementation technique uses an approxmatl&{h(x) —r(z) € [~1/30,1/30] for i in the range[0, 20]

of the arctangent on the interval = [-1/30,1/30] after ging spiitting, splitting and first degree taylor's expans
argument reduction [21]. For efficiency reasons, one maytwag}, q splitting and second degree taylor's expansion.
to approximate the functiomtan(x) to single precision by the

polynomial

11184811 , 13421773 . C. Implementation and Performance |ssues

rl@) = z- 33554432°  67108%64" Actual definitions in PVS have been slightly modified for
iciency reasons. For instance, multiplication is definsitig
case analysis on the sign of the operands. Additionally,
all interval operations are completed by returning an empty

5see, for example, Ed Wiliam's Aviation Formulary dittp:/ |nte.rval if side conditions are not satisfied. This techlelqu
williams.best.vwh.net/avform.htm . avoids some type correctness checks that are expensive.

- . L e
The coefficients of the polynomial approximation are storeéﬁ
exactly using IEEE single precision.


http://williams.best.vwh.net/avform.htm

PVS Listing 4 Accuracy of the arctangent approximation

fair_atan : THEORY
BEGIN

X 1 var real
r(x) : MACRO real
e(x) : MACRO real = atan(x) - r(x)
Xt Interval = [| -1/30, 1/30 |[]

fair_atan_8 : LEMMA x ## Xt IMPLIES e(x) ## [|-2°-8, 27-8]]
%]|- fair_atan_8 : PROOF (instint :splitting 18) QED

X . ovar Interval
R(X) : MACRO Interval = X - 11184811/33554432 * X"3 - 13421773
E(X) : MACRO Interval = Atan(X,4) - R(X)

DE(X) : MACRO Interval

1/ (1 + Sq(X)) - 1 + 3%(X"2%(11184811/33554432)) + 5*(X"4*(1

atan_taylorl : LEMMA StrictlyProper?(X) AND x ## X IMPLIES e
%]|- atan_taylorl : PROOF (taylor) QED

fair_atan_t1_14: LEMMA x ## Xt IMPLIES e(x) ## [|-2°-14, 2"-
%]|- fair_atan_tl 14 : PROOF (instint :taylor "atan_taylor

fair_atan_t1_20: LEMMA x ## Xt IMPLIES e(x) ## [|-2°-20, 2"-
%]|- fair_atan_t1l 20 : PROOF (instint :taylor "atan_taylor

D2E(X) : MACRO Interval =
S2*XISq(L + Sq(X)) + 20%(X"3*(13421773/67108864)) + 6%((1

atan_taylor2 : LEMMA StrictlyProper?(X) AND x ## X IMPLIES e
%]|- atan_taylor2 : PROOF (taylor) QED

fair_atan_t2_14: LEMMA x ## Xt IMPLIES e(x) ## [|-2°-14, 2"-
%]|- fair_atan_t2_14 : PROOF (instint :taylor "atan_taylor

fair_atan_t2_20: LEMMA x ## Xt IMPLIES e(x) ## [|-2°-20, 2"-
%]|- fair_atan_t2_20 : PROOF (instint :taylor "atan_taylor

X - (11184811/33554432) * x°3 - (13421773/

67108864) * X5

/67108864 * X5

3421773/67108864))
(x) ## Taylorl[X](E,DE)

14]]
1") QED
20[]
1" :splitting 13) QED

1184811/33554432)*X)
(x) ## Taylor2[X](E,DE,D2E)
14]]

2" :spitting 2) QED

20]]
2" :splitting 5) QED

END fair_atan

The strategies in this library work over the PVS built-irusing computational reflection [22]-[24]. Interval exmiess
real numbers. The major advantage of this approach is tkat Hre translated to Common Lisp (the implementation language
functionality of the strategies can be extended to handde usf PVS) and evaluated there. The extraction and evaluation
defined real functions without modifying the strategy codenechanism is provided by the PVS ground evaluator [25].
Indeed, optional parameters to themerical  strategy allow The result of the evaluation is translated back to the PVS
for the specification of arbitrary real functions. If thedntal theorem prover using the PVSio library developed by one of
interpretations are not provided, the strategy tries tdtihem the authors [26].
from the syntactic definition of the functions. The tradé-of
for the use of the PVS typeeal , in favor of a defined data
type for arithmetic expressions, is that the functie}}, and
Theorem[]L are at the meta-levek., they are not written in ~ We have presented a pragmatic approach to verify ordinary
PVS. It also means that the soundness of our method canrestl number computations in theorem provers. To this end,
be proven in PVS itself. In particular, Theoreﬂn 1 has to Beounds for non-algebraic functions were established based
proven for each particular instance @fand [e],. This is not provable properties of their approximation series. Furtfore,
a major drawback as, in addition tmumerical , we have a library for interval arithmetic was developed. The lilyrar
developed a strategy calledclusion  that discharges the includes strategies that automatically discharges nualeri
sequent’ F e € [e]l whenever is needed. PVS strategies afeequalities and interval inclusions.
conservative in the sense that they do not add inconsigtenci The PVS Interval library contains 306 lemmas in total. It
to the theorem prover. Therefore, nfimerical ~ succeeds to is roughly 10 thousand lines of specification and proofs and 1
discharge a particular goal the answer is correct. thousand lines of strategy definitions. These numbers do not

Finally, our method relies on explicit calculations to exste take into account the bounding functions, which have been
interval expressions. In theorem provers, explicit caltiahs fully integrated to the NASA Langley PVS Libraries. It is
usually means symbolic evaluations, which are extremetyfficult to estimate the human effort for this development
inefficient for the interval functions that we want to cak@. as it has evolved over the years from an original axiomatic
To avoid symbolic evaluationsiyumerical is implemented specification to a fully foundational set of theories. As far

VI. CONCLUSION AND LIMITS OF TRACTABILITY



as we know, this is the most complete formalization within
a theorem prover of an interval arithmetic that includes-non
algebraic functions.

Research on interval analysis and exact arithmetic is rich
and abundant (see for example [17], [27], [28]). The goal
of interval analysis is to compute an upper bound of the
round-off error in a computation performed using floating-
point numbers. In contrast, in an exact arithmetic framéwor
an accuracy is specified at the beginning of the computation
and the computation is performed in such way that the final
result respects this accuracy.

Real numbers and exact arithmetic is also a subject of
increasing interest in the theorem proving community. Pio-
neers in this area were Harrison and Gamboa who, indepen-

2.56-06 — ' '

T T T
derivative of the error

2e-06

1.5e-06

1e-06

5e-07

dently developed extensive formalizations of real nuralher F9- 3- Alternatefair _atan theorems will make use of interval arithmetic

HOL [4] and ACL2 [6]. In Coq, an axiomatic definition of
reals is given in [7], and constructive definitions of reals a
provided in [29] and [30]. As real numbers are built-in in
PVS, there is not much meta-theoretical work on real num-
bers. However, a PVS library of real analysis was originally
developed by Dutertre [31] and currently being maintained”
and extended as part of the NASA Langley PVS Libraries.
An alternative real analysis library is proposed in [8].

Closer to our approach are the tools presented i%]
[32] and [10]. These tools generate bounds on the round-o
errors of numerical programs, and formal proofs that these
bounds are correct. The formal proofs are proof scripts th \
can be checked off-line using a proof assistant.

Our approach is different from previous works in that we
focus on automation and pragmatism. In simple words, o ?
practical contribution is a correct pocket calculator fealr [5
number computations in formal proofs. Thanks to all the
previous developments in theorem proving and real number,
lemmas like Lemma#r35 and LemmaA_and_S are provable
in HOL, ACL2, Coq, or PVS. The Interval library make these
proofs routine in PVS. [

As in real life, users benefit in managing both a pocket
calculator and a graphic tool. The fact that the example
proposed in Sectioh VB is reaching the limits of tractabpii
not a problem. Our library aims at providing some simplegool
that can be used seamlessly in proofs. Fi(ﬂjre 3 would prom{t
a careful user thdair _atan theorems are a consequence of
the fact that the derivative of the error is always positsech
a fact could happen to be difficult to prove leading some onelf®]
prove that the error is bounded on some subintervals and that
the derivative is always positive on some other subintsrval
Anyways, such proofs will involve our library more than once

We continue developing this library and it is currentl;}ll]
being used to check numerical properties of aircraft ndidga
algorithms developed at the National Institute of Aerogpac
(NIA) and NASA. Future enhancements include: [

o Development of a fully functional floating point arith-

metic library [33] in order to generate guaranteed proofs

of round-off-errors [32]. [13
« Integration of this library and an exact arithmetic formal-

ization in PVS developed by one of the authors [34].

o Implementation of latest developments on Taylor MO(EA]

els [35]-[37], which will enable a greater automation of

the Taylor’s series expansion technique.
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