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Formally Verified Argument Reduction
with a Fused-Multiply-Add

Sylvie Boldo, Marc Daumas and Ren-Cang Li

Abstract— Cody & Waite argument reduction technique works  so that
perfectly for reasonably large arguments but as the input gows

there are no bit left to approximate the constant with enough T - i ~ xR

accuracy. Under mild assumptions, we show that the result ¢

computed with a fused-multiply-add provides a fully accurae = z+s

result for many possible values of the input with a constant — o—N H s " (1.1)

almost accurate to the full working precision. We also preset

an algorithm for a fully accurate second reduction step to rach \where k is an integer used to reference a table of size

double full accuracy (all the significand bits of two numbers This replacement is computational efficientif
are significant) even in the worst cases of argument reductio

Our work recalls the common algorithms and presents proofs b w=2z— 20, (1.2)
correctness. All the proofs are formally verified using the @q '
automatic proof checker. is a FPN [8].

Index Terms— Argument reduction, f ma, formal proof, Coq. Sometimes the computed value aof is not sufficiently

accurate, for example it is near a multiple ofC, the loss
of accuracy due to the approximatian ~ C' may prevail.
. INTRODUCTION A better approximation ta” is necessary to obtain a fully

accurate reduced argument. If this is the case we @ige

Met.hods that CF"T‘F’“te elementary fu_nctlons on a Iar%?]other FPN, roughly containing the next many bits in the
domain rely on efficient argument reduction techniques. Tl%?gnificand ofC' so that the unevaluated, + C» ~ C' much

!dea ISI to rﬁduceﬁ_an argumentto u thatlfallz m;\o a small poyer thanC; alone. When equatior (].2) does not introduce
Intervalto allow e |C|en_t approxmatlons[ 1-4]. com_mlg/ _any rounding error, the new reduced argument iswmbut v
used argument reduction technique [1], [5]-[7] begins wit

" ) . . omputed b
one positive FPN (floating point numbef), to approximate P y
a numberC' > 0 (usually irrational but not necessarily). v o~ u-—2z05. (1.3)
Examples includeC' = «/2 or = or 2x for trigonometric i ,
functions sinz and cosz, and C — In2 for exponential To increase once again the accuracy, the erro@f (1.5) need t
function e®. be computed (see Secti@ V), too to obtajnandwv, exactly
Let x be a given argument, a FPN. The argument reductigf"lmswIng
starts by extracting as defined by v +ve = u— 20s. (1.4)
x/C; = ‘ X H < . The last step creates a combined reduced argument stored in

the unevaluated sumy + w with 2p significant bits
Then it computes a reduced argument- xC,. The result N o L5
is exactly a FPN as it is defined by an IEEE-754 standard W= v2—2lg (1-5)

remainder operation. But division is a costly operatiort tsa Whetherv; (or v; andw) is accurate enough for computing
avoided as much as possible. Some authors, see for exan¢eelementary function in question is subject to furtheorer
[1], [3], [7], and analysis on a function-by-function basis [9]. But this i ofi
the scope of this paper.

The Cody & Waite technique [5] is presented in FigLﬂss 1
and[p, whereo(a) denotes the FPN obtained from rounding
introduce another FPNR that approximated /C and the a in the round-to-nearest mode. Those are examples when no
argument reduction replaces the division by a multiplaati f ma is used. The sizes of the rectangles represent the precision

(length of the significand) of each FPN and their positions
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Figureﬂ presents the ideal behavior. Figﬂre 2 presents firesented here are located in thar gReduct [ 2, 3, 4] . v
behavior when the significand efis longer. Then, fewer bits files.
are available to store the significand ©f in order for zC} The rest of this paper is organized as follows. Secﬁbn Il
to be stored exactly. The consequence is a tremendous las=alls theorems on the number of cancelled bits of two close
of precision in the final result: a§; must be stored in fewer FPNs (extensions of Sterbenz’s theorem [16]). In Sedtign I
bits, the cancellation in the computation:of zC, is smaller we present the Coq verified theorem about the correctness of
and the final result may be inaccurate. the algorithm that produces in (m) and that satisfies the

We want to take advantage of the fused-multiply-afdag) conditions of the following theorems. The demonstration of
instructions. Some machines have hardware support fardh s the main resulti.e. the correctness of the first reduction step,
as machines with HP/Int! Itaniunf® Microprocessors [1] is then described in SectiIV. In Secti@ V, we give new
and IBM PowerPC Microprocessors, and this instruction willlgorithms and results about a very accurate second step for
also be added to the revision of the IEEE-754 standard. Tt argument reduction. Secti VI concludes the work & thi
current draft can be found at paper.

htt p: // wwv. val i dl ab. com 754R/|. Notation. Throughout,& denotes the floating point subtrac-
tion. { X' }ima denotes the result by an instruction of the fused-
multiply-add type, i.e., the exacta + b x ¢ after only one
unding. FPNs usg digits, hidden bit (if any) counted, in the
ignificand or otherwise explicitly stated. We denote) the
EPN obtained from rounding in the round-to-nearest mode
with p digits ando,, (a) if we round tom digits instead ofp.

We denote by ulp) the unit in the last place of g-digit FPN

It is obvious that some bits af andzC will cancel each other

as z is computed such that ~ zCy, but it is not clear how

many of them will and under what condition(s). Consequent[

if accuracy calls forr — zC to be calculated exactly (or to

more tharnp bits in the significand), how do we get these bit

efficiently? This question is especially critical if the Warg

Elr:t(;:)srlrcr): is the highest available on the underlying cormgut and U-IFSJQ(.) ~ ulp(ulp(-)). The smallest (subnormal) positive
In this paper, we will devise easily met conditions so thgtpN is denoted by.

x — z(C4 can be represented exactly by a FPN, and thus it can

be computed by one instruction of them type without error. Il. EXACT SUBTRACTION THEOREMS

This technique is presented in Figfe 3. The understanging i These theorems will be used in Sect[oh IV to guarantee that
the same as in Figurdh 1 afid 2. The cancellation is greatet@sre will be enough cancellation in— =C, so that it can be

C; can be more precise. The idea is that the rounding  computed exactly by orfema type instruction, or equivalently,
is avoided thanks to thema: 2C1, a2p-bit FPN, is virtually to assurer — z(; fits into one FPN.

computed with full precision and then subtracted frenThis A well-known property [16], [17] of the floating point
subtraction is proved to be exact as~ 2C;. The fact of subtraction is the following.
x — zC4 being a FPN is used by the library of [1], [7] with
no formal justification until [8].

The motivations of this work are similar to those presented| * A : . i
in [8] and Section[]! recalls briefly some useful prior-art | is valid with any integer radix > 2 and any precision

from the authors [8], [10]. However, the rest of the paper| P = 2.
presents entirely new results. The theorems and their roof\ye extend Sterbenz’s theorem to fit the use of a fused-
are different from the ones presented in [8]. The changes f§jtiply-add that may create a higher precision virtual iem
necessary to facilitate verification with an_automatlc BroQynose leading digits are canceled to the working precision
checker. Moreover, the results have been improved, and 4&explained in Figurf] 4: when andy are sufficiently near

simpler to grasp and new results have been added thanks,{ another, cancellation makes the result exactly fit alemal
this simplification and to a better understanding of the FPNSecision.

relationships due to the formal proof.
In a floating-point pen-and-paper proof, it is difficult to be

Theorem 1 (St er benz in Fprop.v): Let z and y
be FPNs. Ify/2 <z <2y, thenz — y is a FPN. This

Theorem 2 (St er benzAppr ox2): Letz andy bep;-

absolutely sure that no special case is forgotten, no ifggua
is erroneous, and no implicit hypothesis is assumed, etc
All the proofs presented in this paper are verified using our
specification of generic floating point arithmetic [10] and
Coq proof assistant [11]. This approach has already beer
proven successful in hardware or software application${12

[15]. The drawback is a long and tiresome argumentation

digit FPNs. If
Y —p1
e S ()
then z — y is a po-digit FPN. This is valid with any

different significand sizeg:1,p2 > 2, and any integer
radix g > 2.

versus the proof checker that will ascertain each step ofThe proofs are omitted as they appeared in other publica-
the demonstration. The corresponding scripts of proofs drens [8], [18]. It is worth mentioning that Theoreﬂ1 2 do not
available online at requirep; > ps OF po > py.

From now on, all FPNs are binary. The underlying machine
hardware conforms to IEEE-754 floating point standards,[19]
We indicate for each theorem its Coq name. The developmef#8]. This implies that rounding does not introduce a roagdi

http://ww. netlib.org/fp/fp2.tgz
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.
- - z — z x O is exact
0 | roundof eror
I | | e
[ o= 0ot < Co) g

N . final precision
final precision
Fig. 2. Cody Waite technique fails as grows, i.e.u is not accurate

Fig. 1. Reduction technique works fersufficiently small.
enough.

8

Cy ‘ z I

‘ zx Cq ‘

cancellation x — 2z x C1 is exact

‘ zx Cy ‘

[ oGO G o]

final precision

Fig. 3. Argument reduction with exact cancellation in a flsseultiply-add.

error when the exact result is a FPN. Unless explicitly state | Theorem 3 (ar g.r educt _exi st s_k_zH): Assume
the default rounding mode isund-to-nearest with ties broken e p >3,

to the even significand. o x IS ap-bit FPN,

« R is a positive normap-bit FPN,

o z={3-20"N"24 R} ©3.20"N"2
I1l. ABOUT THE ALGORITHM FOR 2 o |2| >217N,
o |7R| < 2P N=2_ 9N
« 27V is a FPN.
Then there exists an integérsatisfying2 < ¢ <p —2
such that
o |22V is an/-bit integer greater thag‘~!, and
o |zR—z| <27N-L

The computation ot can be done efficiently as

z = {zR+ o}tma — 0, (1.1)

whereo is a pre-chosen constant. The technique is adaptecin short, if z is computed as explained andis not too
from [1, Chap. 10] who used an idea attributed by the authB '

r . S '
to C. Roothaan in his work for HP’s vector math library for '9, Fhenz 'S a correct answer, meaning it fulfll!s all the
. R _ requirements that will be needed in Theorfn 4 in the next
Itanium. The explanation is in Flguﬂa 5: here we choese

3-2P~N=2 for a z having its last bit at exponentN. section.
In realizing (I.}), the wanted results are tha2" is an N
integer, and thatrR — 2| < 27V~1. We may also need that <R I
the precision needed faris smaller or equal tp — 2. Here 3. gp-N-2
is the theorem, verified by Coq. j
{8-20-N2 R}
z={3.20"N-2 4 gR} ©3.20 N2 l:i
p1 digits i
Fig. 5. Algorithm for computingz.
-
For Intel's double extended precision, this technique is
7 digits perfectly adapted for range reduction with argument betwee

—263 and2%% when R is in the order ofO(1). This argument
Fig. 4. Extension of Sterbenz's theorem. range coincides with what is in Intel's manual [21] 68l N,



FCOS, FPTAN and FSI NCOS. A quick justification is for 2¢9—¢. We have the following equalities:
C = 27 and modestN, say N = 0 for an example,

) T TR
lzR| < 2%3/(27) gives|zR| < 262 — 1. - = ZRC-
For the exponential function, any argument larger than ! Z+;
11356 overflows in the double extended and quad precisions, = 2RO,

and/ < p — 2 is easily satisfied.

(1 n f) L
z/ 1496
IV. MAIN RESULTS We recall that: = k2~ and thatk is an integer using bits,
and we deduce on the other hand
We now present the conditions under which- zC; can _N4o—1 _N4e
be represented exactly by a FPN, and thus it can be computed 2 <lel<2
by {x — 2C} }ma Without error. As in Sectiof) IR~ 1/C and  tg bound
C; ~ C. We suppose that’ > 0 andC # 27 for any j.
The idea is the use of a fused-multiply-add that may create
a higher precision virtual number that cancels to the waykin
precision. Figure[|6 explains the idea:fis an ¢-bit integer
and the significand af’; usesp—q bits, it takes up top —g+/

Rewriting the condition of Theoreﬁll 2 and taking advantage
of preceding results, we arrive at the point to prove both

bits to store the significand afC;. And aszC andx are near 1+27¢ < 1400t (IV.1)
enough, the final result fits infbits. The notatiomn x stands 1+16] — ’ '
for the significand ofX andex its exponent. 1+ 16]
< 142778 V.2
p — q bits 1—-92-¢ — + ( )
Conditions [IV.}) and[(IV]2) are checked using functional
analysis on polynomials and homographic functions for any
Cbits Partial i permitted value ofA = 2~*. Sincez is both a machine number
prouct and a non-zerd-bit FPN (I < ¢ < p). From Sectior{I]I, the

algorithm used to produce implies? < p — 2. We will use a

S — PG more generic condition:

p— q+ £ bits p bits

1
. - e
1 Rounding (or not) 2'P<A=2""< 3
Cma 1Ced We will now explain what are the successive requirements to
p bits guarantee that bottf (1Y.1) anfl (1Y.2) are fulfilled.
a) Condition (JV.1): We want to guarantee that
—L

Fig. 6. Fused-multiply-add used to create and cancel a highecision |

virtual number. 1200 < 1+ 4]. The homographic function

We want to give enough hypotheses on the inputs to 1+27¢ 1+A

guarantee that — zC; will be computed without error. 14+24=¢ 1+ A24
We define the exponentz of R as the only integer suchye want to bound is maximized dt = 2'~» and it is sufficient
that2°7 < R < 2¢#+1 We want to set the least significant 1o check if (1+277)/(1 + 21-P29) < 1+ |§]. We use the

bits of C; to zero. Sinc&”; should be as accurate as possiblgyound on|s| and we introduceB = 2¢. We have left to prove
we setC; ~ 1/R to the nearest FPN with — ¢ significant that

bits. From this, we deduce that“z~! < C; < 27°% and (14+2'°P)/(1+2PB) <1— B27™.
that the distance betweé&ry and1/R is less than half an ulp
(in p — ¢ precision) therefore This is equivalent to check if the second order polynomial
2'1-PB2_ B+4+2 < 0. The inequality is satisfied faB between
‘l — | < 2-en—1-t0—a), the two roots2? 2 (1 4+ /1 — 24—P). Thus it is sufficient to
R - have B > 4 for all precisions.

) b) Condition (IV.4): We want to guarantee that+ |§| <
We now defined = RC; — 1, and we deduce a bound on(l +2q—€)(1 _ 2—@)_ We introduced and B as before, so we

its magnitude from the previous inequalities have left to prove
o] < 297P, 1416 < (14+AB)(1 - A).

We assume thaB > 4 from the preceding paragraph. The

Let z be as defined by (].1) with the conditions erand s polynomial

given there. We assume for the moment that 0. TheorenﬂZ
can be used if we bound/(z2C4) and its reciprocal byl + (1+AB)(1—A)=(1+275(1-275



is minimized atA = 277 and it is sufficient to check if 2¢x1.11---100. Both are 4 ulps away from a power of 2. This
(1+18]) < (1+2PB)(1 —2'P). From the bound ond|, distance and the preceding inequality are enough to gueant
we now have to check if that the exponent of is the exponent of’; minus N + 1.
_ - 1— After a few computations, we finish with— C; x 2=V being
(1+B277) < (1+277B)(1 -277) a FPN, regardless af.

which is true for any precision. A few peculiar cases have been omitted in the sketch of

This proof is rather long and complex. We therefore verifieldhis proof. Automatic proof checking allows us to trustjull
it in Cog to be sure there is no mistake. It also gives us mogeiarantee that these cases have been all checked in our pub-
precise and sharp hypothesis than if we would do that orligly available proof scripts. The only surprising conditiis
by pen-and-paper. All hypotheses have to be clearly writt@miesented in this section. The other cases are easily dizedra
so that the proof can be checked. There is no easy way to $@yn Theoremg]3 anf] 4. So just by wrapping these two results
“we assume there is no Underflow” or “that the precision i@gether, we can state the following theorem in its full limng
big enough”. This leads to long theorems (at least longar theerified with Coq.
what we are used to), but precise and correct ones:

Theorem 5 (Frmac_ar g_r educt _corr ect 3):

Theorem 4 (Frmac_ar g_r educt correct 1): Assume
Assume o« p>3
o p>3, o x IS ap-bit FPN,
o x is ap-bit FPN, o R is a positive normap-bit FPN,
o R is a positive normap-bit FPN, o ( is the (p — 2)-bit FPN obtained by rounding
e 2<g<p—1, 1/R to p — 2 bits using round-to-nearest mode,
o ( is the (p — ¢)-bit FPN obtained by rounding « (1 is not exactly a power of 2,
1/R to p — ¢ bits using round-to-nearest mode, o ) > 2rtmax(=LN)\

o (4 is not exactly a power of 2,

— —N-2 —N—-2
o () > op—atmax(L,N-1) )\ o 2= {3 .op + IR}fma 53.90 ’

« 2</(<p—1, o |ZR| < 2P~ N-2 _ 2= N

o |22V is an/-bit integer greater thap‘~!, « 27N is a FPN.

o [zR— 2| <27N7L Thenz — zC, is ap-bit FPN.

s gt N :
Thenz — 2Cy is ap-bit FPN In short, ifC; is rounded to the nearest frori R with p—2

bits andz is computed as usual, then thea does not make
In short, ifC; is rounded to the nearest froniR with p—q  any round-off error. In Tablel I ar[d Il we present constdnts
bits andg > 2 andz is not too small, then théma does not andC for 7 andln(2). These constants are for the exponential
make any round-off error. and the fast reduction phase of the trigonometric functjahs
Automatic proof checking also prompted us that the exaid], [9], [22].
behavior may be difficult to obtain for = 2=~ andz close The hypotheses may seem numerous and restrictive but they
to 2= N¥~!R. This case was excluded in Theorﬂ’n 4 under there not. AsRk and C; are pre-computed, the corresponding
hypothesis thak < ¢, but it will be included in the next requirements can be checked beforehand. Moreover, those
theorem which focuses ap= 2 as this situation leads 0, requirements are weak: for example withc= N <= 10 in
as close as possible frof and thus has more practical valuedouble precision, we need; > 27191 x~ 4.51073%, There
For completeness and theoretical interest a theorem sitnilais no known elementary function for whicfi; ever comes
Theoren{}4 but valid for al2 < 2 < p — 1 is presented in the near a power of 2. The only nontrivial requirement left is the
appendix. bound on|zR).
Assumeg = 2 in the rest of this section. When= 2—%,

thenz < 2C; x 27V aszR is approximated by = 2~. We v GETTING MORE ACCURATE REDUCED ARGUMENTS
can also deduce that

As we pointed out in the introduction in Secti§n 1, some-
Cyx 27N < times the reduced argument = z — z(C; is not accurate
14227 =7 enough due to the limited precisiondry as an approximation
WhenC; x 27V /2 < x, Sterbenz’s theorem (Theordin 1) caf© C- When this happen another FRIY containing the lower
be applied and: — C; x 2~V is representable. If not, then bits of the constan€’ has to be made available and the new
N N reduced argument is now — zC; — zCs. Assume that the
Cix27%  _Gix277 conditions of Theorenf]5 hold. In particulét hasp — 2 bits
1+227p — 2 in its significand.
Since(, is a(p —2)-bit FPN and not exactly a power of 2 as The number: — zCy — 2C> can be computed exactly [23]
ap-bit FPN, thenC is at least 4 ulps away from a power of 2as the sum of two floats. But here because we know certain
This is because asabit FPN, C; is worth2¢ x 1.bb---b00, conditions onz, C;, and C; as FPNs, we can do it faster.
where at least one of thgs must be 1; therefore th€, that Inspired by [23], we propose the following AIgorithE’S.l to
comes closest to a power @fis either2¢ x 1.0---0100 or accomplish the task. It is built upon two known algorithms:




TABLE |
EXAMPLE OF VALUE FORR = o(1/C'), C1 ROUNDED TOp — 2 BITS, Cs OBTAINED FROMALGORlTHM@,AND C3,FORC =,
EASILY LEADING TO C' = 2w ORC = 7/2

Precision Single Double Double extended Quad

R 10680707-272° 5734161139222659-2 4 11743562013128004906-2 % 6611037688290699343682997282138730-2 114
Ch 13176796-27 22 7074237752028440-2 %1 14488038916154245684.2 762 8156040833015188200833743081374136-2 111
Co —11464520-27 4%  4967757600021504-2 105 14179128828124470480-2~ 126 9351661544631751449372323967920768-2~ 226
Cs —15186280-2767  7744522442262976-27 155 10700877088903390780-27 189 _9186378203702558149401308890796140-2 334

TABLE Il
EXAMPLE OF VALUE FOR R = o(1/C), C1 ROUNDED TOp — 2 BITS, C'2 OBTAINED FROMALGORITHM E,AND C3, FORC = In(2)

Precision Single Double Double extended Quad

R 12102203.2723 6497320848556798-2 52 13306513097844322492.27 63 7490900928631539394323262730195514.2 7112
Cq 11629080-2 724 6243314768165360-2°3 12786308645202655660-2 4 7198051856247353947080814903691240-2 113
Coy —8577792:2752  _7125764960002032-27 106 _15506301547560248640-2 130  _5381235925004637553074520129202340-2 224
Cs3 —8803384-27 72  _7338834209110452-2 7161 _13766585803531045332-27 192 _0437982846677142208552339635087788.2 338

o Fast2Mult(,y) that computes the rounded product:of  The first requirements are very similar to the previous ones.
andy and its error (2 flops) [24]. The “no underflow” bound o, has been raised, but is still
Fast2Sumg,y) that computes the rounded sumaofand easily achieved by real constants. For a typidabetween 0

y and its error (3 flops), under the assumption that eithand 10 used by the existing elementary math libraries in IEEE

x =0,0ry =0, or |z

Ng, €z, Ny, €y SUch thatz

€x

> ¢, [10].

> |y|, or there exist integers double precision, it suffices that > 10~288.

Algorithm 5.1 (Super accurate argument reduction):

The correctness of this algorithm is only guarantee

under the conditions of Theorefh 6. It does not

work with any Cy, Cs!

ng2% andy = n,2% and

The most important add-ons are the requirementsCgn
it must be much smaller tha6@; (it is near the difference
between the constart and C;). And C; must not be “too

recise”. In fact,C; + Co will have 2p — 4 bits as shown in
cEigureﬁ. If by chance, there are a lot of zeroes just aftgr
we cannot take advantage of that to get a more preCise

This is a real drawback, but it does not happen very often that

u = o(x—zCh), many zeroes are just at the inconvenient place.
vy = o(u—203),
(p1 R pg) = FaStZMUl(Z, 02), ‘ G ‘ %
(t1,t2) = Fast2Surfu, —p1), L opimalCy A L _optmalCy |
va = o(o(o(ty —v1) +1t2) — p2). possiblen(s) 8ulp°2(C1)
Theorem 6 (FAI‘ gRedUCt 4.v fil e): Assume Fig. 7. Respective layouts of oy and C'> compared to optimal values.
e D> 4,
« x is ap-bit FPN, This algorithm may seem simple but it is a very powerful

R is a positive normap-bit FPN,
C, is the (p — 2)-bit FPN obtained by rounding
1/R to p — 2 bits using round-to-nearest mode,
C1 it is not exactly a power of 2,

z={3-2""N"2 4R} ~©3.207N"2

|zR| < 2P~N-2 _9=N,
2N is a normalp-bit FPN,
Cl > 2p+max(—1,p+N—2)A,

C, is a FPN and an integer multiple 8lp°?(C1),

|C2| < 4ulp(Cy),

v1 andv, are computed using Algorithin §.1.

Then Fast2Sum works correctly and we have the m
ematical equalityv; + vo = x — 2C; — zCy (all the
computations of the last line indeed commit no round

errors).

tool. It is exact and it is veryfast: the generic algorithm [23]
costs 20 flops while this one costs only 9 flops! More, the
result is more usable than expected as it fits in only one float
instead of two in the general case.

As for the computation of’;, the requirements are rather
low: there are several, fulfilling them. It may be useful
to choose one of them in order to have the bigger or the
smallerC;, possible. Algorith2 gives one way to compute
a convenient’s.

The idea of the proof for Theoreﬁh 6 is a careful study of
the possible exponents for the involved FPNs. We first prove
that = is an integer multiple o2~ ulp(C;). This is done

athfor whetherz is 2=V or not to guarantee the correctness of

Fast2Sum.

ng We then prove that; — v; fits in a FPN. This proof is

obtained by noticing that; and v, are integer multiples of



2-N-1ulp®*(C,) and that thatt; — vy | < 2P~ N~1ulp®*(C;). for fused-multiply-add instructions. The conditions ok
The next step is abouf — v, + 12 = u — p; — v, being a theorems are easily met as our analysis indicates. While we
FPN. We do it similarly as all these quantities are also ieteghave showed it is not always possible to use the most accurate
multiples of2~N~1ulp°*(C;) and as we easily have thigi — parameters under all circumstances, an almost best pessibl
vy + ta| < 2P*N*1ulp°2(01). selection can be used at all times: to zero out the last 2 hits.
We finally prove that; —v; +t; —py = u—2Cs — v fits in We have presented also a very accurate second step argu-
a FPN. Its least significant non-zero bit is at most shiftéd ment reduction. We provide a way to compute which is
times down compared to the least significant non-zero bit abt the most precise possible, but is usually 2 bits away from
Cs. For this reason, we require th@b is an integer multiple it (and can be rounded as needed by the programmer). The
of 8ulp°*(Cy). most interesting part is the possibility to compute with BPN
This proof needs a careful study of the relationships betweghe exact error of the second step of the argument reduction
the various floats and their exponent values. The formahd the fact that this error is exactly representable by only
proof and its genericity allowed us a better understandifPN. It makes the third step unexpectedly easy as we have a
of the respective layouts of the FPNs, that is the key of theathematical equality between the computed FPNs and a very
correctness of Algorithrf §.1. good approximation of: — zC' (with a known error).
Algorithm 5.2 (Computation of C»): Let C' be the exact EXCept for the computation of’;, all the rounding used
constant (for exampler or In 2). shoulc_j be rounding to nearest, ties to even. But our procefs_ar
generic enough to show that our results still hold when using
R 0p(1/C), rounding to nearest, where cases of ties can be decided in
Cl O:D_Q(l/fz)7

any coherent way [25]. This includes rounding to nearess, ti
and takeCs to be the first many significand bits &f — C;

away from zero that is found in the revision of the IEEE-754

so that its least non-zero bit must be greater than or equaSgndard.

log, (ulp(C1)) — p + 4 = log, (8u|p°2(01)), e.g., The formal verification forces us to provide many tedious
details in the proofs but gives us a guarantee on our results.

= { (C-C) J sulp®2(Cy) The proposed theorems are sufficient in the sense thatieéfect

8U|p°2(01) ’ parameters for efficient argument reductions can be olstaine

where[-] is one of the round-to-integer operations. without any difficulty.

Our theorems provides us with sufficient conditions for

This Cy has all the expected properties except that we %1 to be a FPN. This means that— >C; could be a FPN
not know for sure if|C5| < 4ulp(C1). Note thatC' is not  eyen when one or more of the conditions fails for some specific
gotten by directly rounding” but ratherC1 = o (1/ o (%)).  values ofC, C; and R as published in the past [1], [7]. We
may work on this in the future even though there is only a
limited space for improvement as only the last two bit<f
can be changed to make the constant more accurate.

The algorithms proved can be applied to any floating-
point format (IEEE single, double or extended for example).
Intuitively, the correctness of these algorithms shouldheo
as natural. Nevertheless, rigorous proofs are not trivigd
a few special cases that could have been easily dismissed by
hand-waving proofs.

Theorem 7 (ganma2_| e): Assume
e D > 3,
o C'is a real positive constant,
o R is thep-bit FPN obtained by roundint)/C to p
bits using round-to-nearest mode,
o R is a positive normap-bit FPN,
o (y is the (p — 2)-bit FPN obtained by rounding
1/R to p — 2 bits using round-to-nearest mode,
« (1 is not exactly a power of 2,
o Cp >2P71),
Then|C — C4] < 4ulp(Ch).
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APPENDIX

Theorem[|4 can be used for any valueoK ¢ < p — 1.
In most case, users are interested for the smallest possible
value of ¢ because that will give a more accuratg and
consequently a more accurate reduced argument. For this
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