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Color LAR codec: a color image representation and
compression scheme based on local resolution

adjustment and self-extracting region representation
Olivier Déforges, Member, IEEE, Marie Babel, Member, IEEE, Laurent Bédat, and Joseph Ronsin

Abstract— We present an efficient content-based image coding
called LAR (Locally Adaptive Resolution) offering advanced
scalability at different semantic levels i.e. pixel, block and
region. A local analysis of image activity leads to a non-
uniform block representation supporting two layers of image
description. The first layer provides global information encoded
in the spatial domain enabling low bit rate while preserving
contours. The second layer holds texture information encoded in
the spectral domain enabling scalable bitstream in accordance
with the required quality. This basic LAR coding leads to an
efficient progressive compression, evaluated through subjective
quality tests. Its non-uniform block representation also allows
a hierarchical region representation providing higher semantic
functionalities. More precisely, the segmentation process can be
simultaneously performed at both the coder and the decoder
from only the luminance component highly compressed by the
first coding layer. This solution provides a representation at
a region level while avoiding any contour encoding overhead.
Region enhancement can then be realized through the second
layer. Furthermore, very high compression of the chromatic
components is achieved thanks to this region representation.
In this scheme, a low-cost chromatic control, first introduced
during the segmentation process, increases the consistency of
region representation in terms of color.

Index Terms— Scalable coding, Gray-level and color images
segmentation, Region representation based coding, Region of
Interest Coding.

I. INTRODUCTION

The main objective when designing an image coding method
is to find a solution that is powerful in terms of information
compression. However, this feature alone is no longer suffi-
cient for many of the most recent developments. For instance,
image and video broadcasting requires scalable compression
methods able to adapt the data stream to transmission and
receiver capacities. In this context, MPEG4-SVC will soon
be adopted as a new standard dedicated to scalable video
coding [1]. The scalability referred to here corresponds to three
aspects: spatial, resolution and quality [2].

Another type of application refers to remote images and
video data base access. To cope with the tremendous amount of
available data, automatic or semi-automatic indexing methods
are required. The semantic level of the index as defined in
MPEG-7 [3] directly depends on the ability of analyzing tools
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to describe and understand the image content. One natural
way of doing this consists of describing the scene in terms of
object composition. Relevant solutions have been proposed for
this type of representation, such as binary trees by Salembier
et al. [4], [5]. To obtain a flexible view with various levels of
accuracy, a hierarchical representation is generally used, going
from a fine level comprising many regions, to a coarse level
comprising only a few objects.

Some unified frameworks try to combine efficient coding
with a high, semantic level representation. This concept was
first introduced by Kunt et al. as a second generation codec
[6]. Many other methods have been proposed since then. On
the one hand, some of them are designed for image coding [7],
[8] and are based on edge representation. On the other hand,
a new generation of video coding is object- or region-based
[9]–[12]. Thanks to the use of a region shape and a texture
description that corresponds to entire objects or to some of
their parts inside images, these approaches improve traditional
schemes in terms of image information coding.

Regions are defined as convex parts of an image sharing
a common feature (motion, textures etc). Objects are defined
as entities with a semantic meaning inside an image [13]. For
region representation two kinds of information are necessary
- shape (contours) and content (texture). As regards video
representation, a third dimension can be added - motion.

The region-based approach tends to link digital systems and
human vision as regards image processing and perception. This
type of approach provides advanced functionalities such as
interaction between objects and regions, or scene composition.
Another important advantage is the ability, for a given coding
scheme, of both increasing compression quality on highly visu-
ally sensitive areas of images (Region Of Interest) (ROI) and
decreasing the compression quality on less significant parts
(background) [14]. The actual limited bandpass of channels
compared to the data volume required for image transmission
leads to a compromise between bit-rate and quality. Once
the ROIs are defined and identified, this rate/quality bias
can be not only globally but also locally adjusted for each
ROI: compression algorithms then introduce only low visual
distortions in each ROI, while the image background can be
represented with high visual distortions.

Despite the benefits of region-based approaches, current
standards are based on traditional information transformation
techniques. There are four reasons for this.

1) Shape description, using polygons, produces an infor-
mation overhead, which can be fairly significant at low
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bit rates. To reduce this overhead, we need to limit
the number of regions to obtain rudimentary simplified
regions. This often leads to a decrease in the accuracy
of the shape description. For the same reason, hierarchi-
cal representations are generally not supported and are
limited to their top levels, as the coding of the structure
itself can become prohibitive.

2) Region-based methods mainly preserve the ”shape”
component and often neglect the ”content” component.
Consequently, for a given representation, an encoded
shape becomes independent of its content.

3) On one hand, region-based representation requires the
use of complex image segmentation algorithms. This
step generally forms a major obstacle to the achievement
of a real time processing system. On the other hand,
the use of basic image segmentation algorithms impact
strongly on the accuracy of the region description.

4) Common region-based coding schemes authorize the
encoder only to define region representation; the decoder
does not have any decision-making function. This type
of approach cannot, therefore, be used for certain classes
of application such as image database browsing, where
the operator would define and select his own regions of
interest.

Our current work deals with finding a new direction in cod-
ing methods, trying to link the aforesaid traditional methods
with region-based approaches. We also consider the problem
of color image compression as a whole process: the objective
is to not duplicate the same scheme for the three color
components independently, because this has been shown to be
sub-optimal. The paper therefore presents a global approach
for both the encoding of color images and region-level repre-
sentation, i.e. unifying concepts of shape and content.

The next section introduces the Locally Adaptive Resolu-
tion (LAR) method as a content-based scalable image codec
based on a variable size block representation. It involves two
successive main layers: a first layer encodes the global image
information at low bit rates, and a second one compresses
the local texture. Starting from a coding solution suitable
for luminance images, we propose a few adjustments to the
processing of chromatic components.

The concept of self-extracting regions is then presented in
section III. To gradually enhance the quality of rebuilt images
while using scalable coding, the idea is to insert a segmentation
stage computed at both the coder and the decoder. This stage
uses only first-layer rebuilt images and is efficient because the
low bit rate LAR images keep their global content, in particular
object contours. A segmentation method is proposed, handling
low bit rate luminance images and based on the adjacency
graph theory. It leads to an hierarchical region representation
at no-cost, as no further information is transmitted to describe
regions. ROI coding then enables the second compression
layer for the selected regions only. This local enhancement
is straightforward in our scheme as the regions and the full
LAR codec share the same variable size block representation.

In section IV, we extend the self-extracting region principles
to color images. Actually, chromatic information can be used
to improve segmentation results. On the other hand, region

representation deduced from only the low bit rate luminance
LAR image can be used to encode the two chromatic com-
ponents at a region level. We also investigate a third method
which consists of creating a segmentation based mainly on
the luminance component and controlled at the coder by
additional chromatic information. This approach introduces a
low overhead because of the control data transmitted to the
decoder. At the same time this solution provides better region
representation in terms of color consistency and therefore
improves chromatic components compression at a region level.

Finally, a last section is dedicated to conclusions and
perspectives.

II. FLAT LAR CODEC PRESENTATION

The basic idea for LAR is that the local resolution of an
image, i.e. the pixel size, can depend on local activity. On
smooth luminance areas, resolution can be lowered. On the
other hand, when local activity is high, resolution can be
increased. Furthermore, one image I can be considered as a
two-component overlay:

I = Ī + (I − Ī︸ ︷︷ ︸
E

) (1)

where Ī represents the global image information (typically
the local mean value) estimated on a given support, and E
represents local variation (local texture) around it. As a result,
the dynamic for E depends on two main factors:

1) local activity inside the image,
2) dimension for the support of Ī .
Given that an image can be roughly considered as consisting

of fairly homogeneous areas and contours, then E has a low
dynamic in uniform areas through the adaptation of its support.
Inversely, E has a strong dynamic on contours, since support
for Ī can be larger than one pixel.

The LAR method is based on a two-layer codec, with a
spatial layer for Ī coding and a spectral layer for image error
E coding (texture), called respectively flat coder and spectral
coder. In this way, the codec naturally offers at least two levels
of scalability. Figure 1 shows the overall principle.

Original
Image Flat Coder

Spectral Coder

+
-

Flat decoder

Spectral decoder

Low resolution
image

Middle / high
resolution image

+-

Fig. 1. Overall two-layer LAR coding scheme - flat + spectral coders.

The following sections describe the contents of the different
encoded layers. The space selected for color representation is
the traditional one for lossy coding, namely Y:Cr:Cb in 4:4:4
format. Various considerations have motivated this choice:
decorrelation of information while observing Y:Cr:Cb compo-
nents, uniformly distributed entropy on chromatic components
[15], simplicity of this transformation and, finally, simplicity
while using this representation space (linear transformation,
integer values).
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A. Flat coder

”Spatial” means that the representation and compression
process is performed directly in the spatial domain. In order
to provide a unique representation and compression of global
information in the image, this coder clearly aims at the highest
compression rates. On the one hand, it characterizes contours
from the rest of the image and, on the other hand, it adapts
supports for Ī in such a way that the reconstructed image
is subjectively acceptable with a reduced error E in uniform
areas. In our case, supports correspond to square blocks.

The flat coding scheme is given in Figure 2. It is based
on a process that partitions images into variable-size blocks
where each block is rebuilt by its mean luminance value.
An arithmetic encoder compresses each symbol (block size,
prediction errors, error image etc.) generated by the various
representation and coding steps.

DPCM
Adapt. Quant.

~

Partitioning

Post-processing

Size

Mean block
values 

Coder
P [16,..2]

LR

LR

Image
Original

Flat Coder

Low resolution
image

Fig. 2. Principle scheme for flat coder.

The successive steps in the operating technique will be
described in the following sections.

1) Partitioning: Systems based on a variable-size block
representation rely on a homogeneity criterion and a specific
partition. To avoid overlapping, a common partition solution
is a Quadtree topology.

The proposed approach involves Quadtree partitioning
P [Nmax...Nmin] with all square blocks having a size equal to a
power of two, where Nmax and Nmin represent respectively
the maximum and minimum authorized block sizes. Thus, the
partitioning process consists of first splitting the image into
uniform Nmax square blocks and then building a Quadtree on
each block.

In fact, many methods rely on such a variable-size block
representation. In particular, MPEG4-AVC/H.264 intra mode
authorizes a partition P [16,4] (it splits images into 4 × 4 or
16 × 16 blocks), where size selection operates to produce
the best bit rate/distortion from a PSNR point of view [16].
Methods based on tree structure operate from the highest
level (or maximal size) by cutting nodes down into sons
when the homogeneity criterion is not met. Although several
homogeneity tests can be found in literature [17], [18], in
most cases they rely on computing a L1 or L2 norm distance
between the block value and the value of its four sons.

Here, we suggest a different criterion, based on edge de-
tection. Among the various possible filters, we opted for a
morphological gradient filter (the difference between maxi-
mum and minimum luminance values on a given support),
because of its fast, recursive implementation and the resulting
limitation of the absolute value of texture E (see §II-A.2).

I(x, y) represents later a point with coordinates (x, y) in
an image I of size Nx × Ny . Let I(bN (i, j)) be the block
bN(i, j) of size N × N in I such that:

bN (i, j) = {(x, y) ∈ Nx × Ny

such as N × i ≤ x < N × (i + 1),

and N × j ≤ y < N × (j + 1)}.
(2)

Let a Quadtree partition be P [Nmax...Nmin], and
min[I(bN(i, j))] and max[I(bN (i, j))] be respectively
the minimum and maximum values in block I(bN (i, j)).

For each point, the block size is given by:

Siz(x, y)=

⎧⎪⎨
⎪⎩

max({N}) if ∃ N ∈ [Nmax . . . Nmin]
such as |max[I(bN(� x

N
�, � y

N
�))]

−min[I(bN(� x
N
�, � y

N
�))]| ≤ Th

Nmin otherwise,

(3)

where Th represents the homogeneity threshold.
The above image of sizes immediately produces a rough

segmenting map for the image, where blocks sized with Nmin

are mainly located on contours and in highly textured areas.
Later, we will see that this characteristic forms the basis of
the various coding steps.

For color images, the selected solution consists of defining
a unique regular partition locally controlled by the minimal
size among the three Y:Cr:Cb components. Then, for all the
pixels p(x, y) ∈ I , the image of sizes Siz is obtained by

Siz(x, y)=min [SizY (x, y), SizCr(x, y), SizCb(x, y)]. (4)

Thresholds Th for the luminance component and color com-
ponents can be independently defined. For a single threshold
Th, the minimum is mainly supplied from the Y component.
In the remainder of the paper, we have considered a configu-
ration with a single threshold.

2) Mean block values: The flat coder provides a low
resolution color image (LRY :LRCr:LRCb) using the mean
block value for each component. For all pixels p(x, y), each
LR image component is thus defined by

LR(x, y)=
1

N2

N−1∑
k=0

N−1∑
m=0

I(� x

N
�×N+k, � y

N
�×N+m), (5)

where N = Siz(x, y).
As the mean value of each block is naturally included in

the range of its minimal and maximal values, one specific
property of decomposition is that, for blocks with a size larger
than Nmin (partition P [Nmax...Nmin[), the reconstruction error
E(x, y) is bounded by E(x, y) = |I(x, y)−LR(x, y)| ≤ Th, for
all p(x, y) ∈ P [Nmax...Nmin[.

Therefore, for each image component, entropy error, mean
square error and PSNR admit a limit:

H(E) ≤ log2(Th) bits, MSE ≤ Th2, PSNR ≥ 10 log 2552

Th2 dB.
(6)

3) Predictive DPCM encoding of mean values: Our
Quadtree-like partition associated with the representation of
mean block values leads to non-uniform subsampling of the
image: uniform areas are then extensively subsampled whereas
high activity areas are subject to only light subsampling. In
addition to the compression rate introduced by such image
subsampling, the global bit rate is reduced while performing
the prediction and quantization of block values. These two
steps are detailed below.
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a) Mean value prediction of luminance block: The mean
block luminance value is encoded directly in the spatial
domain by a DPCM (Differential Pulse Code Modulation).
Subsequently, the encoding process requires only a regular
raster scan of the image, and the resulting block representation
delivers a priori information about activity inside various
areas. This can be used for an adaptive prediction.

Our technique is inspired by traditional lossless coding
methods. Many of these schemes rely on this kind of predictor
to get the best compromise between efficiency and simplicity.
More particularly, we have implemented various predictors
such as MED (Median Edge predictor) of LOCO-I [19], and
DARC (Differential Adaptive Run Coding) proposed in [20].
Finally, we opted for a Graham predictor [21] adapted to fit our
context. This adaptation mainly consists of linear prediction on
uniform areas, and non-linear prediction on edges, performed
at block level. Local gradient drives prediction allowing its
optimization in accordance with context.

The predictor follows the relation (7). The estimated value
of each block bN (i, j) is only computed for the top-left pixel
p(x, y) where x = i×N and y = j ×N . Then the estimated
value ˘LRY (x, y) is deduced from existing reconstructed val-
ues ˜LRY obtained after quantization.

˘LRY (x, y) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˜LRY (x − 1, y)

if | ˜LRY (x − 1, y − 1) − ˜LRY (x, y − 1)|
< | ˜LRY (x − 1, y − 1) − ˜LRY (x − 1, y)|

and if
AN < | ˜LRY (x − 1, y − 1) − ˜LRY (x − 1, y)|

˜LRY (x, y − 1)

if | ˜LRY (x − 1, y − 1) − ˜LRY (x − 1, y)|
< | ˜LRY (x − 1, y − 1) − ˜LRY (x, y − 1)|

and if
AN < | ˜LRY (x − 1, y − 1) − ˜LRY (x, y − 1)|

( ˜LRY (x − 1, y) + ˜LRY (x, y − 1))/2 otherwise.

(7)

Parameters AN grows with N , where A1 = 0, A2 = 10, A4 =
20, A8 = 40 and A16 = 80. AN values have been empirically
determined. This leads to favor non-linear prediction on small
blocks and linear prediction on biggest ones.

b) Quantization of mean block values: Compression
techniques based on rate/distortion optimization try to achieve
the best compromise between bit rate and global image recon-
struction error based on PSNR or MSE. They do not take
account of human visual perception. It is experimentally well
established that the eye is much less sensitive to luminance
and color variations in contour areas (high visual frequencies
[22], [23]) than in uniform areas (low visual frequencies).
Ricco’s law shows that the visual perception threshold for a
luminance stimulus inside an area is inversely proportional to
the dimension of the area. In other words, visual degradations
generated by linear quantization of a block [24] are inversely
proportional to its size.

Our coding scheme integrates this principle, performing
adapted block size quantization. If qN represents the quantiza-
tion step for sized blocks to N , a relation such as qN = qN/2

2
between quantization steps for size N and N/2 leads to an
almost constant visual quality on the image as a whole.

Let ELRY (x, y) be the error prediction, ÊLRY (x, y) and
ẼLRY (x, y) respectively the quantized and dequantized errors

and qN the applied quantization step for blocks sized to N .
This produces the following:∣∣∣∣∣∣∣∣∣

ELRY (x, y) = LRY (x, y) − ˘LRY (x, y),

ÊLRY (x, y) = Q (ELRY (x, y)) = round
[

ELRY
(x,y)

qN

]
,

ẼLRY (x, y) = Q−1
(
ÊLRY (x, y)

)
= qN .ÊLRY (x, y),

˜LRY (x, y) = ˘LRY (x, y) + ẼLRY (x, y).

(8)

The whole block is then filled by the reconstructed value.
Quantization steps qN given in Table I correspond to

commonly used values introducing limited distortions.

TABLE I

SIZES AND QUANTIZATION STEPS

Size 16 × 16 8 × 8 4 × 4 2 × 2 1 × 1
qN 2 4 8 16 32

c) Mean value prediction of a color component block:
The main advantage of spatial coding is the possibility of
using correlations between the three components. Optimizing
the mean value prediction of the chromatic component block
takes advantage of the first transmitted LRY component. This
estimation is formalized below. Let GradMinY be

GradMinY (x, y) =

min
[∣∣L̃RY (x, y) − L̃RY (x, y − 1)

∣∣ ,∣∣L̃RY (x, y) − L̃RY (x − 1, y)
∣∣ ,∣∣∣L̃RY (x, y) − L̃RY (x,y−1)+L̃RY (x−1,y)

2

∣∣∣] .

Then we have

L̆RCr/b(x, y) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L̃RCr/b(x, y − 1)

if GradMinY (x, y)= |L̃RY (x, y) − L̃RY (x, y−1)|
L̃RCr/b(x − 1, y)

if GradMinY (x, y)= |L̃RY (x, y) − L̃RY (x−1, y)|
L̃RCr/b(x−1,y)+L̃RCr/b(x,y−1)

2
otherwise.

(9)

This prediction optimization gives a significant gain of ap-
proximately 20% compared to direct coding.

4) Post-processing: A reconstructed LR image presents
specific perceptible blocking effects, mainly in the luminance
component. These distortions are much less crucial than the
ones produced by methods based on the decomposition of
fixed block sizes such as JPEG, MPEG-2 or MPEG-4. These
standard methods are content-independent: uniform areas and
contours are processed indifferently. In our case, these block
effects are due to the non-uniform subsampling which never-
theless preserves the overall content information. This being
so, low-complexity post-processing adapted to the variable size
block representation can be applied, firstly to smooth uniform
areas and secondly to introduce interpolation on edges. Uni-
form area smoothing is achieved through a linear interpolation
adapted to image partitioning. The resultant images are of
excellent visual quality in uniform areas (blocks with sizes
ranging from 4× 4 to 16× 16). To achieve edge interpolation
(2 × 2 blocks), we have selected a directional interpolation
algorithm designed by D. Muresan [25], based on the optimal
adaptive recovery of missing values. This technique, developed
by Golomb [26], was initially applied by Shenoy and Parks
to interpolation [27]. Figure 3 shows post-processing used to
smooth uniform areas while preserving sharp edges [28].
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(a) Source image Lena 512×512
- 8 bpp

(b) Quadtree partition: 13888
blocks

(c) Low resolution reconstructed
image on P [16...2]: 0.2 bpp -
Compression ratio: 40, PSNR
30.9 dB

(d) Reconstructed image after
post-processing, PSNR 31.4 db

Fig. 3. Results for a partition P [16...2], Th = 30.

B. Spectral coder

1) General principles: Error image E (texture) resulting
from the flat coder representation is then compressed in a
frequency transform space by a second layer, called ”spectral
coder”. The support for E is considered to be the same as the
one used for Ī , allowing an a priori characterization of E, and
an adaptation of the coding scheme.

The coding technique is based on an adaptive block
size DCT approach where the size is provided by partition
P [Nmax...Nmin] from the flat coder (see Figure 4). Only AC
coefficients need to be transmitted. The first coder layer
already supplies mean block values, i.e. the DC coefficients.

Image
Original Flat Coder

FDCT
2x2 blocks

Quant. coef. AC

FDCT
16x16 blocks

Image
Texture

Spectral Coder

+-

P[2]

~LR

2x2 blocks

16x16 blocks
Quant. coef. AC

P[16]

Fig. 4. Principle of a spectral coder with a partition P [16...2].

The major steps in this process are:

• application of the DCT transform to adapt its support to
the block size,

• coefficient coding: intra-block zigzag scanning, then en-
coding non zero values through ”run length” (RLC),

(a) JPEG: partition P [8] (b) LAR: partition P [16...2]

Fig. 5. Energy distribution with fixed/variable size block.

including specific tags for maximal run length,
• the quantization matrix is adapted to block size.

By definition, the coding scheme is scalable, enabling sep-
arate bit stream transmission according to block sizes. Con-
sequently, it is possible to achieve semantic scalability, for
instance enhancing only contours, when sending the texture
information for Nmin sized blocks.

2) Energy of fixed/variable size blocks: By construction
(equation 6), blocks containing smooth texture present a
bounded error, mainly concentrated in the smallest blocks of
size Nmin × Nmin. Consequently, the mean energy of AC
coefficients for partition P [Nmax...Nmin[ remains lower than
the mean energy obtained with traditional approaches using
fixed block size (see Figure 5). Moreover, for all blocks in
partition P [Nmax...Nmin[, significant AC coefficients are mainly
concentrated in low frequencies. On the other hand, even
if the Nmin × Nmin blocks contain AC coefficients with a
high dynamic, a rough quantization can be applied without
introducing visual distortions.

3) AC Coefficient quantization: Initially we implemented
quantization matrices selected from JPEG, by truncating or
extrapolating their coefficients in accordance with block size.
This solution was not efficient enough, particularly for high
bit rate compression because JPEG quantization tables were
set up to process low energy and high energy blocks. Another
simple quantization law Q was implemented consisting of a
linear quantization based on two parameters QN and ΔQN . A
N × N block contains 2N − 1 diagonals. The kth diagonal
of a N ×N block is defined by the set of pixels {p(k− i, i)}
such as{

i ∈ {0, . . . , k} for k ∈ {0, . . . , N − 1}
i ∈ {k−(N−1), . . . , N−1} for k ∈ {N, . . . , 2N−2}.

For any AC coefficient lying on the kth diagonal, its quanti-
zation step is given by: Q = QN + k.ΔQN .

C. Results for the flat LAR codec

1) Image quality: It has been observed that the flat coder
is sufficient to encode efficiently chromatic components. A
compression format in 4:2:0, where Cr and Cb are subsampled
by a factor of 2 in both directions, is equivalent to a partition
P [2] for chromatic components in our approach. The extension
of this subsampling to a non-uniform partition introduces
almost imperceptible distortions.

Figure 6 presents images in which the two chromatic
components have been compressed using only the flat coder,
while the Y component is still the original.
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(a) Lena image, Cr/Cb 16 bpp (b) Block encoded Cr/Cb: 0.063 bpp
- PSNR Cr/Cb: 39.1 dB

(c) Baboon image, Cr/Cb 16 bpp (d) Block encoded Cr/Cb: 0.226 bpp
- PSNR Cr/Cb: 35.6 dB

Fig. 6. Reconstructed images with chrominance component encoding by flat coder (original Y).

Baboon

1

1,5

2

2,5

3

3,5

4

4,5

5

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8
Rate (bpp)

Q
ua

lit
y

Lena

1

1,5

2

2,5

3

3,5

4

4,5

5

0 0,1 0,2 0,3 0,4 0,5 0,6
Rate (bpp)

Q
ua

lit
y

Boats

1

1,5

2

2,5

3

3,5

4

4,5

5

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7
Rate (bpp)

Q
ua

lit
y

JPEG JPEG2000 LAR

Fig. 7. Comparative test results for visual perception.

From a general point of view, an evaluation of reconstructed
images based on bit rate/distortion criteria does not give
any indication of the quality of the reconstructed images.
Comparative tests of subjective quality have been carried out
at the IRRCyN laboratory [29].

This study compared three approaches, namely JPEG,
JPEG2000 (codec ImageXpress, simple profile) and LAR.
Tests were carried out on eight standard images (Lena, Ba-
boon, Boats, House, Pepper, Fruits, Airplane, Barbara) com-
pressed at different bit rates. To ensure a rigorous evaluation,
the environment was fully standardized in terms of distance
from the screen, luminosity, monitor calibration, ambient
lighting and color temperature. The elementary protocol for
image evaluation was as follows:

1) original image displayed for 6 seconds,
2) uniform grey for 2 seconds,
3) compressed image displayed for 6 seconds,
4) uniform grey for 2 seconds.
Each observer (fourteen in all) was required to grade the

observed quality on a scale of one (very bad quality) to five
(very good quality). The subjective perception of the LAR
method produced higher results in 7 out of 8 series. Figure 7
shows the results obtained for three of these series.

Besides the rate/quality features, these three coders do not
have the same characteristics in terms of scalability: in par-
ticular, the JPEG selected mode is non-progressive. To obtain
the JPEG test image set, each image has to be independently
computed, by varying the only parameters, namely the quan-
tization ones. JPEG2000, on the other hand, produces a full
embedded bitstream [30] in a single encoding pass. Associated
curves reflect continuous quality function. The LAR coder

provides an intermediate solution, with scalability achieved by
layers namely the spatial and spectral ones. The spectral layer
provides also additional levels of semantic scalability. As an
example, Figure 8 gives comparative visual results between
the three coders.

2) Algorithm complexity: The LAR codec described in this
section has low computational complexity. Indeed, block size
estimation based on a morphological gradient is implemented
with fast recursive erosion and dilation operations. The other
main stage of the flat LAR coder, namely the DPCM scheme,
is performed at block level. In fact, the flat coder is approx-
imately equivalent to a JPEG coder in terms of operations.
Thereby, full compression (flat + spectral) of a 512 × 512 Y
image is performed in 14 ms, running on a 2GHz pentium
IV. Finally, as chromatic components encoding requires only
the flat coder, the extension of this coding scheme to three
components does not multiply system complexity by three.

An alternative has been developed for both the flat and
spectral layers. It consists of an original pyramidal decom-
position with refined prediction. It supports the highest levels
of scalability [31] and enables a fully lossless encoding mode
[32]. This solution complies with the self-extracting region
representation presented in the next section.

III. SELF-EXTRACTING REGION REPRESENTATION AT

NO-COST

In most cases, region representations are available in a
decoder only when the coder first performs the segmentation
and then transmits the region shapes. To avoid the prohibitive
cost of this description, a suitable solution consists of perform-
ing the segmentation directly, in both the coder and decoder,
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(a) Bike source image, 24 bpp (b) JPEG encoding, 0.25 bpp, PSNR:
32.75 dB / 35.49 dB / 35.98 dB

(c) LAR encoding, 0.25 bpp, PSNR:
32.58 dB / 36.47 dB / 37.41 dB

(d) JPEG2000 encoding, 0.25 bpp,
PSNR: 32.48 dB / 39.47 dB / 40.21 dB

(e) LAR encoding, 0.50 bpp, PSNR:
35.63 dB / 37.73 dB / 38.77 dB

(f) JPEG2000 encoding, 0.50 bpp,
PSNR: 35.57 dB / 41.57 dB / 42.92 dB

Fig. 8. Visual quality comparison (PSNR Y/Cr/Cb).

using only a low bit rate compressed image. Once the region
representation is built, either the coder or decoder can select
regions of interest for enhancement to higher quality. This
process fits perfectly with a scalable coding scheme starting
with a low-quality image and progressively refining it through
successive compressed bitstreams.

A segmentation can be considered on a compressed im-
age whenever distortions introduced by the encoding stage
remain limited. At low bit rates, standard methods generate
degradations, in particular upon contours, preventing reliable
segmentation results. The flat LAR, based on a coherent
representation in terms of contours and uniform areas, avoids
such damaging degradation. In fact, our approach can be
compared to the split and merge segmentation technique based
on Quadtree and presented in [33]: the image is first split
into homogeneous blocks and then these blocks are merged to
build regions. In our case, we can consider that the image has
already been split by the flat coder. The segmentation process
is then reduced to merge operations. The direct rebuilding
of regions from block representation ensures compatibility
between shape and region content. This will be used later
for ROI enhancement and, in the next section, for chromatic
components compression at a region level.

This section deals only with grey-level images (one compo-
nent) and focusses mainly on the description of the proposed
segmentation algorithm based on adjacency graphs. The sec-
tion ends with the ROI coding issue.

A. Segmentation methods by adjacency graphs

1) Problematic: Let S =
{(x, y)|1 ≤ x ≤ Nx, 1 ≤ y ≤ Ny} be the spatial coordinates
of a pixel in a Nx × Ny image. The segmentation of the
image into K regions consists of finding a partition ΔK of
S such that:

S =

K⋃
k=1

RK
k , (10)

with RK
i ∩ RK

j = ∅, ∀(i, j) ∈ {1 . . . K}2 for i �= j.
Let SK be the set of regions in partition ΔK . Starting from

an initial partition ΔK0 (K0 ≤ Nx × Ny), the goal of the
merge process is to transform ΔK0 into a partition ΔK (K <
K0) complying with homogeneity criteria, through successive
region merging.

Partitioning the set of elementary regions SK0 into subsets
requires a relationship � on SK0 . The subsets then form
equivalence classes. In the following,

[
RK0

i

]
�K

denotes a

region of SK inside partition ΔK , initially associated with
region Ri of SK0 .

2) Adjacency graph: Regions must of course create spa-
tially connected sets. The adjacency relation is therefore a
key feature for segmentation. Let AK

i be the set of connected

regions at
[
RK0

i

]
�K

in partition ΔK .

The traditional data structure for partition representation is
the Region Adjacency graph (RAG) [34]. The RAGK of a
K-partition is defined as a undirected graph, GK = (V, E),
where V = {1, . . . K} is the set of nodes and E ⊂ V × V is
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the set of edges. Each region is represented by a node and the
edge (i, j) exists between two nodes (regions) RK

i , RK
j ∈ V 2

if the regions are adjacent.
3) Hierarchical classification and metric: Region merging

based on a homogeneity criterion can be considered as a hier-
archical classification problem, searching for the most similar
elements under a distance D, then measuring clusters between
classes with a given criterion. Hierarchical classification can
be represented by a tree structure. The hierarchy is said to
be indexed if, for each set H belonging to hierarchy H , the
inclusion relation H ⊂ H ′ involves D(H) ≤ D(H ′). A
given hierarchical layer of the tree corresponds to one merge
between a node and a set of connected nodes.

Classification methods generally use the same process, with
merge operations performed two by two and in accordance
with a minimal distance criterion [35], [36]. This criterion sim-
ply consists of merging the two regions presenting the minimal
distance at the current level of hierarchy. Consequently, such
an approach creates a binary partition tree for the indexed
hierarchical classification [4].

The usefulness of binary partition trees lies in their ability
to control exactly the final number of regions. However, this
advantage is relative because, to obtain a ”correct description”
of an image, the number of regions required depends on its
complexity.

The major weakness of this approach is mainly its com-
plexity. Even if fast algorithms exist to classify distance based
on stack files, these methods remain very time-consuming
[35]. Complexity increases when the ultrametric distance (the
new distance created by the merging of two regions) is based
on a new distance measurement calculated from the merged
regions. This new measurement is then used to calculate new
minimal distances.

B. Proposed segmentation method

The previous method is based on a minimal distance crite-
rion merging only two regions at a given level of the hierarchy.
To solve the complexity problem, we wanted to relax this
constraint by allowing several merges at the same time since
the distance between regions is less than a given threshold.

To avoid oversegmentation on contours, another suitable
characteristic would be as follows: for a given threshold,
small regions tend to merge more than large ones. For this
purpose, we have introduced the concept of weighted distance.
Therefore, contrary to common methods that use symmetrical
distances, our approach considers non-symmetrical distances
between two regions. Another improvement in the segmenta-
tion process relies on the definition of a new distance based
on joint mean/gradient criteria.

The segmentation process is performed at block level. In our
case ΔK0 is set to P [Nmax...Nmin] and SK0 corresponds to the
luminance blocks produced from the flat coder. As ΔK0 and
SK0 information is available in the decoder, the same segmen-
tation process is performed in both coder and decoder. In the
text below, we will show that only this information is required
to build a hierarchical region representation, justifying the term
“no-cost” representation.

1) Weighted distance: To produce a potential merge based
on region size, we have introduced the notion of weight-
ing distances according to the surface areas of regions. If
Cost

([
RK0

i

]
�K

,
[
RK0

j

]
�K

)
defines distance between two

classes, the weighted distance is given by

Cost′
([

RK0
i

]
�K

,
[
RK0

j

]
�K

)
=

Cost
([

RK0
i

]
�K

,
[
RK0

j

]
�K

)
log10

(
Surf

([
RK0

i

]
�K

))
,

(11)

where Surf
([

RK0
i

]
�K

)
designates the surface of the region[

RK0
i

]
�K

, namely the number of pixels that make up the
region. This leads to the following relation:

Surf
([

RK0
i

]
�K

)
> Surf

([
RK0

j

]
�K

)
⇔

Cost′
([
RK0

i

]
�K

,
[
RK0

j

]
�K

)
>Cost′

([
RK0

j

]
�K

,
[
RK0

i

]
�K

)
.

(12)

A direct effect of these non-symmetrical distances is that RAG
is no longer an undirected graph: between two connected
nodes there are two edges, each with a specific weight which
varies depending on the direction of the adjacency relation.

2) Mean and gradient weighted distances: A traditional
distance called CostM

([
RK0

i

]
�KN

,
[
RK0

j

]
�KN

)
is obtained

from the differences of the mean value of grey levels in regions

and is equal to

∣∣∣∣
[
RK0

i

]
�KN

−
[
RK0

j

]
�KN

∣∣∣∣, where
[
RK0

i

]
�KN

is the mean value of the class
[
RK0

i

]
�KN

.

The ultrametric distance is easily updated within the hierar-
chy, as only the following two characteristics have to remain
- surface area and the mean value of a region.

However, a region-merging criterion based solely on these
mean values leads to false contouring in uniform areas. To
compensate for this, a distance CostGr has been added to this
distance CostM .

The distance CostGr is based on the measurement of local
gradients between two adjacent regions. This local gradient is
computed at block level along shared borders, as the mean
of the differences in luminance blocks. Thus, estimating the
gradient requires consideration of adjacency, not only at the
current level of partition, but also at the local level of initial
partition ΔK0 . This is particularly simple for a Quadtree parti-
tion where common border length between two blocks simply
corresponds to the minimal size between these two blocks.
Obviously a gradient-based cost function is more difficult to
estimate than a mean-based cost function. Nevertheless, this
particular solution prevents the need for processing at pixel
level and operates only in the data structure associated with
the RAG.

The total distance can be expressed as a weighted sum
of two distances CostM and CostGr. Our experiments have
shown that the best results were obtained when the contri-
bution of each distance was approximately the same. So the
total distance has simply been fixed as the mean value between
distances CostM and CostGr.

3) Homogeneity criterion: For each scan of the graph,
the fast merge algorithm consists of taking, for each region,
the one closest to a given distance and merging them if the
distance is below a threshold: resulting region label is equal to
the lowest label of the merged regions. The process is iterated
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until there are no longer any possible merges. The schematic
algorithm is as follows:

K0: initial partition (blocks)
Nbmerging = 0; K = K0;
Do∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Nbmerging prev = Nbmerging ; i = 1;
Do∣∣∣∣∣∣∣∣∣∣∣∣

If
[
RK0

i

]
�K

∈ RAGK

Find
[
RK0

j

]
�K

∈ AK
i

such as Cost
([

RK0
i

]
�K

,
[
RK0

j

]
�K

)
≤

Cost
([

RK0
i

]
�K

,
[
RK0

l

]
�K

)
,∀

[
RK0

l

]
�K

∈ AK
i

End If
Increment i;

while i ≤ K0;

i = 1;
Do∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

If
[
RK0

i

]
�K

∈ RAGK

Compute Cost′
([

RK0
i

]
�K

,
[
RK0

j

]
�K

)
If Cost′

([
RK0

i

]
�K

,
[
RK0

j

]
�K

)
< ThCost

Merge
[
RK0

i

]
�K

and
[
RK0

j

]
�K

;

K = K − 1; Increment Nbmerging ;
End If;

End If;
Increment i;

while i ≤ K0;
while Nbmerging prev < Nbmerging ;

(13)

ThCost denotes the tuning parameter providing the level of
simplification for image representation.

4) Indexed Hierarchy: The proposed method does not cre-
ate an indexed hierarchy, because merged regions at a given
level of the tree can present higher distances than some merged
regions at upper levels. However, by iteratively increasing
thresholds for successive partitions, an indexed hierarchy is
obtained, with as many indexed levels as thresholds. Typically
three thresholds are used, but the choice of levels remains
unlimited.

5) Suppressing small components: The non-symmetrical
distances prevent over-segmentation on edge areas. Moreover,
relative stability is observed in the resulting number of regions,
while applying the same segmentation threshold to images
with very different complexity. This is because the more
complex the image, the more it will generate smaller regions
in its initial partition. At the same time, these regions will
have a stronger tendency to merge. Nevertheless, in a final
step, we use a traditional merge process for remaining small
regions. Its only parameter is a surface area value and, using
this parameter, each region will merge with the nearest one in
terms of distance.

6) Segmentation complexity: The next section will present
several examples of segmented images allowing a qualitative
evaluation of the method. From the complexity point of view,
the merge algorithm (see expression 13) converges rapidly
(generally, from 5 to 8 iterations). Calculating distance CostGr

accounts for almost one-half of total calculating time. The
implementation of the algorithm has not yet been optimized.
For a 512 × 512 image with 20000 blocks inside the initial
partition, segmentation takes approximately one second on a
PC at 2GHz while integrating the concept of gradient distance.

7) ROI coding of local texture: One direct application
for self-extracting region representation is found in a coding
scheme with local enhancement in regions of interest. From
the segmentation map simultaneously available in both coder
and decoder, either device can define its own ROI as a set
of regions. Thus, an ROI will simply be specified by the
labels of its regions. The definition of an ROI is generally
performed at the highest level of the segmentation hierarchy
(limited number of regions). For an ROI composed of n
regions, only n labels are required to fully describe it: this
represents a very small number of bytes. The method provides
both a semi-automatic tool for ROI selection, and probably
the best solution for its concise definition. Each region, and
consequently each ROI, consists of a set of blocks defined
in the initial partition. Then the enhancement of an ROI is
straightforward as it merely requires execution of the spectral
codec for the validated blocks, i.e. those inside the ROI. This
means that there is immediate, total compatibility between the
shape of the ROI and its coding content because the ROI acts
as a direct On/Off control for block-level enhancement.

IV. REPRESENTATION AND CODING OF COLOR IMAGES

The image representation and coding scheme described
above refer only to the luminance component. Turning to
the two chromatic components for color images, we aim
to improve either the segmentation process by using three
component information, or the encoding of the chromatic
components by using region representation.

A. Three component image segmentation

Color information produces more reliable segmentation,
even if it is more often performed in color space R:G:B
or L:a:b [37]. To improve the segmentation results in our
case, the most natural solution consists of compressing the
three components (Y/Cr/Cb) by the flat coder and sending
the corresponding information to the decoder. This means
that the segmentation process can be performed with all
three components. This operating mode has been verified and
provides excellent region descriptions.

B. Region-based coding of color images

Another possible solution in the compression process con-
sists of using the region representation provided by a sin-
gle component LRY to encode the two color components
at a region level. The process is implemented as follows:
the spatial layer first encodes luminance component Y and
the segmentation process produces a region representation in
both coder and decoder. The region-based compression of
chromatic components then begins by selecting one level of
the segmentation hierarchy and considering only one value
per region (mean value). For these values, adding a predictive
coding step followed by a quantizing step induces a final
cost of approximately 4 bits per region. This means that
the data volume in bytes for two chromatic components is
more or less equal to the number of regions. Figure 9 shows
examples of several reconstructed images with the original Y
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(a) Lena image, Cr/Cb 16 bpp (b) 300 regions (c) Region coded Cr+Cb: 0.009
bpp, PSNR: 35.79/35.15 dB

Fig. 9. Reconstructed picture with chromatic components encoded through region representation ThCost = 50.

(not encoded) and the Cr/Cb region level encoded. There is
a surprising quality/compression rate ratio for the chromatic
components and the corresponding coding cost is, at the very
most, equivalent to about one hundredth of a bit per pixel,
making it non-significant. It is also noticeable that visible
impairments are introduced by initial segmenting problems
when part of an object attaches itself to another region, or
more generally by the merging of several regions (Figure 9).
Chromatic components can then be simply improved. All that
is required is error encoding at block level through the flat
coder, on the whole image or locally inside a given ROI.

C. Segmentation supervised by chromatic control

To take advantage of both region compression for Cr/Cb
and the enhancement of quality segmentation using color
information, a ”chromatic control” principle is defined in an
advanced encoding process. The general idea is as follows.
The merge segmentation process based on the transmitted
low-resolution luminance image is still controlled by the
luminance criterion but is also now supervised in the coder
by an additional criterion involving chromatic components.
This supervises each merge attempt. Clearly, chromatic control
generates binary information for each merge attempt and this
has to be transmitted. However, since there is high correlation
between intensity and chromatic components within an object
in an image, the control symbols are of low entropy and the
process generates only a low cost. The corresponding color
image coding scheme is given in Figure 10.

1) Algorithm description: The merge algorithm or, to be
more precise, the search for the nearest region inside the Y
picture, remains unchanged. Let CtrChr

([
RK0

i

]
�K

)
be the

binary information transmitted for each merge attempt, and
CoefChrom a multiplicative coefficient applied to ThCost.
The merge criterion is then:

If Cost′
([

RK0
i

]
�K

,
[
RK0

j

]
�K

)
< ThCost∣∣∣∣∣∣∣∣∣∣∣∣∣

If CostC′r/bM

([
RK0

i

]
�K

,
[
RK0

j

]
�K

)
<CoefChrom.ThCost∣∣∣∣ CtrChr

([
RK0

i

]
�K

,
[
RK0

j

]
�K

)
= 1;

Merge
[
RK0

i

]
�K

and
[
RK0

j

]
�K

;

Else∣∣ CtrChr
([

RK0
i

]
�K

,
[
RK0

j

]
�K

)
= 0; Reject

[
RK0

j

]
�K

;

End If
End If

(14)

Chromatic control involves only the mean distance. This is
justified in our case as it provides efficient segmentation for
Cr/Cb region encoding while limiting algorithm complexity.

CoefChrom is applied as a multiplicative coefficient to
ThCost. ThCost maintains its role as an overall image sim-
plifying parameter while CoefChrom acts as the adapted
chromatic control. From a color point of view, it may be
considered as an adjustment cursor located between control
cost and segmentation quality:

• if CoefChrom → ∞, then all control values are 1, the
associated entropic cost is null, and segmentation only
operates from luminance,

• if CoefChrom = 1, then the threshold is the same for
the three components, and segmentation involves medium
chromatic control,

• if CoefChrom < 1, the segmentation process closely
resembles a direct process applied to the three compo-
nents, and the control cost increases with the entropy of
binary values.

In practical terms, a value of 0.5 gives excellent quality for
color segmentation. Even when high-level control is used, the
resulting cost remains very low as shown in Tables IV, III and
II.

Obviously a merge decision must be accompanied by a mark
for a rejected region, to ensure that this region does not remain
the best merge candidate based on luminance criterion. Thus,
a new graph has been introduced corresponding to a sub-
graph of RAG; it is called the Region Dissimilarity Graph
(RDG). Consequently, the associated set DK

i supplies the set
of rejected candidates for a given class.

2) Results and effects of segmentation parameters: To as-
sess the influence of parameters on ThCost and CoefChrom,
we have independently varied these two parameters to observe
both segmentation quality and coding cost for color images.
The size of ”monarch” picture is 768 × 512 pixels on 24
bits, the number of initial blocks is 23052 for a Y picture
compressed by a flat coder at 0.19 bpp, and the cost for
direct encoding by the same block layer of components Cr
and Cb is 0.125 bpp with an average PSNR of 39.8 dB.
Quantitative results are summarized in Tables II, III and IV,
and the resultant reconstructed segmented images are shown
in Figure 12. Other examples of segmentation are shown in
Figure 11.
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Fig. 11. Segmentation results on Baboon, Fruits and Lena images
(CoefChrom = 0.5).

Several remarks can be made about these results.

• Region chromatic components coding is highly com-
pressed,

• The influence of parameter CoefChrom on the resultant

TABLE II

EFFECT OF SEGMENTATION PARAMETERS ON “MONARCH”,

ThCost = 200.

ThCost Level 3 : ThCost = 200

CoefChrom 2.0 1.0 0.5

Nb of regions 30 109 318
Control (bpp) 0.0030 0.0170 0.0596
Cr/Cb regions (bpp) 0.0006 0.0029 0.0085
Total cost 0.0036 0.0200 0.0681contr+reg (bpp)
PSNR Cr/Cb (dB) 29.79 32.84 34.30
Cr/Cb err.

0.125 0.124 0.115flat cod. (bpp)
Cr/Cb total cost 0.129 0.144 0.183
blocks level (bpp)

TABLE III

EFFECT OF SEGMENTATION PARAMETERS ON “MONARCH”, ThCost = 75.

ThCost Level 3 : ThCost = 75

CoefChrom 2.0 1.0 0.5

Nb of regions 83 178 480
Control (bpp) 0.0026 0.0125 0.0480
Cr/Cb regions (bpp) 0.0019 0.0047 0.0128
Total cost 0.0045 0.0172 0.0615
contr+reg (bpp)
PSNR Cr/Cb (dB) 30.83 33.35 35.34
Cr/Cb err. 0.125 0.120 0.112flat cod. (bpp)
Cr/Cb total cost

0.130 0.135 0.174blocks level (bpp)

number of regions is greater when partitioning leads to
few regions, thereby increasing the control cost. On the
other hand, when a large number of regions are produced,
the control cost remains low compared to the cost for
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TABLE IV

EFFECT OF SEGMENTATION PARAMETERS ON “MONARCH”, ThCost = 25.

ThCost Level 3 : ThCost = 25

CoefChrom 2.0 1.0 0.5

Nb of regions 807 909 1345
Control (bpp) 0.0018 0.0071 0.0258
Cr/Cb regions (bpp) 0.0210 0.0241 0.0354
Total cost

0.0228 0.0212 0.0612contr+reg (bpp)
PSNR Cr/Cb (dB) 33.49 35.00 36.62
Cr/Cb err. 0.115 0.113 0.106
flat cod. (bpp)
Cr/Cb total cost 0.138 0.144 0.168
blocks level (bpp)

chromatic region coding, but there is always a significant
gain from a distortion point of view.

• When Chromatic value errors are encoded at block level
in partition, i.e. by the flat coder, the additional cost
introduced by region level coding is partially overcome
by the prediction gain in the block layer.

Figure 13 shows examples of reconstructed images with
the original Y component (not encoded) and the Cr/Cb
components encoded at region level for various bit rates. It
is clear that chromatic coding with a sufficient number of
regions enables reconstruction of acceptable quality in a low
bit rate situation, avoiding error encoding by the flat coder.
The relative stability of the resultant numbers of regions in
different images is also noticeable.

D. Mask constraint region coding

The chromatic control technique has been extended to
restrict segmentation to any binary shape of a given object.
Such a solution is mandatory, for example, when an ROI
is defined manually or automatically in the coder (VOP in
MPEG-4).

Mask constraint region coding is easily implemented in our
scheme. It first consists of integrating the binary mask image
into block size estimation in order to produce blocks that are
located on each side of the mask boundaries. Segmentation is
then performed with shape control preventing the merging of
a region located inside an object with a region outside it. The
object is finally defined by the set of regions within it. The
process is shown in Figure 14, with enhancement applied only
to the object.

V. CONCLUSION AND FUTURE PROSPECTS

This paper has presented an original color image coding
scheme combining scalable compression and image descrip-
tion at region level. The LAR coder consists of two succes-
sive encoding layers, both based on image partitioning into
variable-size blocks. The flat coder (first layer) efficiently
compresses images at low bit rates but preserves overall
information as well as contours. The second layer encodes
local texture with respect to the initial partition. This particular
structure enables a semantic scalable coding, able to separate
flat areas from contours.

In the context of progressive transmission of compressed
bitstreams, the principle of self-extracting region representa-
tion has been introduced for grey level images. It consists of a
segmentation process performed only from highly compressed
images in both the coder and the decoder. This solution
prevents costly transmission of the segmentation map to pro-
vide the region shapes. An original segmentation algorithm
has been then proposed, leading to an efficient hierarchical
region-based description of the image. A region is built as
a set of blocks among the initial partition. This means that
one important aspect of our approach is that it ensures full
compliance between the two layers in the image coding and
the shape of the regions. One direct issue is ROI coding: an
ROI is rapidly and easily defined as a set of regions in either
the coder or the decoder. Local image quality enhancement is
then achieved by allowing only for the selected blocks in the
second encoding layer.

The extension of the previous method to color images
has two direct purposes: to improve segmentation when
considering chromatic information, or to encode chromatic
components at region level. We have also proposed a mixed
solution combining these two advantages. The supervision of
the segmentation process, driven by the luminance compo-
nent in accordance with a chromatic consistency criterion,
is designed to obtain an accurate region description with
regard to color. These regions represent a reliable support for
encoding chromatic components at region level. Actually, this
method provides unequalled rates for chromatic components
compression. Moreover, mask constraint region coding is an
available extension of our scheme. Segmentation is then driven
by the additional shape information, so that the associated
object is made up of the set of regions within it.

Current work concerns the extension of this region-based
LAR method to highly scalable video coding. We also intend
to adapt the solution to the future video standard, i.e. MPEG-4
SVC.
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Fig. 12. Segmentation results based on parameters ThCost and CoefChrom on Monarch image.

(a) Original Cr+Cb: 16 bpp (b) Cr+Cb coded with flat coder: 0.125 bpp, com-
pression ratio τ = 128

(c) Cr+Cb coded with 1345 regions, ThCost =
25, CoefChrom = 0.5: 0.0612 bpp, τ = 261

(d) Cr+Cb coded with 807 regions, ThCost = 25,
CoefChrom = 2.0: 0.0228 bpp, τ = 702

(e) Cr+Cb coded with 178 regions, ThCost = 75,
CoefChrom = 1.0: 0.0172 bpp, τ = 930

(f) Cr+Cb coded with 30 regions, ThCost = 200,
CoefChrom = 2: 0.0036 bpp, τ = 4444

Fig. 13. Chromatic components encoding by region representation on Monarch image.

Binary mask

90 regions - 21 in ROI
Chrom. control: 0.014 bpp
Mask control: 0.003 bpp

LR: 0.17 bpp - quadtree: 0.03, Y: 0.11, 
Cr/Cb region encoded: 0.03 bpp

LR + enhanced ROI: 0.24 bpp

Fig. 14. ROI encoding on Akiyo with chromatic and object mask constraints.
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