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Formally Verified Argument Reduction
with a Fused Multiply-Add

Sylvie Boldo, Marc Daumas, Senior Member, IEEE,
and Ren-Cang Li

Abstract—The Cody and Waite argument reduction technique works perfectly for

reasonably large arguments, but as the input grows, there are no bits left to

approximate the constant with enough accuracy. Under mild assumptions, we

show that the result computed with a fused multiply-add provides a fully accurate

result for many possible values of the input with a constant almost accurate to the

full working precision. We also present an algorithm for a fully accurate second

reduction step to reach full double accuracy (all the significand bits of two numbers

are accurate) even in the worst cases of argument reduction. Our work recalls the

common algorithms and presents proofs of correctness. All the proofs are formally

verified using the Coq automatic proof checker.

Index Terms—Argument reduction, fma, formal proof, Coq.

1 INTRODUCTION

METHODS that compute elementary functions on a large domain
rely on efficient argument reduction techniques. The idea is to
reduce an argument x to u that falls into a small interval to allow
efficient approximations [1], [2], [3], [4]. A commonly used
argument reduction technique [1], [5], [6], [7] begins with one
positive floating-point number (FPN) C1 to approximate a number
C > 0 (usually irrational but not necessarily so). Examples include
C ¼ �=2, �, or 2� for trigonometric functions sin x and cos x and
C ¼ ln 2 for exponential function ex.

Let x be a given argument, an FPN. The argument reduction
starts by extracting � as defined by

Then, it computes a reduced argument x� �C1. The result is
exactly an FPN as it is defined by an IEEE-754 standard remainder
operation. But division is a costly operation that is avoided as much
as possible. Some authors (see for example [1], [3], [7], and http://
www.intel.com/software/products/opensource/libraries/
num.htm) introduce another FPNR that approximates 1=C, and the
argument reduction replaces the division by a multiplication so that

where k is an integer used to reference a table of size 2N . This
replacement is computationally efficient if

u ¼ x� zC1 ð1:2Þ

is an FPN [8].
Sometimes, the computed value of u is not sufficiently accurate,

for example, if u is near a multiple of C, the loss of accuracy due to
the approximationC1 � C may prevail. A better approximation toC
is necessary to obtain a fully accurate reduced argument. If this is the
case, we useC2, another FPN, roughly containing the next many bits
in the significand ofC, so that the unevaluatedC1 þ C2 � C is much
better than C1 alone. When (1.2) does not introduce any rounding
error, the new reduced argument is not u but v computed by

v � u� zC2: ð1:3Þ

To increase once again the accuracy, the error of (1.3) needs to be
computed (see Section 5) to obtain v1 and v2 exactly satisfying

v1 þ v2 ¼ u� zC2: ð1:4Þ

The last step creates a combined reduced argument stored in the
unevaluated sum v1 þ w with 2p significant bits:

w � v2 � zC3: ð1:5Þ

Whether v1 (or v1 and w) is accurate enough for computing the
elementary function in question is subject to further error analysis
on a function-by-function basis [9]. But this is out of the scope of
this paper.

The Cody and Waite technique [5] is presented in Figs. 1 and 2,
where �ðaÞ denotes the FPN obtained from rounding a in the
round-to-nearest mode. Those are examples when no fused
multiply-add (fma) is used. The sizes of the rectangles represent
the precision (length of the significand) of each FPN, and their
positions indicate the magnitude, except for z and C1 whose
respective layouts are only for showing the lengths of significands.
The light gray represents the cancellations: the zero bits due to the
fact that jx� �ðz� C1Þj � jxj. The dark gray represents the round-
off error: the bits that may be wrong due to previous rounding(s).

Fig. 1 presents the ideal behavior. Fig. 2 presents the behavior
when the significand of z is longer. Then, fewer bits are available to
store the significand of C1 if we require that zC1 is stored exactly.
The consequence is a tremendous loss of precision in the final
result: as C1 must be stored in fewer bits, the cancellation in the
computation of x� zC1 is smaller, and the final result may be
inaccurate.

We want to take advantage of the fma instructions. Some
machines have hardware support for it, such as machines with
HP/Intel Itanium Microprocessors [1] and IBM PowerPC Micro-
processors, and this instruction will also be added to the revision
of the IEEE-754 standard. The last public draft can be found at
http://754r.ucbtest.org/drafts/archive/2006-10-04.pdf. It is ob-
vious that some bits of x and zC1 will cancel each other as z is
computed such that x � zC1, but it is not clear how many of them
will and under what condition(s). Consequently, if accuracy calls
for x� zC1 to be calculated exactly (or to more than p bits in the
significand), how do we get these bits efficiently? This question is
especially critical if the working precision is the highest available
on the underlying computing platform.

In this paper, we will devise easily met conditions so that
x� zC1 can be represented exactly by an FPN, and thus, it can be
computed by one instruction of the fma type without error. This
technique is presented in Fig. 3 with the earlier drawing
conventions. The cancellation is greater as C1 can be more
precise. The idea is that the rounding in zC1 is avoided thanks to
the fma: zC1, a 2p-bit FPN, is virtually computed with full
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precision and then subtracted from x. This subtraction is proved
to be exact as x � zC1. The fact that x� zC1 is an FPN is used by
libraries [1], [7]. Harrison first sketched this fact [10] and later
proved it formally [11]. His theorems and proofs were not
published due to their length and their “messiness.” There is no
reason to shade some doubt on Harrison’s results, and our results
share many features with them, but it is difficult to precisely
compare these works as Harrison’s statements were never made
explicit. Moreover, our work provides precise statements for all
our theorems, including when Underflow conditions arise, and
we provide results about the next step of the argument reduction.

The motivations of this work are similar to those presented in
[8], and Section 2 recalls briefly some useful prior art in [8] and
[12]. However, the rest of the paper presents new results. The
theorems and their proofs are different from the ones presented
in [8]. More precisely, the idea is basically the same, but the
conditions on the constants are much weaker and easier to
grasp. The results in Section 5 are entirely new. All results are
formally proved so that no mistake could be buried in our
proofs and all the Underflow conditions are explicitly stated.
The simplifications of the results are due to a better under-
standing of the FPN relationships that facilitate the verification
with an automatic proof checker.

In a floating-point pen-and-paper proof, it is difficult to be

absolutely sure that no special case is forgotten, no inequality is

erroneous, and no implicit hypothesis is assumed, etc. All the

proofs presented in this paper are verified using a specification of

generic floating-point arithmetic [12] and Coq proof assistant [13].

This approach has already been proved successful in hardware or

software applications [11], [14], [15], [16]. The drawback is a long

and tiresome argumentation versus the proof checker that will

ascertain each step of the proof. The corresponding scripts of

proofs are available online with the theorems at http://

www.netlib.org/fp/fp2.tgz. We indicate for each theorem its

Coq name. The developments presented here are located in the

FArgReduct[2, 3, 4].v files.
The rest of this paper is organized as follows: Section 2 recalls

theorems on the number of canceled bits of two close FPNs

(extensions of Sterbenz’s theorem [17]). In Section 3, we present
the Coq-verified theorem about the correctness of the algorithm
that produces z in (1.1) and that satisfies the conditions of the
following theorems. The demonstration of the main results and
the subsequent choices for R and C1 and their applications to
C ¼ ln 2 for the exponential function and C ¼ � for the
trigonometric functions are then described in Section 4. Section 5
gives new algorithms and results about the second step of the
reduction and choices for C2. Section 6 concludes the work of
this paper.

Notation. Throughout, � denotes the floating-point subtrac-
tion. fXgfma denotes the result by an instruction of the fma type,
i.e., the exact �a� b� c after only one rounding. FPNs use p digits,
hidden bit (if any) counted, in the significand or are otherwise
explicitly stated. We denote by �ðaÞ the FPN obtained from
rounding a in the round-to-nearest mode with p digits, and we
denote it by �mðaÞ if we round to m digits instead of p. We denote
by ulpð	Þ the unit in the last place of a p-digit FPN, and
ulp�2ð	Þ ¼ ulpðulpð	ÞÞ. The smallest (subnormal) positive FPN is
denoted by �.

2 EXACT SUBTRACTION THEOREMS

These theorems will be used in Section 4 to guarantee that there
will be enough cancellation in x� zC1 so that it can be computed
exactly by one fma-type instruction or, equivalently, to assure that
x� zC1 fits into one FPN.

A well-known property [17], [18] of the floating-point subtrac-
tion is the following:

Theorem 1 (Sterbenz in Fprop.v). Let x and y be FPNs. If y=2 

x 
 2 y; then x� y is a FPN. This is valid with any integer radix
� � 2 and any precision p � 2.

We extend Sterbenz’s theorem to fit the use of an fma that may
create a higher precision virtual number whose leading digits are
canceled to the working precision, as explained in Fig. 4: when x

and y are sufficiently near one another, cancellation makes the
result exactly fit a smaller precision.

Theorem 2 (SterbenzApprox2). Let x and y be p1-digit FPNs. If

y

1þ �p2�p1

 x 
 1þ �p2�p1ð Þ y;

Fig. 1. The reduction technique works for a sufficiently small z. Fig. 3. Argument reduction with exact cancellation in an fma.

Fig. 2. The Cody and Waite technique fails as z grows, i.e., u is not accurate

enough.

Fig. 4. Extension of Sterbenz’s theorem.
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then x� y is a p2-digit FPN. This is valid with any different

significand sizes p1; p2 � 2, and any integer radix � � 2.

The proofs are omitted as they appeared in other publications

[8], [19]. It is worth mentioning that Theorem 2 does not require

p1 � p2 or p2 � p1.
From now on, all FPNs are binary. The underlying machine

hardware conforms to IEEE-754 floating-point standards [20], [21].

This implies that rounding does not introduce a rounding error

when the exact result is an FPN. Unless explicitly stated, the

default rounding mode is round to nearest with ties broken to the

even significand.

3 ABOUT THE ALGORITHM FOR z

The computation of z can be done efficiently as

z ¼ fxRþ �gfma � �; ð3:1Þ

where � is a prechosen constant. The technique is adapted from

[1, Chap. 10], which used an idea attributed by the author to C.

Roothaan in his work for HP’s vector math library for Itanium. The

explanation is in Fig. 5. Here, we choose � ¼ 3 	 2p�N�2 for a z

having its last bit at exponent �N .
In realizing (1.1), the intended results are that z2N is an integer

and that jxR� zj 
 2�N�1. We may later use that the precision

needed for z is smaller or equal to p� 2. Here is the theorem,

verified by Coq.

Theorem 3 (arg_reduct_exists_k_zH). Assume

. p > 3,

. x is a p-bit FPN,

. R is a positive normal p-bit FPN,

. z ¼ 3 	 2p�N�2 þ xR
� �

fma
�3 	 2p�N�2,

. jzj � 21�N ,

. jxRj 
 2p�N�2 � 2�N , and

. 2�N is a FPN.
Then there exists an integer ‘ satisfying 2 
 ‘ 
 p� 2 such that

. jz2N j is an ‘-bit integer greater than 2‘�1, and

. jxR� zj 
 2�N�1.

In short, if z is computed as explained and x is not too big, then

z is a correct answer, meaning that it fulfills all the requirements

that will be needed in Theorem 4 in the next section.
For Intel’s double extended precision, this technique is perfectly

adapted for range reduction with arguments between �263 and 263

when R is close to the unity. This argument range coincides with

what is in Intel’s manual [22] for FSIN, FCOS, FPTAN, and

FSINCOS. A quick justification is that for C ¼ 2� and a modest N ,

say, N ¼ 0, jxRj �< 263=ð2�Þ gives jxRj < 262 � 1.
For the exponential function, any argument larger than

11,356 overflows in the double extended and quad precisions,

and ‘ 
 p� 2 is easily satisfied.

4 MAIN RESULTS

We now present the conditions under which x� zC1 can be

represented exactly by an FPN, and thus, it can be computed by

fx� zC1gfma without error. As in Section 1, R � 1=C, and C1 � C.

We suppose that C > 0 and C 6¼ 2j for any j.
The idea is the use of an fma that may create a higher

precision virtual number that cancels to the working precision.

Fig. 6 explains the idea: if z is an ‘-bit integer and the significand

of C1 uses p� q bits, it takes up to p� q þ ‘ bits to store the

significand of zC1. And as zC1 and x are near enough, the final

result fits into p bits. The notation mX stands for the significand

of X, and eX stands for its exponent.
We want to give enough hypotheses on the inputs to guarantee

that x� zC1 will be computed without error.
We define the exponent eR of R as the only integer such that

2eR < R < 2eRþ1. We want to set the q least significant bits of C1 to

zero. Since C1 should be as accurate as possible, we set C1 � 1=R to

the nearest FPN with p� q significant bits. From this, we deduce

that 2�eR�1 
 C1 
 2�eR and that the distance between C1 and 1=R

is less than half a ulp (in p� q precision); therefore

1

R
� C1

����
���� 
 2�eR�1�ðp�qÞ:

We now define � ¼ RC1 � 1, and we deduce a bound on its

magnitude from the previous inequalities:

j�j 
 2q�p:

Let z be as defined by (1.1) with the conditions on z and s given

there. We assume for the moment that z 6¼ 0. Theorem 2 can be

used if we bound x=ðzC1Þ and its reciprocal by 1þ 2q�‘. We have

the following equalities:

x

zC1
¼ xR

zRC1

¼ zþ s
zRC1

¼ 1þ s
z

� � 1

1þ � :

We recall that z ¼ k2�N and that k is an integer using ‘ bits, and we

deduce, on the other hand, that

2�Nþ‘�1 
 jzj < 2�Nþ‘

to bound

s

z

���
��� 
 2�‘:

Fig. 5. Algorithm for computing z.

Fig. 6. fma used to create and cancel a higher precision virtual number.
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Rewriting the condition in Theorem 2 and taking advantage of

the preceding results, we arrive at the point to prove both of the

following:

1þ 2�‘

1þ j�j 
 1þ 2q�‘; ð4:1Þ

1þ j�j
1� 2�‘


 1þ 2q�‘: ð4:2Þ

Conditions (4.1) and (4.2) are checked using functional analysis

on polynomials and linear fractional transformation for any

permitted value of A ¼ 2�‘. Since z is both a machine number

and a nonzero ‘-bit FPN, we have 1 
 ‘ 
 p. From Section 3, the

algorithm used to produce z implies that ‘ 
 p� 2. We will use a

more generic condition:

21�p 
 A ¼ 2�‘ 
 1

2
:

We will now explain what are the successive requirements to

guarantee that both (4.1) and (4.2) are fulfilled:

1. Condition (4.1). We want to guarantee that 1þ2�‘

1þ2q�‘

 1þ j�j.

The linear fractional transformation

1þ 2�‘

1þ 2q�‘
¼ 1þ A

1þA2q

that we intend to bound is maximized at A ¼ 21�p, and it is

sufficient to check if ð1þ 21�pÞ=ð1þ 21�p2qÞ 
 1þ j�j. We

use the bound on j�j, and we introduce B ¼ 2q . We are left

to prove that

ð1þ 21�pÞ=ð1þ 21�pBÞ 
 1�B2�p:

This is equivalent to checking if the second-order

polynomial 21�pB2 � Bþ 2 
 0. The inequality is satisfied

for B between the two roots 2p�2ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 24�p
p

Þ. Thus, it is

sufficient to have B � 4 for all precisions.
2. Condition (4.2). We want to guarantee that 1þ j�j 


ð1þ 2q�‘Þð1� 2�‘Þ. We introduce A and B as before, so
we are left to prove that

1þ j�j 
 ð1þABÞð1� AÞ:

We assume that B � 4 from the preceding paragraph.

The polynomial

ð1þABÞð1�AÞ ¼ ð1þ 2q�‘Þð1� 2�‘Þ

is minimized at A ¼ 21�p, and it is sufficient to check that

ð1þ j�jÞ 
 ð1þ 21�pBÞð1� 21�pÞ. From the bound on j�j,
we now have to check that

ð1þB2�pÞ 
 ð1þ 21�pBÞð1� 21�pÞ;

which is true for any precision.
This proof is rather long and intricate. We therefore verified

it in Coq to be sure that it contains no mistake. Such additional

work also gives us more precise and sharp hypotheses than pen-

and-paper proofs. All hypotheses have to be clearly written so

that the proof can be checked. There is no easy way to say “we

assume that there is no Underflow” or “the precision is big

enough.” This leads to long theorems (at least longer than what

we were used to) but precise and correct ones:

Theorem 4 (Fmac_arg_reduct_correct1). Assume

. p > 3,

. x is a p-bit FPN,

. z is a FPN,

. R is a positive normal p-bit FPN,

. 2 
 q < p� 1,

. C1 is the ðp� qÞ-bit FPN obtained by rounding 1=R to p� q
bits using round-to-nearest mode,

. C1 is not exactly a power of 2,

. C1 � 2p�qþmaxð1;N�1Þ�,

. 2 
 ‘ 
 p� 1,

. jz2N j is an ‘-bit integer greater than 2‘�1,

. jxR� zj 
 2�N�1, and

. q 
 ‘.
Then, x� zC1 is a p-bit FPN.

In short, if C1 is rounded to the nearest from 1=R with p� q bits
and q � 2 and z is not too small, then the fma does not introduce
any round-off error.

Automatic proof checking also prompted us that the exact
behavior may be difficult to obtain for z ¼ 2�N and x close to
2�N�1R. This case was excluded in Theorem 4 under the
hypothesis that 2 
 ‘, but it will be included in the next theorem,
which focuses on q ¼ 2 as this situation leads to C1 as close as
possible from C, and thus, it has some higher practical value. For
completeness and theoretical interest, a theorem similar to
Theorem 4 but valid for all 2 
 q 
 p� 1 is presented in the
Appendix.

Assume that q ¼ 2 in the rest of this section. When z ¼ 2�N ,
then x 
 2C1 � 2�N as xR is approximated by z ¼ 2�N . We can also
deduce that

C1 � 2�N

1þ 22�p 
 x:

When C1 � 2�N=2 
 x, Sterbenz’s theorem (Theorem 1) can be
applied, and x� C1 � 2�N is an FPN. If not, then

C1 � 2�N

1þ 22�p 
 x <
C1 � 2�N

2
:

Since C1 is a ðp� 2Þ-bit FPN and not exactly a power of 2 as a
p-bit FPN, then C1 is at least 4 ulp’s away from a power of 2. This is
because as a p-bit FPN, C1 is worth 2e � 1:bb 	 	 	 b00, where at least
one of the b’s must be 1; therefore, the C1 that comes closest to a
power of 2 is either 2e � 1:0 	 	 	 0100 or 2e � 1:11 	 	 	 100. Both are
4 ulp’s away from a power of 2. This distance and the preceding
inequality are enough to guarantee that the exponent of x is the
exponent of C1 minus N þ 1. After a few computations, we finish
with x� C1 � 2�N being an FPN, regardless of x.

A few peculiar cases have been omitted in the sketch of this
proof. Automatic proof checking allows us to trustfully guarantee
that these cases have been all checked in our publicly available
proof scripts. The only surprising condition is presented in this
section. The other cases are easily generalized from Theorems 3
and 4. So just by wrapping these two results together, we can state
the following theorem in its full length, verified with Coq.

Theorem 5 (Fmac_arg_reduct_correct3). Assume

. p > 3,

. x is a p-bit FPN,

. R is a positive normal p-bit FPN,

. C1 is the ðp� 2Þ-bit FPN obtained by rounding 1=R to p� 2
bits using round-to-nearest mode,

. C1 is not exactly a power of 2,

. C1 � 2pþmaxð�1;NÞ�,

. z ¼ 3 	 2p�N�2 þ xR
� �

fma
�3 	 2p�N�2,

4



. jxRj 
 2p�N�2 � 2�N , and

. 2�N is a FPN.
Then, x� zC1 is a p-bit FPN.

In short, if C1 is rounded to the nearest from 1=R with p� 2 bits

and z is computed as usual, then the fma does not make any

round-off error. In Tables 1 and 2, we present constants R and C1

for � and lnð2Þ. These constants are for the exponential and the fast

reduction phase of the trigonometric functions [1], [3], [9], [23].

The hypotheses may seem numerous and restrictive, but they

are not. As R and C1 are precomputed, the corresponding

requirements can be checked beforehand. Moreover, those

requirements are weak: for example, with 0 
 N 
 10 in double

precision, we need C1 � 2�1011 � 4:5 	 10�305. There is no known

elementary function for which C1 ever comes near a power of 2.

The only nontrivial requirement left is the bound on jxRj.

5 GETTING MORE ACCURATE REDUCED ARGUMENTS

As we pointed out in the introduction in Section 1, sometimes, the

reduced argument u ¼ x� zC1 is not accurate enough due to the

limited precision in C1 as an approximation to C. When this

happens, another FPN C2 containing the lower bits of the

constant C has to be made available, and the new reduced

argument is now x� zC1 � zC2. The inaccuracy may also be due

to the multiplication by the reciprocal approximation of C, even

when C is exact, but this is out of the scope of this paper.

Assume that the conditions of Theorem 5 hold. In particular, C1

has p� 2 bits in its significand.

The number x� zC1 � zC2 can be computed exactly [24] as the

sum of two FPNs. But since we know here some conditions on

FPNs z, C1, and C2, we can obtain the results faster. We propose

Algorithm 5.1, inspired from [24], to accomplish such a task. It is

built upon two known algorithms:

. Fast2Multðx; yÞ, which computes the rounded product of x
and y and its error (2 flops) [25] and

. Fast2Sumðx; yÞ, which computes the rounded sum of x and
y and its error (3 flops), under the hypothesis that x ¼ 0,
y ¼ 0, jxj � jyj, or there exist some integers nx, ex, ny, and
ey such that x ¼ nx2ex , y ¼ ny2ey , and ex � ey [12].

Algorithm 5.1 (superaccurate argument reduction): The correctness of
this algorithm is only guaranteed under the conditions of
Theorem 6. It does not work with any C1 and C2!

u ¼ �ðx� zC1Þ,
v1 ¼ �ðu� zC2Þ,

ðp1; p2Þ ¼ Fast2Multðz; C2Þ,
ðt1; t2Þ ¼ Fast2Sumðu;�p1Þ,

v2 ¼ �ð�ð�ðt1 � v1Þ þ t2Þ � p2Þ.

Theorem 6 (FArgReduct4.v file). Assume

. p > 4,

. x is a p-bit FPN,

. R is a positive normal p-bit FPN,

. C1 is the ðp� 2Þ-bit FPN obtained by rounding 1=R to p� 2
bits using round-to-nearest mode,

. C1 it is not exactly a power of 2,

. z ¼ 3 	 2p�N�2 þ xR
� �

fma
�3 	 2p�N�2,

. jxRj 
 2p�N�2 � 2�N ,

. 2�N is a normal p-bit FPN,

. C1 � 2pþmaxð�1;pþN�2Þ�,

. C2 is a FPN and an integer multiple of 8ulp�2ðC1Þ,

. jC2j 
 4ulpðC1Þ, and

. v1 and v2 are computed using Algorithm 5.1.

Then, Fast2Sum works correctly and we have the mathematical

equality v1 þ v2 ¼ x� zC1 � zC2 (all the computations of the last

line did indeed introduce no rounding error).

The first requirements are very similar to the previous ones.

The “no-underflow” bound on C1 has been raised, but it is still

easily achieved by real constants. For a typical N between 0 and 10

used by the existing elementary math libraries in IEEE double

precision, it suffices that C � 10�288.
The most important add-ons are the requirements on C2: it

must be much smaller than C1 (it is near the difference between the

constant C and C1). And C2 must not be “too precise.” In fact,

C1 þ C2 will have 2p� 4 bits, as shown in Fig. 7. If by chance, there

are a lot of zeros just after C1, we cannot take advantage of that to

get some more precise C2. This is a real drawback, but it does not

happen very often that many zeros are just at these positions.

This algorithm may seem simple, but it is a very powerful tool.

It is exact and it is fast: the generic algorithm [24] costs 20 flops

TABLE 2
Example of Value for R ¼ �ð1=CÞ, C1 Rounded to p� 2 Bits, C2 Obtained from Algorithm 5.2, and C3, for C ¼ lnð2Þ

TABLE 1
Example of Value for R ¼ �ð1=CÞ, C1 Rounded to p� 2 Bits, C2 Obtained from Algorithm 5.2, and C3, for C ¼ �, Easily Leading to C ¼ 2� or C ¼ �=2
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while this one costs only 9 flops! Furthermore, the correcting term

can be stored in one FPN instead of two for the generic algorithm.

We can use several constants for C2 as the conditions on C2 are

rather mild. Some external considerations may call for the largest

or the smallest constant allowed for C2. Algorithm 5.2 gives one

way to choose a convenient C2.

The proof of Theorem 6 is based on a careful study of the

possible exponents for the FPNs involved. We first prove that x is

an integer multiple of 2�NulpðC1Þ. This is done whether z is 2�N or

not. We conclude that we correctly use a Fast2Sum operation.

We notice that t1 and v1 are integer multiples of 2�N�1ulp�2ðC1Þ
and that jt1 � v1j < 2p�N�1ulp�2ðC1Þ. We deduce that t1 � v1 fits in

an FPN.

The next step is about t1 � v1 þ t2 ¼ u� p1 � v1 being an FPN.

We do it similarly. All these quantities are also integer multiples

of 2�N�1ulp�2ðC1Þ, and we easily check that jt1 � v1 þ t2j <
2p�N�1ulp�2ðC1Þ.

We finally prove that t1 � v1 þ t2 � p2 ¼ u� zC2 � v1 fits in an

FPN. Its least significant nonzero bit is at most shifted N times

down compared to the least significant nonzero bit of C2. For this

reason, we require that C2 is an integer multiple of 8ulp�2ðC1Þ.
This proof needs a careful study of the relationships between

the various FPNs and their exponent values. The formal proof and

its genericity allowed us a better understanding of the respective

layouts of the FPNs, which is the key of the correctness of

Algorithm 5.1.

Algorithm 5.2 (computation of C2 ): Let C be the exact constant (for

example, � or ln 2).

R ¼ �pð1=CÞ,
C1 ¼ �p�2 � ð1=RÞ,

and take C2 to be the first many significand bits of C � C1 so that

its least nonzero bit must be greater than or equal to

log2ðulpðC1ÞÞ � pþ 4 ¼ log2ð8ulp�2ðC1ÞÞ, e.g.,

C2 ¼ ðC�C1Þ
8ulp�2ðC1Þ

l k
8ulp�2ðC1Þ,

where d	c is one of the round-to-integer operations.

The constant computed has all the expected properties, except

that we do not know for sure that jC2j 
 4ulpðC1Þ. Note that C1 is

not given simply by rounding C, but rather, C1 ¼ �ð1= � ð1CÞÞ.
Theorem 7 (gamma2_le). Assume

. p > 3,

. C is a real positive constant,

. R is the p-bit FPN obtained by rounding 1=C to p bits using
round-to-nearest mode,

. R is a positive normal p-bit FPN,

. C1 is the ðp� 2Þ-bit FPN obtained by rounding 1=R to p� 2
bits using round-to-nearest mode,

. C1 is not exactly a power of 2, and

. C1 � 2p�1�.
Then, jC � C1j 
 4ulpðC1Þ.

As C is not too far from C1, we have that C 
 2pþ1ulpðC1Þ. We

now bound C � C1 to finish all proofs:

jC � C1j 
 C � 1

R

����
����þ

1

R
� C1

����
����


 C

R
R� 1

C

����
����þ

1

R
� C1

����
����


 C

R
ulpðRÞ=2þ 4ulpðC1Þ=2


C2�p�1 þ 2ulpðC1Þ:

This means that the formula for C2 given above yields an FPN

fulfilling the requirements of Theorem 6.

6 CONCLUSIONS

We have presented Coq-verified theorems that prove the correct-

ness and effectiveness of a much faster technique based on the

commonly used argument reduction in elementary function

computations on machines that have hardware support for

fma instructions. The conditions of these theorems are easily

met as our analysis indicates. While we have showed that it is not

always possible to use the most accurate parameters under all

circumstances, an almost-best possible selection can be used at all

times: to zero out the last 2 bits.
We have presented also a very accurate second-step argument

reduction. We provide a way to compute C2, which is not the most

precisely possible but is usually 2 bits away from it (and can be

rounded as needed by the programmer). The most interesting part

is the possibility to compute with FPNs the exact error of the

second step of the argument reduction and the fact that this error is

exactly representable by only one FPN. It makes the third step

unexpectedly easy as we have a mathematical equality between the

computed FPNs and a very good approximation of x� zC (with a

known error).
Except for the computation of C2, all the rounding used should

be rounding to nearest, ties to even. But our proofs are generic

enough to show that our results still hold when using rounding to

nearest, where cases of ties can be decided in any coherent way

[26]. This includes rounding to nearest, ties away from zero that is

found in the revision of the IEEE-754 standard.
The formal verification forces us to provide many tedious

details in the proofs but gives us a guarantee on our results. The

proposed theorems are sufficient in the sense that effective

parameters for efficient argument reductions can be obtained

without any difficulty.
Our theorems provide us with sufficient conditions for x� zC1

to be an FPN. This means that x� zC1 could be an FPN even when

one or more of the conditions fails for some specific values of C, C1

and R, as published in the past [1], [7]. We may work on this in the

future even though there is only a limited space for improvement

as only the last two bits of C1 can be changed to make the constant

more accurate.

The algorithms proved can be applied to any floating-point

format (IEEE single, double, or extended, for example). Intuitively,

the correctness of these algorithms should come as natural.

Nevertheless, rigorous proofs are not trivial due to a few special

cases that could have been easily dismissed by hand-waving proofs.

APPENDIX

Theorem 4 can be used for any value of 2 
 q 
 p� 1. In most case,

users are interested in the smallest possible value of q because that

will give a more accurate C1 and, consequently, a more accurate

Fig. 7. Respective layouts of our C1 and C2 compared to optimal values.
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reduced argument. For this reason, we proved Theorem 5 for q ¼ 2.

The following theorem is under the hypothesis that

RC1 
 1;

while 2 
 q 
 p� 1 still. This add-on is enough to guarantee cases

that are left over by Theorem 4.

Theorem 8 (Fmac_arg_reduct_correct2). Assume

. p > 3,

. 2 
 q < p� 1,

. x is p-bit FPN,

. R is a positive normal p-bit FPN,

. C1 is the ðp� qÞ-bit FPN obtained by rounding 1=R to
p� q bits using round-to-nearest mode,

. C1 is not exactly a power of 2,

. C1 � 2p�qþmaxð1;N�1Þ�,

. z ¼ 3 	 2p�N�2 þ xR
� �

fma
�3 	 2p�N�2,

. 2�N is a FPN,

. jxRj 
 2p�N�2 � 2�N ,

. RC1 
 1.
Then, x� zC1 is a p-bit FPN.

We essentially need to consider how to make R and C1 satisfy

this new constraint. Since there is no strict connection between R

and C1 on one hand and between R and C on the other hand, we

can either use R to be the correctly rounded FPN nearest 1=C or,

alternatively, add or subtract one or a few ulp’s so that the

additional inequality is met.
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pp. 113-130, http://www.cl.cam.ac.uk/users/jrh/papers/fparith.ps.gz,
1999.

[11] J. Harrison, “Formal Verification of Floating Point Trigonometric Func-
tions,” Proc. Third Int’l Conf. Formal Methods in Computer-Aided Design
(FMCAD ’00), W.A. Hunt and S.D. Johnson, eds., pp. 217-233, 2000.
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