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Abstract

This paper presents a parametric stiffness analysis of the Orthoglide. A compli-
ant modeling and a symbolic expression of the stiffness matrix are conducted. This
allows a simple systematic analysis of the influence of the geometric design param-
eters and to quickly identify the critical link parameters. Our symbolic model is
used to display the stiffest areas of the workspace for a specific machining task. Our
approach can be applied to any parallel manipulator for which stiffness is a critical
issue.
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1 Introduction

Usually, parallel manipulators are claimed to offer good stiffness and accuracy prop-
erties, as well as good dynamic performances. This makes them attractive for in-
novative machine-tool structures for high speed machining [1,2,3]. When a parallel
manipulator is intended to become a Parallel Kinematic Machine (PKM), stiffness
becomes a very important issue in its design [4,5,6]. This paper presents a parametric
stiffness analysis of the Orthoglide, a 3-axis translational PKM prototype developed
at IRCCyN [7].

Finite Element Methods (FEM) are mandatory to carry out the final design of a
PKM [8]. However, a comprehensive three-dimensional FEM analysis may prove
difficult, since one must repeatedly re-mesh the PKM structure to determine stiff-
ness performances in the whole workspace, which is time consuming. Simpler and
faster methods are needed at a pre-design stage. One of the first efficient stiffness
analysis methods for parallel mechanisms was based on a kinetostatic modeling [9].
According to this approach, the stiffness of parallel mechanisms is mapped onto
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their workspace by taking into account the compliance of the actuated joints only.
It is used and complemented in [10] to show the influence of the compliance of the
prismatic joints as well as the torsional compliance of the links on the stiffness of the
3-UPU mechanism assembled for translation [11]. It is shown that the compliance
of the links reduces the kinetostatic performances in a large part of the workspace,
compared to the stiffness model based on rigid links. Furthermore, the mobile plat-
form can undergo small rotational motions because of the links’ compliance, which
departs from the expected translational kinematic behavior.

The analysis presented in [9] is not appropriate for PKM whose legs, unlike hexapods,
are subject to bending [12]. This problem is solved in [13], where a stiffness estima-
tion of a tripod-based overconstrained PKM is proposed. According to this approach,
the PKM structure is decomposed into two substructures, one for the mechanism
and another for the frame. One stiffness model is derived for each substructure. The
superposition principle allows one to join the two models in order to derive the stiff-
ness model of the whole structure. The influence of the geometrical parameters on
the stiffness is also briefly studied. An interesting aspect of this method is that it
can deal with overconstrained structures. However this stiffness model is not gen-
eral enough. A more general model was proposed in [14]. The method is based on a
flexible-link lumped parameter model that replaces the compliance of the links by
localized virtual joints and rigid links. The latter approach differs from that pre-
sented in [13] on two main points, namely: (i) the modeling of the link compliances
and (ii) the more general nature of the equations allowing the computation of the
stiffness model.

In this paper, the method proposed in [14] is applied to the Orthoglide for a paramet-
ric stiffness analysis. A symbolic expression of the stiffness matrix is obtained which
allows a global analysis of the influence of the Orthoglide’s critical design parameters.
No numerical computations are conducted until graphical results are generated. This
paper is organized as follows: first the Orthoglide is presented. Then, the compliant
model is introduced and the stiffness model is computed. Analytical expressions of
the components of the stiffness matrix are obtained at the isotropic configuration,
clearly showing the influence of each geometrical parameter. Finally, given a specific
simulated machining task, it is shown how the general stiffness expressions allow one
to easily display the stiffest subvolume of the Orthoglide’s workspace.

2 Compliant modeling of the Orthoglide

2.1 Kinematic architecture of the Orthoglide

The Orthoglide is a translational 3-axis PKM prototype designed for machining
applications. The mobile platform is connected to three orthogonal linear drives
through three identical RPaR serial chains (Fig.1). Here, R stands for a revolute
joint and Pa for a parallelogram-based joint. The Orthoglide moves in the Cartesian
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Figure 1. The Orthoglide (a) Kinematic architecture and (b) Prototype

workspace while maintaining a fixed orientation. The Orthoglide was optimized for
a prescribed workspace with prescribed kinetostatic performances [15]. Its kinematic
analysis, design and optimization are fully described in [15].

2.2 Parameters for compliant modeling

The parameters used for the compliant modeling of the Orthoglide are presented on
Fig. 2 and in Tab. 1. They correspond to a “beam-like” modeling of the Orthoglide
legs’ links. The foot has been designed to prevent each parallelogram from colliding
with the corresponding linear motion guide. Three revolute joints are added, one
on each leg (see Fig. 2), because the stiffness method used does not work with an
overconstrained Orthoglide. This does not change the kinematics.
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Figure 2. Geometric parameters of the leg
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Figure 3. General model for a flexible link
(a) Flexible beam (b) Virtual rigid beam

2.3 Compliant modeling with flexible links

In the lumped model described in [14], the leg links are considered as flexible beams
and are replaced by rigid beams mounted on revolute joints plus torsional springs
located at the joints (Fig. 3). Deriving the relationship between the force F and the
deformation y(x), the local torsional stiffness k can be computed:

3



EIy′′(x) = F (L − x)
...

EIy(L)= FL3/3

→ θ ≃ y(L)/L= FL2/3EI

k = FL/θ

→ k = 3EI/L

If the Orthoglide leg actuator is locked, then one leg can withstand one force F and
one torque T (Fig. 4), which are transmitted along the parallelogram bars and the
foot. For a compliant modeling that uses virtual joints, it is important to understand
how external forces are transmitted, and what their effect on the leg links is. Eight

Actuator
locked

F T

T
F

T

F

Figure 4. Forces transmitted in a leg

virtual joints are modeled along the Orthoglide leg. They are described in Tab. 2.
The determination of all the virtual joint stiffnesses is not detailed here for brevity.
However, they are derived based on the same principles used to calculate the torsional
stiffness above.

Parameter Description Values

Lf Foot length, see Fig.2 150mm

hf Foot section sides 26mm

bf Foot section sides 16mm

If1
=

bf .h3

f

12 Foot section moment of inertia 1

If2
=

hf .b3
f

12 Foot section moment of inertia 2

If0
= hf .bf (h2

f + b2
f )/12 Foot section polar quadratic moment

λ Angle between foot axis and actuated joint axis,
see Fig.2

45◦

d Distance between parallelogram bars, see Fig.2 80mm

LB Parallelogram bar length, see Fig.2 310mm

SB Parallelogram bar cross-section area 144mm2

β Rotation angle of the parallelogram

e See Fig.2

Table 1
Geometric parameters of the Orthoglide and dimensions of the protptype
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The actuated joint is assumed to be much stiffer than the virtual joints. The leg links
compliances modeled in Tab. 2 were selected beforehand as the most significant ones.
Indeed, selecting only the most significant compliances plays an important role in
reducing the computing time required to derive the stiffness matrix symbolically
(Par. 3). The kinematic joints’ compliances are not taken into account because our
purpose is to determine the links compliance influence only. Angle β is a parameter
that depends on the Cartesian coordinates.

3 Symbolic derivation of the stiffness matrix

In this section, the derivation of the Orthoglide stiffness matrix — based on the
virtual joints described in the previous section — is conducted with a stiffness model
that was fully described in [14]. Therefore, the description of the model will only be
summarized here. Fig. 5 represents the lumped model of a leg with flexible links. The
Jacobian matrix Ji of the ith leg of the Orthoglide is obtained from the Denavit-
Hartenberg parameters of the ith leg with flexible links. This matrix maps all leg
joint rates (including the virtual joints) into the generalized velocity of the platform,
i.e.,

Jiθ̇i = t where θ̇
T

i = [ θ̇i1 θ̇i2 θ̇i3 θ̇i4 θ̇i5 θ̇i6 θ̇i7 θ̇i8 θ̇i9 θ̇i10 θ̇i11
]

Virtual joints i Figure Virtual joints i Figure

k1 = kact

translational
stiffness of the
prismatic
actuator

F
k5 =

EIf2

Lf

Foot section
rotation due to
torque T

Lf

T

k2 =
3EIf1

Lf

Foot bending
due to force F

Lf

F
k8 = 2ESB

LB

Parallelogram
bars tension/
compression due
to force F

Lb

F

k3 =
2EIf2

Lf

Foot bending
due to torque T

T

Lf

k10 = ESBd2 cos(β)
2LB

Differential
tension of
parallelogram bars
due to torque T

Lb

T

k4 =
GIfO

Lf

Foot torsion
due to torque T

T

Lf

Table 2
Virtual joints modeling
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is the vector containing the 11 actuated, passive and virtual joint rates of leg i and
t is the twist of the platform. The Pa joint parameterization imposes θ̇i7 = −θ̇i7bis

,
which makes θ̇i7 and θ̇i7bis

dependent. θ̇i7 is chosen to model the circular translational
motion, and finally Ji is written as

Ji =







0, ei2 , ei3 , ei4 , ei5 , ei6

ei1 , ei2 × ri2, ei3 × ri3 , ei4 × ri4, ei5 × ri5 , ei6 × ri6 ,

0, 0, ei9 , ei10 , ei11

ei7 × ri7 − ei7bis
× ri7bis

, ei8 × ri8 , ei9 × ri9 , ei10 × ri10 , ei11 × ri11







in which eij is the unit vector along joint j of leg i and rij is the vector connecting
joint j of leg i to the platform reference point. Therefore the Jacobian matrix of the
Orthoglide can be written as:

J =















J1 0 0

0 J2 0

0 0 J3















One then has:

Jθ̇ = Rt with R = [I6 I6 I6]
T and t =











ω

v











(1)

θ̇ being the vector of the 33 joint rates, that is θ̇ = [θ̇
T

1 θ̇
T

2 θ̇
T

3 ]T . I6 stands for the
6×6 identity matrix. Unactuated joints are then eliminated by writing the geometric
conditions that constrain the two independent closed-loop kinematic chains of the
Orthoglide kinematic structure:

J1θ̇1 = J2θ̇2 and J1θ̇1 = J3θ̇3 (2)
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From (2), one can obtain Aθ̇
′ = Bθ̇

′′ (see [14] for details), where θ̇
′

is the vector of

joint rates without passive joints and θ̇
′′

is the vector of joint rates with only passive
joints. Hence:

θ̇
′′

= B−1Aθ̇
′

Then a matrix V is obtained (see [14] for details) such that:

θ̇ = Vθ̇
′

(3)

From (1) and (3) one can obtain:

JVθ̇
′

= Rt (4)

As matrix R represents a system of 18 compatible linear equations in 6 unknowns,
one can use the least-square solution to obtain an exact solution from (4):

t = (RTR)−1RTJVθ̇
′

Now let J′ be represented as J′ = (RTR)−1RTJV. Then one has:

t = J′
θ̇
′

(5)

According to the principle of virtual work, one has:

τ
T
θ̇
′

= wTt (6)

where τ is the vector of forces and torques applied at each actuated or virtual joint
and w is the external wrench applied at the end effector, point P. Gravitational
forces are neglected. By substituting (5) in (6), one can obtain:

τ = J′Tw (7)

The forces and displacements of each actuated or virtual joint can be related by
Hooke’s law, that is for the whole structure one has:

τ = KJ∆θ
′ (8)

with KJ =















A 0 0

0 A 0

0 0 A















and A = diag
(

kact,
3EIf1

Lf
,

2EIf2

Lf
,

GIfO

Lf
,

Ehfbf

Lf
,

EIf2

Lf
, 2ESB

LB
, ESBd2 cos(β)

LB

)

.

7



∆θ
′ only includes the actuated and virtual joints, that is by equating (7) with (8):

KJ∆θ
′ = J′Tw

Hence ∆θ
′ = K−1

J J′Tw. Pre-multiplying both sides by J′ one obtains:

J′∆θ
′ = J′K−1

J J′Tw (9)

Substituting (5) into (9), one obtains:

d = J′K−1
J J′Tw

with d = t∆t. Finally the compliance matrix κ is obtained as follows:

κ = J′KJ
−1J′T

In the Orthoglide case we obtain:

κ =



































κ11 0 0 κ14 κ15 κ16

0 κ11 0 κ24 κ25 κ26

0 0 κ11 κ34 κ35 κ36

κ14 κ24 κ34 κ44 κ45 κ46

κ15 κ25 κ35 κ45 κ55 κ56

κ16 κ26 κ36 κ46 κ56 κ66



































(10)

And the Cartesian stiffness matrix is:

K = κ
−1 = (J′KJ

−1J′T )
−1

4 Parametric stiffness analysis at the isotropic configuration

In this section, we study the influence of the geometric parameters on the stiffness
of the Orthoglide at the isotropic configuration, since this configuration provides a
good evaluation of the overall performances [15]. Another interest is that the stiffness
matrix is then diagonal which makes it easier to analyze.

4.1 Simple symbolic expressions

At the isotropic configuration, κ is diagonal and the symbolic expressions of the
components κij are simple. This is convenient because it is then possible to invert
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κ within a Maple worksheet and then analyze the symbolic expressions of the com-
ponents of matrix K. We have:

K = diag
(

Ka, Ka, Ka, Kb, Kb, Kb

)

where Ka is the torsional stiffness and Kb is the translational stiffness.

Ka =
E

2LB

SBd2 +
2Lp(78b2

f
+cos2 λ(45h2

f
−33b2

f
))

5hf b3
f
(b2

f
+h2

f
)

Kb =
1

1
kact

+ LB

2SBE
+

4L3

f
sin2 λ

Eh3

f
bf

(11)

Analyzing the Orthoglide’s stiffness at the isotropic configuration allows us to ma-
nipulate simple and meaningful symbolic expressions that are easy to interpret: this
is the purpose of the following subsections.

4.2 Qualitative analysis of Ka and Kb

By inspection of the symbolic expression of Ka a few observations can be made:

• Young’s modulus E appears at the numerator, which makes its influence easy to
understand: when E increases, Ka increases, which is in accordance with intuition;

• The term 2LB

SBd2 shows the influence of virtual joint 10 (differential tension of par-
allelogram bars). When the bar length LB increases or when SB decreases, Ka

decreases which is also in accordance with intuition. Ka decreases when d in-
creases, which is a less intuitive result 1 ;

• The expression
2Lp(78b2

f
+cos2 λ(45h2

f
−33b2

f
))

5hf b3
f
(b2

f
+h2

f
)

shows the influence of virtual joints 3, 4

and 5 (foot bending and torsion). Ka decreases when Lf increases, which is not
surprising. The degrees of hf and bf in the numerator and denominator of Ka tend
to prove that the rotational stiffness increases with hf or bf , which is in accordance
with intuition. The influence of λ depends on the sign of (45h2

f − 33b2
f).

Similarly, by inspection of the symbolic expression of Kb one notes:

• The term 1
kact

shows the influence of the prismatic actuator; it is not surprising that

the translational stiffness increases when kact increases. The term LB

2SBE
shows the

influence of virtual joint 8 (parallelogram bars tension/compression): Kb increases
when SB or E increase, and decreases when LB increases, which is in accordance
with intuition;

• The term
4L3

f
sin2 λ

Eh3

f
bf

shows the influence of the foot related virtual joints (ten-

sion/compression and bending): when λ increases, with λ ∈ [0 π/2] 2 , then sin2 λ

1 Note that should d increase above a certain limit, other links compliances previously
ruled out as less significant may then need to be taken into account.
2 If λ ≥ π/2 the foot does not anymore “move away” the parallelogram from the prismatic

9



increases and consequently Kb decreases. According to intuition, increasing Lf

decreases Kb, while increasing hf or bf increases Kb.

4.3 Quantitative analysis of Ka and Kb

As we have seen, the qualitative analysis of Ka and Kb provides interesting infor-
mation on the influence of the geometrical parameters on the rotational and trans-
lational stiffnesses. Quantitative information about the parameters’ influence on the
Orthoglide’s stiffness can also be obtained from the symbolic expressions by study-
ing the consequences of a - 100/+200% variation of the parameters on Ka and Kb. A
variation of -100% corresponds to a zero parameter, while +200% corresponds to an
extreme increase. Such a wide range of variation gives a global picture of the param-
eter’s influence. The initial values of the parameters used for the computation are
given in Tab. 1 and correspond to the dimensions of the prototype of the Orthoglide
developed at IRCCyN. Parameters kact and E are considered constant because our
analysis is restricted to geometrical parameters only. We choose E = 7.104 Nmm−2

(aluminum) and kact = 105 Nmm−1. The stiffness of the actuated prismatic joint
depends on many parameters (mechanical components, electrical motor power, con-
trol). The chosen value is a commonly used one, however it is still much stiffer than
the virtual joints, which is in accordance with our assumptions.

In order to clearly show the relative influence of each parameter, we are going to
superimpose several curves on a same chart. Each curve represents a ratio Ka(t)

Kainitial

(resp. Kb(t)
Kbinitial

), in which t is the percentage of variation of one of the parameters

(Lf , bf , hf , λ, LB, SB or d), while the other parameters remain at their initial value,
and Kainitial

(resp. Kbinitial
) is the initial value of the torsional (resp. translational)

stiffness when the parameters are at their initial value. Obviously, all Ka(t)
Kainitial

(resp.
Kb(t)

Kbinitial

) curves cross when t = 0%.

For example let us replace each parameter in the symbolic expression of Ka by its
initial value except Lf . A one variable analytical expression Ka(Lf ) is then obtained:

Ka(Lf ) =
0.56 × 109

Lf

In this expression, let us replace Lf by Lfinitial
(1 + t). A new expression Ka(t) is

obtained:

Ka(t) =
0.56 × 109

150(1 + t)

where t represents the percentage of variation of Lf . Ka(t = 0) gives the value for
Kainitial

. We assume that t varies from −100% to +200% as explained above. All

actuated joint, which is one of its main functions (i.e. avoiding collisions between the
actuator and the parallelogram); furthermore we must have λ ≥ 0 to avoid interference
between the foot and the actuated prismatic joint.

10



Ka(t)/Kainitial
curves obtained for all parameters are superimposed on a same chart

so as to compare the parameters relative influence.

• Quantitative analysis of Ka

Figure 6 shows the influence of the parameters on Ka. LB, d and SB have little
influence compared to Lf , hf , bf and λ.

Lf

bf

hf

λ

K
b
(t
)/
K
b
in
it
ia
l

t  variation (%)

K
a
(t
)/
K
a
in
it
ia
l

t  variation (%)

LB

SB
d

Ka(t)/Kainitial
: most influent parameters Ka(t)/Kainitial

: least influent parameters

Figure 6. Influence of the parameters on Ka

Ka(λ) is a maximum (52% increase) when λ increases by 100%, i.e. when λ = π/2.
This result can also be obtained through observation of the symbolic expression of
Ka: indeed, the initial values of hf and bf (hf = 26, bf = 16) make (45h2

f − 33b2
f)

positive. Therefore, the denominator of Ka will be a minimum when λ = π/2.
Moreover, when λ = π/2, the torque T that is transmitted by the leg no longer has
a component along the axis of virtual joints 3 and 5 of the foot (Fig. 7). This is a
physical explanation for Ka(λ) being maximum when λ = π/2.

λ=

T

π
2

z3

z4

z5

Figure 7. Only virtual joints 4 of the foot is affected by T when λ = π/2

Furthermore, Ka increases more with bf than with hf for a same variation. Conse-
quently, for a given foot weight increase, the torsional stiffness benefits more from
an increase of bf than from an increase of hf . From a designer’s point of view, this is
valuable information. If the foot length Lf increases, Ka decreases since in this case
the foot and torque related stiffnesses k3, k4, k6 decrease. Conversely if Lf decreases
then Ka increases tremendously.

Finally, we observe that when d, SB, hf or bf tend towards zero, then so does Ka.
This can be deduced from the symbolic expression of Ka, but also tends to a physical
interpretation: if the foot or the parallelogram bars tend to have a very small cross

11



section, or if the parallelogram tends not to be able to support any torque (when d
tends towards zero), then the whole mechanism loses its torsional stiffness. Though
hf and λ play important roles in Ka, the two most important parameters are Lf

and bf .

• Quantitative analysis of Kb

Figure 8 shows the influence of the geometrical parameters on Kb. We can observe
that LB and SB have little influence compared to Lf , hf , bf and λ. Kb(λ) is a
minimum (48% decrease) for a 100% increase of λ, i.e. when λ = π/2. This conclusion
can be reached through the observation of the symbolic expression of Kb: indeed,
we can see that the denominator of Kb will be a maximum when λ = π/2.

Lf

bf

hf

λ

K
b
(t
)/
K
b
in
it
ia
l

t  variation (%)

K
b
(t
)/
K
b
in
it
ia
l

t  variation (%)

LB

SB

Kb(t)/Kbinitial
: most influent parameters Kb(t)/Kbinitial

: least influent parameters

Figure 8. Influence of the parameters on Kb

From the symbolic expression of Kb, one can also infer that if λ decreases, then the
denominator will decrease and consequently Kb will increase. This was the opposite
case for Ka. For a 100% decrease of λ, Kb will be a maximum: 14.4 times its initial
value. This has a physical interpretation: when λ = 0, the virtual joint 2 is no longer
affected by the force F that is transmitted by the leg (Fig. 9).

F

λ=0

z3

z4
z5

z2

Figure 9. Only virtual joint 3, 4 and 5 of the foot is affected by F when λ = 0

Kb is also a maximum (14.4 times its initial value) when Lf = 0. However, the
physical interpretation is not the same. When Lf = 0, the stiffness of the virtual
joints 2, 3, 4 and 5 tends toward +∞ which makes them behave like infinitely stiff
virtual joints, making the mechanism as a whole much more stiffer. One can also
observe that Kb increases more with hf than with bf . This can be concluded from
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the symbolic expression of Kb. Indeed, from Eq. 11, we have:

Kb(hf , bf ) =
1

0.00002537698413 + 96.42857143
h3

f
bf

Consequently, a 10% increase of hf will make the denominator of Kb decrease faster
than a 10% increase of bf . Finally, if SB, hf or bf tend towards zero, then Kb also
tends towards zero. This can be concluded from the symbolic expression of Kb, but
it also corresponds to the physical phenomenon that was explained for Ka.

The most important parameters for Kb are λ, Lf and hf . Parameters λ and Lf have
a similar influence: when they decrease, Kb increases, and conversely. Parameter hf

has the opposite influence: when hf increases, Kb increases, and conversely. The
symbolic expressions of Kb as univariate functions of these three parameters are of
great help at a pre-design stage to analyze the translational stiffness.

4.4 Conclusions

The analysis of the symbolic expressions of Ka and Kb at the isotropic configuration
allows us to plot the most influent parameters in this configuration, and the way their
variation influences the mechanism’s stiffness. A global analysis must be conducted
in the whole workspace to determine the global influence of the parameters. This was
achieved in [17], with the determination of a line along which the stiffness analysis
results hold for the whole workspace. Such a procedure is required to simplify the
global stiffness analysis. However, as mentioned above in the case of the Orthoglide,
analyzing the stiffness at the isotropic configuration can give a good overview of the
performances.

The use of simple symbolic expressions allows us to deduce helpful results in order
to improve the Orthoglide’s stiffness. However these modifications must be made
while taking into account the technological constraints (collisions, interferences) of
the prototype initial architecture. For example, if one sets λ to zero in order to
increase Kb, then the offset between kinematic joints L6 and L1 disappears. However,
this offset aims at preventing the parallelogram from colliding with the prismatic
actuated joint. Therefore it is not possible to set Lf or λ to zero. It is better, either to
only lower them and check how much the reachable workspace is then reduced, or to
increase hf , or both. Conversely, if one wants to increase the collision-free workspace
by increasing Lf while keeping Kb constant, studying the simultaneous influence on
the stiffness of Lf and hf or Lf and bf can then prove useful. One problem will be the
foot weight increase that will require more powerful actuators to keep the dynamic
performances at a similar level. We consider the issue of simultaneous variation of
two parameters in the following section.
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5 Influence of the simultaneous variation of two parameters

In this section, we study the influence on Ka and Kb of the simultaneous variation of
two parameters Lf and hf , or Lf and bf , at the isotropic configuration. Analytical
expressions of Ka and Kb as functions of two variables are deduced from Eq. 11.
Figures 10 and 11 show plots of Ka/Kainitial

and Kb/Kbinitial
when thf

(resp. tbf
) —

which is the relative variation of hf (resp. bf ) — and tLf
— which is the relative

variation of Lf — increase from 0 to 100% or 200% when relevant.

tLfthf tbf tLf

Ka(thf
, tLf

)/Kainitial
Ka(tbf

, tLf
)/Kainitial

Figure 10. Ka/Kainitial
as a function of hf , bf and Lf

Figure 10 shows that increasing hf or bf allows us to compensate for the decrease
of Ka occurring when Lf increases. For example if Lf increases by 50%, hf must
increase by 34% or bf must increase by 16% for Ka to remain at its initial value
Kainitial

. Regarding the dynamic performances (i.e. the foot weight increase), it will
be more interesting to increase bf by 16%.

thf tLf tbf tLf

Kb(thf
, tLf

)/Kbinitial
Kb(tbf

, tLf
)/Kbinitial

Figure 11. Kb/Kbinitial
as a function of hf , bf and Lf

On Fig. 11, one can also observe that increasing hf or bf allows us to easily com-
pensate for the decrease of Kb occurring when Lf increases. If Lf increases by 50%,
hf must increase by 48% or bf must increase by 245% for Kb to remain at its initial
value Kbinitial

. Therefore, it seems more judicious to increase hf rather than bf in
order to compensate for the stiffness loss due to the increase of Lf , because the foot
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weight increase is lower. This is a multi-criteria multi-parameters (Lf , hf , bf ) op-
timization problem: increasing the collision-free workspace while keeping the same
stiffness, with a minimum foot weight increase. Integrating the symbolic expressions
of the stiffness in multicriteria optimization loops could be an interesting extension
of our work.

6 Analysis of the tool displacements induced by external forces

Another interesting use of the symbolic expressions of κij is to observe the tool
compliant displacements when simulated cutting forces are applied on the tool. By
multiplying these forces with the compliance matrix and analyzing the evolution of
the compliant displacements obtained, as a function of the Cartesian coordinates,
the stiffest zones of the mechanism’s workspace can be determined. Thus, the global
stiffness behavior is taken into account. As the simulated cutting forces correspond
to a particular manufacturing operation, the stiffest zone will be specific to the
application.The equations with which the stiffness matrix is computed are built
using the principle of virtual work. Simulated cutting forces will then correspond to
quasi-static conditions, which may not be realistic in some cases. In this section, a
simple groove milling operation is simulated, which can be considered as a quasi-
static operation.

The symbolic derivation of the stiffness matrix K using the method described above
was achieved with Maple software on a 1 GHz, 256MB RAM PC. The computation of
K did not end within one day, which means that the components of matrix K, i.e. the
Kij, are too large to be manipulated within a Maple worksheet. However, computing
the components of the compliance matrix κ, i.e. the κij , took 12 hours only. This
resulted in symbolic expressions that remained relatively easy to manipulate within
a Maple worksheet. Therefore we choose to analyze the Orthoglide’s stiffness through
the analysis of the symbolic expressions of the κij: the main idea is that when the
κij increase, then the Orthoglide’s stiffness decreases.

6.1 Compliant displacements

Vector w is the static wrench of the cutting forces applied on the tool during the
groove milling operation along the y axis. We have:

w =











T

F











with F = [Fx Fy Fz]
T and T = [−Fyhz Fxhz 0]T (Fig.12)

The compliant displacements of the mobile platform are computed as follows:
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d = κw with d =











Ω

V











, Ω = [ωx ωy ωz]
T and V = [vx vy vz]

T

The compliant displacements at the tool tip are then:

dtool =











Ω

V + Ω × h
z
z











6.2 Determination of the stiffest working zones for a given task

With the symbolic expressions of the tool displacement, one can evaluate the tracking
error along the groove path. Using the symbolic expression of the tracking error, a
stiffness favorable working zone, i.e. a working zone in which the tracking error is low,
can be determined. To simulate cutting forces during the groove milling operation,
a High Speed Machining (HSM) simulation software is used [18]. Depending on the
manufacturing conditions, this software provides the average cutting forces. The
manufacturing conditions chosen for the groove milling are:

• Spindle rate is N=20,000tr.min−1;
• Feed rate Vf=40m.min−1;
• Cutting thickness is 5.10−3mm;
• The tool is a ball head of Φ = 10 mm diameter with 2 steel blocks;
• Manufactured material is a common steel alloy with chromium and molybdenum.

The simulated cutting forces correspond to a HSM context, which is what PKM
are Fx = 215N , Fy = −10N , Fz = −25N . The above data allows us to simulate
the tool compliant displacement along a groove path along the y axis (see Fig. 12).
hz=100 mm corresponds to the tool mounted on the prototype of the Orthoglide.
The tracking error is the projection of the tool compliant displacement in the plane
that is perpendicular to the path. We specify one groove path with its coordinates
(xt, zt), and one point P with (xt, yP , zt) coordinates located along this trajectory.

The tracking error at point P is defined as δP =
√

v2
x + v2

z .

The paths are defined in a cube centered at the intersection of the prismatic joints,
xt and zt vary within the interval [−73.65; 126.35]. We noticed that the maximum
tracking errors were always located at one of the path ends. Figure 13 shows the

z
y

x

P

Fz
Fy Fx

hz

Figure 12. Component forces of groove milling operation
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tracking error along a groove defined with the coordinates (xt, zt) = (0, 0). We
can see that the maximum error occurs when y = −73.65, i.e. at one of the path
ends. Depending on the coordinates (xt, zt), the maximal tracking error is located
at y = −73.65 or at y = 126.35. Figure 6.2 shows the maximum tracking error for
each groove path defined by its coordinates (xt, zt). The results clearly show a zone
in which the maximum tracking error is low. In this working zone, x varies within
the interval [-73.65;0] and z varies within [50;126.35]. It is difficult to find a physical
explanation for this result. It depends on the cutting forces applied, their magnitude
and direction, and on each virtual joint reaction to the wrench transmitted by the
leg, which depends on the Cartesian coordinates. The information obtained, i.e., the
lowest tracking error working zone, is, however, of great interest for the end-user in
order to place manufacturing paths in the workspace achieving the lowest tracking
error due to structural compliance.
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Figure 13. Tracking error along the groove
path defined by x = z = 0
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y axis groove paths

Another use of the symbolic expressions of the compliant displacements would be
the optimization of the geometric parameters to minimize the tracking error for
specific cutting forces. This would mean optimizing a PKM design for a specific
task. Our opinion is that it is better to look for global stiffness improvement as we
did in the previous section. This way, optimization brings stiffness improvement to all
potential manufacturing tasks. However, given a PKM design, it is very interesting
to determine the stiffest working zones for specific tasks, as we did in this section.

7 Comparison with a Finite Element Stiffness Model

By comparing our stiffness model with a Finite Element Model (FEM) of the Or-
thoglide prototype, we will now show that our rigid link model is reasonably realistic
[17]. A FEM was implemented in LARAMA (LAboratoire de Recherches en Automa-
tique et Mécanique Avancée, Clermont-Ferrand, France) as part of a collaboration
within project ROBEA, a research program sponsored by CNRS (Centre National
de la Recherche Scientifique). Due to space limitations, the modeling assumptions of
the FEM are not detailed here. The FEM allows to calculate the variation range of
diagonal elements Kt1,1, Kt2,2, Kt3,3 of translational stiffness matrix Kt, based on
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a CAD model of the Orthoglide implemented in the finite element software ANSYS
[19]. The results obtained are presented in Tab. 3 (deterministic approximations and
variation ranges) at the isotropic configuration. Our objective is to compare these
results to those obtained with our Rigid Link Compliant Model (RLCM). Stiffnesses
are expressed in N.mm−1. The numbers obtained from the FEM are comparable

Kt1,1 Kt2,2 Kt3,3

FEM RLCM FEM RLCM FEM RLCM

Isotropic configuration 3500 2715 3500/4000 2715 3500/4000 2715

Table 3
Comparison of the RLCM and the FEM

to those obtained from the RLCM. Even if deterministic values are not equal, this
comparison shows that the RLCM of the Orthoglide is reliable enough for the pur-
poses of pre-design. However, a more detailed FEM analysis and experimental results
based on the Orthoglide prototype would be necessary to validate our RLCM. The
main advantage of the RLCM is that it allows to spot critical links within the whole
workspace much more easily and quickly than the FEM, because of the symbolic
expressions of stiffness matrix elements. The RLCM is easier to use than a FEM at
a pre-design stage. Once the RLCM is proved reliable enough, one can use it either
to test alternative designs or choose manufacturing paths reducing the tool compli-
ant displacement (tracking error or tracking rotational and translational compliant
displacements) caused by structural compliance. Unfortunately, the FEM did not
provide any results for the rotational compliance. This would be an interesting com-
parison since it would allow a verification of whether or not the torsional stiffness
of the mobile platform obtained with the RLCM is lower compared to that of the
overconstrained Orthoglide prototype described in [15,16] and modeled in the FEM.

8 Conclusions

In this paper, a parametric stiffness analysis of a 3-axis PKM prototype, the Or-
thoglide, was conducted. First, a compliant model of the Orthoglide was obtained,
then a method for parallel manipulators stiffness analysis was applied, and the stiff-
ness matrix elements were computed symbolically in the isotropic configuration. In
this configuration, the influence of the geometric design parameters on the rotational
and translational stiffnesses was studied through qualitative and quantitative anal-
ysis. The analysis provided relevant and precise information for stiffness-oriented
optimization of the Orthoglide.Then, the analysis of the simultaneous influence on
the stiffness of two variable parameters was conducted. Such an analysis is very
useful to take into account both stiffness and another performance criterion such
as workspace volume or the maximal acceleration of the mobile platform. Finally,
we used the symbolic expressions of the components of the compliance matrix to
determine the stiffest working zone for a specific manufacturing task. The stiffest
zone depends on the task and applied cutting forces. The parametric stiffness anal-
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ysis shows that simple symbolic expressions carefully built and interpreted provide
much information on the stiffness features of parallel manipulators, which can be
relevantly used for their design and optimization.
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