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A Statistical Approach to the Matching of Local
Features

Julien Rabin, Julie Delon, and Yann Gousseau

Abstract—This paper focuses on the matching of local features between images. Given a set of query descriptors and a database of

candidate descriptors, the goal is to decide which ones should be matched. This is a crucial issue, since the matching procedure is

often a preliminary step for object detection or image matching. In practice, this matching step is often reduced to a specific threshold

on the Euclidean distance to the nearest neighbor.

Our first contribution is a robust distance between descriptors, relying on the adaptation of the Earth Mover’s Distance to circular

histograms. It is shown that this distance outperforms classical distances for comparing SIFT-like descriptors, while its time complexity

remains reasonable. Our second contribution is a statistical framework for the matching procedure, which yields validation thresholds

automatically adapted to the complexity of each query descriptor and to the diversity and size of the database. The method makes it

possible to detect multiple occurrences, as well as to deal with situations where the target is not present. Its performances are tested

through various experiments on a large image database.

Index Terms—Statistical analysis of matching processes, local feature matching, dissimilarity measure, Earth Mover’s Distance, a

contrario.

✦

1 INTRODUCTION

THE matching of common structures between digital
images is an important issue for a large number of

computer vision applications: finding correspondences
between images of the same scene [1], image classifi-
cation [2], image and video retrieval [3], [4], [5], im-
age stitching [6], [7], stereo vision [8], [9], object de-
tection [10] and recognition [11], [12], and 3D object
modeling [13]. One of the most classical approaches
to this problem consists in using local features around
interest points or regions. The locality of the features
ensures robustness to occlusion or context change, while
the coding of the features should be invariant or ro-
bust to various geometrical and radiometrical changes.
Numerous local approaches have been proposed in the
literature, the exhaustive study of which is beyond the
scope of the present paper. In two relatively recent com-
parative studies [14], [15], the SIFT descriptor [11] has
proven to be one of the most robust and invariant rep-
resentation methods. As a result, the problem of finding
correspondences between images often boils down to the
matching of such local features. Nevertheless, whereas
the extraction and representation of local descriptors has
been thoroughly studied (see e.g. the references in [14]),
their matching has not been the object of a systematic
study. In practice, the matching step relies on simple but
somehow limited procedures, as detailed further in the
paper.

In many applications, this matching procedure is yet a
crucial preliminary step. It can for instance be used as a
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pre-processing stage (before resorting to some geometric
consistency algorithm like RANSAC [5], [6], [16] or
some mean square error minimization [11]) for finding
common objects between images. The matching step is
at the core of many recent methods relying on image
similarities, see e.g. [3], [5], [6], [7], [8], [9], [11], [12], [13],
[16], [17], [18], [19], [20]. At this point, it is worth noticing
that this matching step can serve to localize common
structures between images, but also to decide whether a
structure is present. In fact, this is a crucial issue since
a computer vision system has to deal with situations
where the object of interest is not present. In such cases,
it is of great interest to be able to limit the number of false
matches, especially in the case of very large databases,
see e.g. [3].

Now, as pointed out in [15],

Important aspects of matching are metrics and
criteria to decide whether two features should be
associated, and data structures and algorithms for
matching efficiently.

Indeed, matching features involves two important steps:

• the choice of a dissimilarity measure between fea-
tures;

• the choice of a matching criterion, used to decide
which matches are valid.

The dissimilarity measure should provide relevant
comparisons between features and should be robust
enough to cope with small variations of these features.
The matching criterion should adapt itself to the com-
plexity and diversity of the features. These two aspects
(dissimilarity measure and matching criterion) are at the
core of this paper. Our first contribution is a dissimilarity
measure relying on the adaptation of the Earth Mover’s
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Distance [21] to circular histograms. This measure is
proven to behave well with respect to histogram quanti-
zation and to outperform classical bin-to-bin distances in
the framework of local features comparison. Our second
contribution is a matching criterion relying on a statisti-
cal framework. This criterion provides thresholds which
adapt to the complexity of the features and allow multi-
ple detections over a database, while controlling the total
number of matches. In particular, this criterion deals
well with situations where we do not know whether the
object of interest is present, as will be demonstrated by
a specific experimental protocol. Conference proceedings
versions of this work have appeared in [22] (dissimilarity
measure) and [23] (matching criterion).

1.1 Related works

Dissimilarity measure

As previously mentioned, the choice of a metric is fun-
damental for the matching of local features. Indeed, the
matching criteria that are commonly used (as detailed
in the next paragraph) directly rest on a thresholding of
the similarity score.

The most classical local features, such as SIFT [11],
reduce the geometrical information to one-dimensional
circular histograms of local orientations. Usually, “bin-
to-bin” distances, such as the Euclidean distance [3], [5],
[11], [14], [15] or the χ2 distance [10], [19], are considered
as the simplest way to quickly measure the dissimilarity
between such histograms at a low computational cost.
The term “bin-to-bin” refers to the fact that, to compare
two histograms, each bin of the first histogram is com-
pared exclusively to the bin of same rank of the second
histogram. These distances are obviously not robust to
histogram quantization. Therefore, one has to choose the
number of bins to reach a good compromise between
discriminative power and robustness of the comparison.
For instance, the number of bins of gradient orientation
histograms for original SIFTs [11] is limited to N = 8.

Bin-to-bin distances are intrinsically limited since they
only compare the intensity of modes and not their
relative positions. This limitation can be overcome by
using cross-bin distances. A classical cross-bin distance,
the Mahalanobis distance, requires the computation of
the covariance matrix of descriptors over a training
database. This distance has been used in the context
of local features comparison, but without meaningful
gain: as pointed out in [15], although the Mahalanobis
distance is more general than the Euclidean distance, most
relative performances were not modified. Other cross-bin
distances, such as the so-called quadratic distance [24]
or the diffusion distance [25], rely on smoothings of
the histograms. These methods necessitate non-trivial
parameter adjustments, such as the choice of a kernel
or the scale of smoothings.

The Earth Mover’s Distance, proposed by Rubner et
al. [21] and often used to compare image signatures, is
probably one of the most elegant and robust ways of

comparing histograms. However, it is computationally
far more expensive than bin-to-bin distances when the
dimension of histograms becomes strictly greater than
one. A nice variant of this distance has been proposed
by Ling et al. [26] as a way to speed up the comparison.
This distance is applied in [26] to the comparison of local
features. However, this measure remains too expensive
to be applied to the matching problem when the number
of features increases (as will be detailed in Section 2) and
does not explicitely address the circularity of orientation
histograms.

These limitations led us to propose a new dissimilarity
measure, called CEMD, specifically designed to compare
one-dimensional circular histograms (see Section 2). This
measure, based on the Earth Mover’s Distance, is com-
putationally efficient and deals with circular histograms,
such as orientation histograms in SIFT descriptors [11]
for instance. In the experimental section, CEMD is used
for the comparison of SIFT descriptors. This distance
is shown to be more robust to quantization effects and
small geometric perturbations than bin-to-bin distances.

Matching criterion

In order to introduce the most classical criteria that are
used to match local descriptors, it is useful to give some
vocabulary and notations that will be used throughout
this paper. We consider a situation where one seeks for
correspondences between NQ query descriptors {ai} and a
database of NC candidate descriptors {bj}. We assume that
distances have been computed between each ai and each
bj . This step can sometimes be replaced by approximate
allocation algorithms, as in [27]. Two different criteria are
used in practice to validate matches, as detailed in [14],
[15], both relying on user-selected thresholds. Ideally,
these thresholds should be set automatically and should
depend on both the query and candidate descriptors.

The simplest matching criterion, that we call DT (Dis-
tance Threshold), relies on a global threshold on dis-
tances. That is, each query ai is simply matched with
candidates {bj} that are at a distance d(ai, bj) smaller
than the threshold. Usually, matches are restricted to the
nearest neighbor [7], [17] for each query descriptor, in
order to limit multiple false detections that often affect
some query descriptors. We will refer to this criterion
as NN-DT (Nearest Neighbor Distance Threshold). Three
main drawbacks inherent to this approach restrict its
use in practice. First, the nearest neighbor restriction
limits the number of correct matches so that, in some
applications, one prefers to select the K nearest neigh-
bors: K = 3 in [12], K = 4 in [6] for image stitching,
and K between 5 and 10 in [5]. The price to pay is
then a higher proportion of false matches. Secondly, the
nearest neighbor restriction is also problematic in cases
where there are multiple occurrences of the structure of
interest, for instance when the target object is present
more than once in the database (see for instance [28]),
when dealing with objects having repetitive parts, such
as buildings (this issue is studied in [20]), or when the
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interest point detector yields spurious repetitions of the
structure to be coded. Lastly, the great variability of
distances between descriptors from images to images (as
shown in Section 4) makes it particularly difficult to set
the right threshold for a particular application.

In order to reduce the variability of the chosen thresh-
old, Lowe [11] introduces another criterion by comparing
the distances between ai and its closest and second-
closest neighbors respectively. If the ratio between the
two distances is below a threshold r, the match with
the closest neighbor is validated. This popular criterion,
that we call NN-DR (Nearest Neighbor Distance Ratio),
benefits from its simplicity and the fact that it is by
far more robust than a simple threshold on distances.
However, the choice of the “optimal” threshold r is
strongly dependent on both the application and the
database: r = 0.8 in [11], r = 0.6 in [3], r = 0.95
in [16], or r between 0.56 and 0.7 in [15] for instance. In
practice, the NN-DR criterion behaves very well (and in
particular significantly better than the NN-DT criterion as
shown in [15]) when the target to be matched is present
exactly once in the candidate database. Indeed, in this
case, it makes sense to assume that the distance to the
nearest neighbor is small compared to distances to other
candidates and in particular to the second nearest neigh-
bor. Now, the reason why this criterion should work
when the structure of interest is not present is less clear.
This situation will be considered in the experimental
section. It is of great practical importance, because in
real situations a computer vision system relying on the
matching of local features has to deal with situations
when the target is present as well as with situations
when the target is missing. Moreover, this criterion is
by nature limited to the nearest neighbor, and, as NN-
DT, may fail in the case where the structures of interest
appear more than once, as already mentioned.

Several variants of these matching criteria have been
proposed. In [29], it is suggested to adapt the NN-DR cri-
terion by averaging the distance to the second neighbor
over several images for panorama stitching. In [9], a vari-
ant of NN-DT consists in keeping only matches (a, b) for
which a is also the nearest neighbor of b. More specific
matching criteria with geometric constraints have been
proposed (see e.g. [13], [18], [20], [30]), but to the best of
our knowledge, no generic procedure for the matching
of local, SIFT-like features has been proposed beyond the
aforementioned thresholds on distances.

In this paper, we propose in Section 3 an alterna-
tive matching criterion relying on adaptive thresholds.
Matches between the query and candidate descriptors
are validated by rejecting casual matches, that is matches
that can be produced by chance. Similar ideas are present
in works dealing with the statistical analysis of object
recognition processes [31], [32]. Specifically, we resort
to an a contrario methodology, first introduced in [33]
and then applied, among other things, to shape match-
ing [34]. This approach provides thresholds on the dis-
similarity measure that adapt to the query and candidate

descriptors. This matching procedure also allows mul-
tiple detections over a database, while controlling the
total number of matches, in particular in cases where
the structure of interest is not present.

1.2 Outline

In Section 2, we introduce the new transportation dis-
tance for comparing local descriptors, CEMD. Then in
Section 3, the matching criterion relying on the a contrario
methodology is introduced. In Section 4 the advan-
tages of both contributions over classical approaches are
demonstrated on an image database through the use of
several experimental protocols.

2 DISSIMILARITY MEASURE

In this section, we introduce a dissimilarity measure
designed to compare circular histograms (such as ori-
entation histograms). This measure is a generalization
of the classical Earth Mover’s Distance to the circular
case. It can also be seen as an application of the statistical
Mallows distance to probability distributions on the unit
circle. We then explain how to apply this measure to
compare local, SIFT-like features.

2.1 Circular Earth Mover’s Distance (CEMD)

Consider two discrete circular1 histograms f =
(f [i])i=1...N and g = (g[i])i=1...N , sampled on N bins.
Both histograms are supposed to be normalized, that is,
∑N

i=1 f [i] =
∑N

i=1 g[i] = 1.
The Earth Mover’s Distance between f and g is then

defined in [21] as

EMD(f, g) := min
(αi,j)∈M

N
∑

i=1

N
∑

j=1

αi,jc(i, j), (1)

where

M = {(αi,j); αi,j ≥ 0,
∑

j

αi,j = f [i],
∑

i

αi,j = g[j]}

and where c(., .) is a ground distance between bins. For
circular histograms, this ground distance can naturally
be chosen as

c(i, j) =
1

N
min(|i − j|, N − |i − j|), ∀(i, j) ∈ {1, . . . N}2.

The distance EMD(f, g) can be understood as a trans-
portation cost. The value c(i, j) measures the cost of
moving a unit mass from bin i to bin j, and αi,j is the
amount of mass carried from i to j. This definition can be
used in any dimension. However the computation of the
Earth Mover’s Distance involves heavy computations
when the dimension of histograms becomes larger than
two. Note that this distance is known by statisticians

1. Circular means that the first and the last bins of the histogram are
neighbors.
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as the Mallows distance between probability distribu-
tions [35], and is also one of the Monge-Kantorovich
distances, defined in the mass transportation theory [36].

Now, for non-circular and one-dimensional his-
tograms, when the ground distance is chosen as c(i, j) =
1
N
|i − j|, it is well known (see for instance chapter 2

in [36] for a proof) that EMD(f, g) equals ‖F − G‖1 =
1
N

∑N
i=1 |F [i] − G[i]|, where F and G are the cumulative

histograms of f and g, defined as

F [i] =

i
∑

j=1

f [j], G[i] =

i
∑

j=1

g[j]. (2)

The generalization of this formula to circular histograms
is not straightforward. Indeed, if f is a circular his-
togram, one can build as many cumulative histograms
as there are bins in f , since any bin can be chosen as a
starting point to cumulate the histogram. However, if f
and g are circular and one-dimensional, it can be shown2

that the (circular) Earth Mover’s Distance between them
equals

CEMD(f, g) = min
µ∈[−1,1]

‖F − G − µ‖1 (3)

=
1

N
min

µ∈[−1,1]

∑

i

|F [i] − G[i] − µ|, (4)

where F and G are defined as in Formula 2. Observe
that this minimum is very easy to compute. Indeed, the
function µ 7→

∑

i |F [i]−G[i]−µ| reaches its minimum at a
(not necessarily unique) median of the values F [i]−G[i],
i = 1, . . . N . It follows that

CEMD(f, g) =
1

N
min

k∈{1,...N}

∑

i

|F [i] − G[i] − F [k] + G[k]|.

(5)

Observe also that Formula 3 remains valid if F and G
are replaced by two cumulative histograms of f and g
starting from another bin. Any starting bin can be chosen
and the result does not depend on this choice.

We now establish an alternative formula for
CEMD(f, g). For this, we define Fk and Gk, the
cumulative histograms of f and g starting at the kth

quantization bin. For each k in {1, . . . , N}

Fk[i] =



























i
∑

j=k

f [j] if i ≥ k

N
∑

j=k

f [j] +

i
∑

j=1

f [j] if i < k

.

The definition is similar for Gk by replacing f by g. Then,
Fk[i] = F [i] − F [k − 1] if i ≥ k (with the convention
F [0] = 0) and Fk[i] = F [i] + 1 − F [k − 1] if i < k. Thus,

2. The proof is provided for the reviewers as supplementary mate-
rial.

by observing that F [0] − G[0] = F [N ] − G[N ] = 0,

CEMD (f, g)

=
1

N
min

k∈{1,...N}

X

i

|F [i] − G[i] − F [k] + G[k]|

=
1

N
min

k∈{1,...N}

X

i

|F [i] − G[i] − F [k − 1] + G[k − 1]|

=
1

N
min

k∈{1,...N}

X

i

|Fk[i] − Gk[i]|.

Finally,

CEMD(f, g) = min
k∈{1,...N}

‖Fk − Gk‖1. (6)

This means that the distance CEMD(f, g) is also the
minimum in k of the L1 distance between Fk and Gk,
the cumulative histograms of f and g starting at the kth

quantization bin.

2.2 Comparing SIFT-like features

In this section, we first briefly recall the classical way to
compare SIFT-like features by using bin-to-bin distances,
and then explain how to apply the CEMD introduced
in the previous section to the comparison of such local
features.

Let us recall [11], [14] that a SIFT-like descriptor
a consists of M circular histograms am of gradient
orientations, weighted by the gradient magnitude and
computed for different subregions of a location grid
around an interest point. Thus, the comparison of two
descriptors a and b boils down to the comparison of
circular histograms am and bm. We suppose here that
each histogram is quantized to N bins and that the whole
descriptor a = (a1, . . . , aM ) is normalized to have unit
weight [11].

2.2.1 Bin-to-bin distances

The most classical way to compare SIFT-like descriptors
is simply to use the Lp distance as in Formula (7),
usually with p = 2 (Euclidean distance) [11]. Apply-
ing this distance requires a global Lp normalization of
descriptors a and b. Other bin-to-bin distances that are
used to compare local features include the χ2 distance, as
in [10] or the Jeffrey divergence. The definitions of these
distances in the framework of SIFT-like descriptors are
recalled in Formula (8) and (9) respectively.

DLp(a, b) :=

(

M
∑

m=1

N
∑

i=1

| am[i] − bm[i] |
p

)

1

p

(7)

Dχ2(a, b) :=

M
∑

m=1

N
∑

i=1

(am[i] − bm[i])2

am[i] + bm[i]
(8)

DJ(a, b) :=

M
∑

m=1

N
∑

i=1

am[i] log

(

2 am[i]

am[i] + bm[i]

)

+ bm[i] log

(

2 bm[i]

am[i] + bm[i]

)

(9)
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2.2.2 Applying CEMD to local features

Two descriptors a = (a1, . . . , aM ) and b = (b1, . . . , bM )
are compared by applying CEMD to each pair of his-
tograms am and bm using Formula (3) or (6). Theo-
retically, this distance should be applied to normalized
histograms. In practice, however, it is by far more robust
to globally normalize SIFT-like descriptors to unit weight
(as shown in [11]) than to normalize each histogram
am individually. This means that we need to compute
distances between histograms of different weights. Now,
Formula (6) and (3) are not equivalent anymore in this
case. We use preferably Formula (6) which is always
independent of the choice of the origin of histograms,
that is, of the choice of the orientation values stored in
the first bin. This is not the case of Formula (3) when it
is used to compare non-normalized histograms.

Next, in order to combine distances corresponding to
different subregions (different values of m) we choose to
use the following distance between two descriptors,

DCEMD(a, b) :=

M
∑

m=1

CEMD(am, bm). (10)

Other dissimilarity measures could have been chosen
(such as

∑

CEMD(am, bm)2 or max CEMD(am, bm)). How-
ever, we observed experimentally that the distance (10)
is more robust.

2.2.3 Implementation and computational cost

Let Xk[i] = Fk[i] − Gk[i] be the difference of the cumu-
lative histograms computed in Formula (3). Xk can be
written as a function of X1,

Xk[i] =







X1[i] if k = 1
X1[i] − X1[k − 1] if i ≥ k > 1
X1[i] − X1[k − 1] + X1[N ] if i < k.

Consequently, computing CEMD does not require to
compute the k different cumulative histograms Fk and
Gk in the circular case. Note that X1[N ] is equal to
zero when the two histograms f and g have the same
weight. Compared to the classical L1 bin-to-bin distance,
the only required extra computation is the minimization
over k of ‖Xk‖1, the L1 norm of Xk. It follows that the
complexity of the CEMD computation is approximately
N times the complexity of the Euclidean distance com-
putation, where N is the number of bins of each local
histogram (N = 8 for classical SIFT).

Observe that in [26], Ling and Okada present an inter-
esting variant of the Earth Mover’s Distance, called EMD-
L1, designed to speed up the computation of EMD in the
multidimensional case. Among their experiments, they
show an application of their distance to SIFT descriptors,
considered as three dimensional histograms (coding both
orientation and localization). Nevertheless, this distance
remains too expensive to be applied to large descriptors
databases: EMD-L1 is empirically 720 times slower than
computing the Euclidean distance, according to Table VII
in [26]. As an order of magnitude, performing the same

evaluation as the one to be done in Section 4 with EMD-
L1 would require more than one year on a standard 2.5
GHz computer.

3 A contrario MATCHING CRITERION

In this section, we introduce a generic way to compute
matching thresholds in the framework of local, SIFT-
like descriptors. Recall that we consider NQ query de-
scriptors {ai} and NC candidate descriptors {bj}. The
question is then: for each ai, to which bj (if any) should
it be matched ? To answer this question, we rely on the
general principle of a contrario methods and fix matching
thresholds that ensure the rejection of casual matches.

3.1 A contrario methodology

The general principles of a contrario methods have first
been proposed by Desolneux et al. [33] in order to detect
alignments. The same principles have then been applied
to a wide variety of computer vision tasks, such as
the detection of contrasted edges, good continuation,
vanishing points, rigid transforms or motion, see the
recent monograph [37]. The main idea, presented in a
generic manner in [38], is to detect groups of features
that are very unlikely under the hypothesis that these
features are independent. This hypothesis is called the null
hypothesis in this paper. Loosely speaking, the detected
groups are those that cannot result from chance. The
second important point of a contrario methods is that
to compute the degree of unlikeliness of a group, one
predicts the expected number of groups under the null
hypothesis, and not the (generally intractable) probabil-
ity of existence of the group, see [37].

Recently, this methodology has been adapted to the
problem of shape matching [34]. Again, the main idea is
to reject matches that could have occurred by chance.
Similar ideas are present in studies dealing with the
statistical analysis of matching processes [31], [32], [39],
in particular when predicting the number of false alarms.
One difference is that these studies are more elabo-
rated, but also less generic, because the analysis of the
matching process relies on some shape model. When
using a contrario approaches, one only needs a distance
and an independence assumption (the null hypothesis)
to validate matches. In the next two paragraphs, this
methodology is adapted to the matching of SIFT-like
features.

3.2 The null hypothesis

Recall that each descriptor ai is made of M orien-
tation histograms, ai = (ai

1, . . . , a
i
M ). In order to de-

fine the null hypothesis, we assume that the distance
between two descriptors ai and b can be written as
D(ai, b) =

∑M
m=1 d(ai

m, bm). Observe that this is a very
mild assumption, satisfied for classical bin-to-bin dis-
tances (Euclidean, Manhattan or χ2), as well as for the
Circular Earth Mover’s Distance, CEMD, introduced in
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this paper. Given a random descriptor b, we then define
the following null hypothesis,
Hi

0: “d(ai
m, bm) (m ∈ {1, . . . M}) are mutually indepen-

dent random variables”.

Under this hypothesis, the probability that the distance
between ai and b is smaller than a given threshold δ is

P
(

D(ai, b) ≤ δ |Hi
0

)

=

∫ δ

−∞

M
∗

m=1
pi

m(x) dx , (11)

where ∗ denotes the convolution product and pi
m the

probability density function of the random variable
d(ai

m, bm). The validity of a match will then be decided
by thresholding this probability, as explained in the next
section. This in turn yields thresholds on distances that
depend on both ai and the observed distribution of
candidate descriptors.

In order to numerically compute the probability given
by Equation (11), we need to estimate the probability
density functions pi

m. For this, we simply use histograms
of realizations of the distances over the database. That
is, for each i ∈ {1, . . . NQ} and each m ∈ {1, . . . M},
the law pi

m is empirically estimated over the database
{b1, . . . , bNC}.

3.3 Meaningful matches

Let us consider two descriptors ai and bj at distance
δ = D(ai, bj). We decide to match these descriptors
as soon as P(D(ai, b) ≤ δ |Hi

0) is small enough. It
therefore remains to automatically fix a threshold on
this probability. Following the general approach of a
contrario methods, we choose the threshold in order to
control the average number of false detections. Since
NQNC comparisons are performed when searching for
matches between descriptors {ai} and {bj}, we define
the following threshold on distances, for a given ǫ > 0,

δi(ε) = arg max
δ

{

P
(

D(ai, b) ≤ δ |Hi
0

)

≤
ε

NQNC

}

.

(12)
A match between ai and some bj is then said to be ε-
meaningful if D(ai, bj) ≤ δi(ε).

The reason behind this choice is the following: when
testing NQ queries against NC candidates satisfying the null
hypotheses, the expected number of ε-meaningful matches is
smaller than ε.

This result is a simple consequence of the linearity
of the mathematical expectation. Observe that it would
have been much more difficult to bound the probability
of false detections, since distances between different
descriptors are not necessarily independent. A more in-
depth analysis of this interesting aspect can be found
in [37]. Let us also remark that this choice of δ is
actually one of the most simple approaches to multiple
testing, and is known in the statistical community as a
Bonferonni correction [40]. In practice, for a fixed ǫ and
for each descriptor ai we perform the following steps

1) Probability density functions pi
m of distances

dm(ai, bj) are estimated by histograms of these
distances when bj spans the database;

2) δ 7→ P
(

D(ai, b) ≤ δ |Hi
0

)

is computed using For-
mula (11) ;

3) the threshold δi(ε) is automatically computed in
function of the value ε using Formula (12) ;

4) for each descriptor bj (j = 1, . . . , NC), ai is matched
with bj if D(ai, bj) ≤ δi(ε).

From now on, we will refer to this matching criterion
as AC. Let us now comment on this criterion. First, one
needs to fix the value of ε, that in turn yields a threshold
on distances. Since this value corresponds to an expected
number of false detections, we claim that it is much
simpler to set than a threshold on distances. Indeed, it is
well known that distances between descriptors vary very
much from one descriptor to another or one image to
another, as will be illustrated in the experimental section.
Now, the threshold on distances computed thanks to step
3) above depends on both the particular descriptor at
hand, ai, and the database (e.g. an image, or a set of
images) against which it is matched. This is due both
to the learning of marginals pi

m and to the fact that
the number of descriptors is taken into account by For-
mula (12). In particular, one can hope that the proposed
matching criterion works well over a relatively large
image database and in the presence of distractors, as will
be confirmed by the experimental section. Last, observe
also that the number of matches is not restricted to the
nearest neighbor, even though one has the possibility to
add such a restriction depending on the application.

4 EXPERIMENTAL RESULTS

In this section, several experiments are performed on an
image database to illustrate the performances of both
the dissimilarity measure and the matching criterion
introduced in this paper. These experiments are per-
formed on images modified by synthetic degradations
(affine transformation and noise). We introduce several
experimental protocols to illustrate the behavior of the
proposed matching method in cases of single or multiple
occurences of the structure of interest, as well as in the
presence of distractors.

4.1 Experimental setup

4.1.1 Local features

In this paragraph, we briefly describe the local features
that are used for the experiments. These are obtained in
a very similar way to the original SIFTs [11]. We first
use a combined Laplace and Harris keypoint detector,
which provides a set of interest points together with their
corresponding scales. We then build a histogram of gra-
dient orientations in a neighborhood of each point and
segment it to obtain reference directions. A set of M = 9
circular histograms of gradient orientations with respect
to the reference direction is then built. These histograms
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correspond to 9 disjoint regions of the neighborhood of
each interest point. We use a polar localization grid as
in [14] (a central region, 4 regions on a first ring and 4
more regions on a second ring).

4.1.2 Experimental protocols

We use several protocols to illustrate the versatility of the
proposed matching criterion: ability to detect a structure
when we know it is present exactly once, ability to
decide whether the structure is present or not and ability
to detect multiple occurrences.

The first protocol, called A → A′, consists in matching
keypoints between an image A and an image A′ obtained
by applying an affine transform and adding Gaussian
noise to A (with a standard deviation σ = 5 for 8-bit
images). A match is declared false (i.e. a false positive)
or correct (i.e. a true positive) depending on some spatial
tolerance. More precisely, and following the protocol
of [14], a match between a and b is considered as correct
if the overlap error is below 50 percent. The overlap
error between a and b is defined from the ratio between
the intersection and the union of the corresponding SIFT
regions in the image A, respectively Ra and Rb:

1 − (Ra ∩ Rb)/(Ra ∪ Rb) .

This classical protocol, A → A′, measures very simply
the behavior of a matching procedure when two images
containing exactly the same “objects” (before and after
some transformations) are compared.

Now, many real computer vision systems involving a
matching step have to deal with situations in which the
target is not always present (e.g. the search of an object
in an image database). In order to estimate matching
procedures in such situations, we introduce another
protocol called A → {A′

B . In this protocol, the image A
is first compared with the modified image A′ and then
with an image B, independent of A (the next image
in the database to be presented in the next section).
Of course, both comparisons are made using the same
thresholds. Correct and false matches between A and A′

are defined in the same way as in the protocol A → A′.
Meanwhile, all matches between A and B are considered
as false matches. The total number of false matches is
the addition of false matches in A′ and B. A matching
procedure should be able to match A and A′ without
finding too many correspondences between A and B.

In Section 4.3.2, protocol A → {A′

B will be extended
by replacing B by the entire database to be introduced
in the next section. In Section 4.4, another protocol
will be introduced to test the ability to detect multiple
occurrences.

4.1.3 Performance evaluation

Performances of both the dissimilarity measure and the
matching criterion introduced in this paper are evaluated
on approximately 3.106 descriptors, extracted from a set

of 732 generic images3. The size of this database is in
the same order of magnitude as the one used in the
evaluation paper [15], containing 100 query objects and
535 irrelevant images which constitute a 105 feature set.
In this paper as in ours, an exhaustive feature compar-
ison is performed. The use of such a dataset is of great
importance, because performances can vary very much
from an image to another. Observe also that using much
bigger datasets to perform exhaustive comparisons would
require quite heavy computing facilities.

As is usually done, for each experiment, a ROC curve
shows the ratio of correct matches as a function of the
ratio of false matches for different values of the matching
threshold. More precisely, for a given threshold, the
ratios of correct matches and false matches are defined
as














correct matches ratio =
#correct matches

#possible matches
,

false matches ratio =
#false matches

#total number of matches
.

Such a curve can be obtained for each image of the
database. In order to evaluate the performances of differ-
ent matching procedures (distances and criteria) on the
whole database, thorough comparisons and analyses are
made in the next sections, relying on these ROC curves.

4.2 Evaluation of the dissimilarity measures

We compare here the performances of the usual L1

(Manhattan) distance, L2 (Euclidean) distance, Jeffrey
divergence, and χ2 distance with the performances of
the proposed Circular Earth Mover’s Distance (CEMD).
Since our purpose in this paragraph is not to evaluate
matching criteria, we choose to use a simple threshold
on distances restricted to the nearest neighbor (that is,
criterion NN-DT) with the A → A′ protocol. The com-
parison is performed for two quantization levels (N = 8
and N = 12) of the circular histograms.

Some images from the database and their associated
ROC curves are shown in Fig. 1. For the sake of clarity,
only CEMD, L1 and L2 distances are represented on these
examples, respectively in red, blue and green continuous
lines, for the value N = 12. We see on these curves
that results can be quite different from one image to the
other, even though CEMD shows better results than other
distances.

Performances of the various distances are thus evalu-
ated on the complete database. We follow the classical
protocol used for image retrieval evaluation, see e.g. [21],
and draw average performance curves to evaluate the
ability of a given distance to retrieve correct information
first. Average ROC curves show the average ratio of
correct matches as a function of the ratio of false matches.
The average correct matches ratio is defined (see (13)) as
the average of correct matches ratio for the same given

3. Images available at: http://www.tsi.enst.fr/∼rabin/matching/
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Fig. 1. Six sample images from the database and the

corresponding ROC curves. The red curve corresponds

to CEMD, the blue one to the L1 distance and the green

one to the L2 distance.

false matches ratio with each query image Ai, weighted
by its number of descriptors NQ,i, so that the larger the
number of descriptors in an image, the greater its weight
in the final average ROC curve.

average correct matches ratio =

1
∑732

i=1 NQ,i

732
∑

i=1

(

NQ,i

#correct matches(Ai)

#possible matches(Ai)

) (13)

Consequently, for each distance defined in Section 2.2,
performances are evaluated on the database (involving
approximately 25.109 descriptor comparisons). Observe
that curves are quite smooth because of this large num-
ber of comparisons.

Fig. 2 clearly shows the advantage of CEMD for all
quantization choices. As one could expect, this measure
deals well with the geometric deformations applied to
each image which induce slight shifts in orientation
histograms. Moreover, one observes that increasing N
increases the quality of the matching when using CEMD.
The number of bins is therefore only driven by compu-
tational complexity. In contrast, this is not the case for
classical bin-to-bin distances, for which using too many
bins yields inefficient comparisons between histograms.
The average ROC curve in the case of the A → {A′

B

protocol shows a similar behavior and is omitted for
brevity. We will see in the next paragraphs that, in
contrast, matching criteria behave differently depending
on the matching protocol.

As previously mentioned in paragraph 2.2.2, EMD

could be used to compare descriptors considered as three
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Fig. 2. Average ROC curves (on 732 images) and 3.1
million descriptors for CEMD (red), L1 (blue), L2 (green),

χ2 distance (magenta) and Jeffrey divergence (black),

with two different quantization levels (N = 8 for dashed

lines and N = 12 for continuous lines).
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Fig. 3. Average ROC curves (on 10 images) for CEMD

(red) and 3-dimensional EMD (cyan), with two different

quantization levels (N = 8 for dashed lines and N = 12
for continuous lines).

dimensional histograms (one dimension for the gradient
orientations and two for the location of the region on the
polar localization grid). We also saw that such a method
involves intractable computation times, even when using
the efficient implementation proposed by Ling et al. [26].
Nevertheless, we performed a small scale experiment
comparing such a use of EMD and the proposed CEMD

on ten images from the database. The 3-dimensional
EMD makes use of a ground distance obtained from a
circular L1 distance between orientations histograms and
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a L1 ground distance on the position of regions of the
descriptor. We chose to simply add these two ground dis-
tances without trying to optimize their combination. We
used the EMD code kindly provided by Y. Rubner [21].
Firstly, this implied computation times approximately
1000 times slower than when using CEMD. Secondly, one
observes that 3-dimensional EMD, with this choice of
ground distance, is less efficient than CEMD.

4.3 Comparison of matching criteria - single match

Three matching criteria are compared in this section.
All three criteria limit matches to the nearest neighbor,
but make use of different thresholds. The first one is
a threshold on distances, called NN-DT. The second
threshold acts on the ratio between the distance to the
nearest neighbor and the distance to the second nearest
neighbor, as explained in Section 1.1. This criterion will
be called NN-DR. The third criterion, called NN-AC, is the
restriction to the nearest neighbor of the new matching
criterion introduced in Section 3. Recall that a threshold
on distances is obtained by thresholding a probability of
false detections (see (12)). For the A → A′ protocol, (12)
is applied with NQ = NC = NA, and for the A → {A′

B

protocol with NQ = NA and NC = NA + NB . We use
CEMD for all three matching methods.

Some images and associated ROC curves are shown in
Fig. 4, both using the A → A′ protocol (second and fifth
rows) and the A → {A′

B protocol (third and sixth rows).
In these curves, the NN-AC, NN-DT and NN-DR matching
criteria are represented respectively in red, blue and
green continuous lines. As in the previous paragraph,
we can see that results can be quite different from one
image pair to the other.

In order to compare the relative performances of dif-
ferent matching criteria, the same decision thresholds
should be used for different query images, as is done in
[15]. A global ROC curve is thus obtained by plotting the
total number of correct matches on the whole database
versus the total number of false matches, for different
threshold values. Such a curve permits to evaluate how
stable a given threshold is from one experiment to the
other. The next two paragraphs present and interpret
results on the whole database, relying on such curves,
respectively for the A → A′ and A → {A′

B protocols.

4.3.1 Single match. The target is present.

Global ROC curves are displayed on Fig. 5 for the nearest
neighbor criteria (namely NN-AC, NN-DT and NN-DR),
using the A → A′ protocol. We observe that both NN-AC

and NN-DR have very similar global ROC curves, and
that the NN-DT criterion is especially unstable. In this
case, the NN-AC criterion proposed in this paper does
not offer significant advantages in comparison with the
classical NN-DR criterion. Indeed, as explained in Section
1.1, the NN-DR criterion is well adapted to the case where
the target is present and yields excellent results in the
special case of two images A and A′ of the same scene,

Fig. 4. Six sample images from the database and the

corresponding ROC curves. The red curves correspond to

NN-AC, the blue ones to NN-DT and the green ones to NN-

DR. The second and fifth rows show the curves obtained

with the A → A′ protocol, and the third and sixth rows

show the results of the A → {A′

B protocol. Note that the

relative performances of the three criteria depend strongly

on the experiment.

containing no distractors. Let us remark that we obtain
results that are extremely close to the one shown in [15],
where the authors obtain a flat global ROC curve for
the NN-DT criterion and significant improvement with
the NN-DR criterion. This analogy between our results
and the ones in [15] also confirms the interest of using
relatively large databases.

4.3.2 Single match. Is the target present ?

This section investigates the performances of the match-
ing criteria on the whole database when using the
A → {A′

B protocol. Fig. 6 shows the global ROC curve
for this protocol. We can see that the performances of
NN-DR clearly decrease in comparison to the ones of the
proposed NN-AC criterion. For a given number of correct
correspondences between A and A′, NN-AC yields fewer
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Fig. 5. Global ROC curves (on the whole database) for

different matching criteria: NN-AC (red), NN-DT (blue) and

NN-DR (green). Experimental protocol is A → A′ (an

image A is matched against its transformed version A′).

false correspondences than NN-DR. As explained earlier,
this shows the ability of the NN-AC criterion to dis-
criminate between cases where the target is present and
cases where it is not, which can be crucial for practical
applications.
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Fig. 6. Global ROC curves (on the whole database)

for different matching criteria: NN-AC (red), NN-DT (blue)

and NN-DR (green). Experimental protocol is A → {A′

B

(an image A is matched separately against A′ and an

independent image B).

Next, we propose an extension of this last protocol
where, for each query image A, the distractor image B
is replaced by the entire database (deprived of A). Since
this test involves much more computations than the
previous one, it has been performed for only 100 images
from the database (representing approximately 1.5 1012

descriptor comparisons). Fig. 7 shows the corresponding
global ROC curve. Again, one observes the substantial
improvement provided by the NN-AC criterion. In fact,
the improvement is greater than when only one image
is used as a distractor, which suggests that the NN-

AC criterion behaves well when the object of interest is
seldom encountered.
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Fig. 7. Global ROC curves (on 100 images) for different

matching criteria: NN-AC (red), NN-DT (blue) and NN-DR

(green). Experimental protocol is the same as A → {A′

B ,

except that B is replaced by the complete database. That

is, an image A is matched separately against A′ and

against each other image.

4.4 Comparison of matching criteria - multiple
matches

This section is a first attempt to compare matching
criteria allowing multiple matching, thus not restricted
to the nearest neighbor. First, there is no obvious way to
define such an extension for the NN-DR criterion. We
therefore compare the following two criteria: a simple
threshold on distances, that we call DT and the criterion
introduced in this paper (without restricting matches to
nearest neighbors), that we called AC. Both criteria allow
multiple correspondences for each query descriptor.

For this comparison, we propose a protocol similar to
A → {A′

B , except that A′ is replaced by a single image,
called A′+A′′, which is the concatenation of two different
transformations of A. In this experiment, each structure
of A appears twice in A′+A′′. Correct and false matches
are counted exactly in the same way as in the protocol

A → {A′

B . This protocol is called A → {A′+A′′

B . Fig. 8
shows how the AC criterion clearly outperforms the DT

criterion on the image database in this case of multiple
matches.

4.5 Is the nearest neighbor restriction necessary ?

Following the previous section, it is quite natural to
wonder whether not reducing the matches to the nearest
neighbor yields a loss of performance in the case where
the target is present at most once.

On Figure 9 we show, in continuous lines, global
ROC curves for the two matching criteria AC and DT

using the A → {A′

B protocol. Results for the matching
criteria NN-AC and NN-DT, previously shown in Fig. 6,
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Fig. 8. Global ROC curves (on the whole database) for

the A → {A′+A′′

B protocol (the target is present twice, see

Section (4.4)). Criterion AC is shown in red and criterion

DT is shown in blue.

are represented in dashed lines. As could be expected,
the performance of DT decreases significantly in com-
parison to NN-DT. Yet, we observe that AC and NN-
AC criteria have similar results, even though AC does
not have any restriction on the number of matches per
query descriptor. This quite remarkable result indicates
that the adaptive matching criterion introduced in this
paper permits the rejection of false matches without any
restriction on the number of possible matches.
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Fig. 9. Global ROC curves (on the whole database) for

different matching criteria and for the A → {A′

B protocol.

Dashed lines: matches are restricted to the nearest neigh-

bor (NN-AC in red and NN-DT in blue). Continuous lines:

the number of matches per query is not restricted (AC in

red and DT in blue).

4.6 Some more experiments

In order to visually illustrate the behavior of the pro-
posed matching procedure, this section presents some
additional examples of matching between images.

Firstly, we show the behavior of the proposed match-
ing procedure using different thresholds in the case of
a scene with repetitive structures. Such a situation is
common in the case of, e.g., images of buildings. As
pointed out in [20], these are difficult correspondence
problems. Classical approaches could fail to provide
enough relevant correspondences between images of the
same scene. We compare two different views of the
tower of Pisa shown in Fig. 10. Criterion NN-DR (used
in Figs. 10(e), 10(f), 10(g) and 10(h) with CEMD and
respectively r = 0.7, r = 0.8, r = 0.85 and r = 0.9) can
only correctly match a relatively low number of points
while controlling the number of false matches. Indeed,
the presence of repetitive structures can foul the NN-
DR criterion because of several candidate descriptors at
a similar distance to the query. On the contrary, using
the AC matching criterion -which is not restricted to the
nearest neighbor-, results in multiple matches between
columns and arches (Figs. 10(a), 10(b), 10(c) and 10(d)
with CEMD and respectively ε = 10−2, ε = 10−1, ε = 1,
and ε = 10).

Next, a single image (blue-framed) is matched sepa-
rately with 8 different images (Fig. 11(a)). Four of them
contain (one or several times) a common object with
the query image (a can). The four other images do
not contain the can. The complete matching procedure
presented in this paper (CEMD for the distance and the
AC criterion) is shown in Fig. 11(b)). It is compared to
two classical matching procedures: Euclidean distance
and NN-DR criterion in Fig. 11(c) or NN-DT criterion in
Fig. 11(d). For each method, all images are matched with
the same threshold (ε = 10−2 for AC, r = 0.8 for NN-DR,
and t < 0.45 for NN-DT). These thresholds are set in such
a way as to obtain roughly the same number of correct
matches between the query image and the image at the
center of the leftmost column.

This matching experiment leads us to the same con-
clusions as the previous ROC curves. The AC criterion
yields much fewer false matches on images where the
object is not present and better detection of multiple
occurrences. It is also interesting to notice that there
are less false matches even in images where the object
is present. This is not contradictory with the results of
Section 4.3.1 (concluding to the equivalence of NN-DR

and NN-AC when using the A → A′ protocol), since
many descriptors of either the query or the candidate
image do not correspond to the object shared by the two
images. This experiment shows (on a specific example)
the versatility and adaptivity (all images are matched
using the same threshold) of the proposed matching
procedure.

5 CONCLUSION

In this paper, a new procedure for the matching of
local, SIFT-like features has been proposed. First, a
robust distance between circular histograms has been
introduced and its advantages have been experimentally
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(a) AC, ε = 10
−2 (b) AC, ε = 10

−1 (c) AC, ε = 1 (d) AC, ε = 10

(e) NN-DR, r = 0.7 (f) NN-DR, r = 0.8 (g) NN-DR, r = 0.85 (h) NN-DR, r = 0.9

Fig. 10. Matching an object with repetitive structures: the tower of Pisa. Two different matching procedures are used

with different thresholds: the first row corresponds to the AC criterion and the second row corresponds to the NN-DR

criterion. The first criterion permits to match the repeated elements of the tower.

demonstrated on an image database. Second, a statistical
matching criterion has been defined, relying on a thresh-
old on a probability of false detections. The ability of this
criterion to deal with situations where we do not know
if the target is present has been demonstrated, as well
as its ability to deal with multiple matches.

Several extensions of this work are foreseen. First,
even though the computation of the proposed matching
thresholds is not computationally demanding (it only
requires to compute M convolutions for each query
descriptor ai), it cannot benefit in a straightforward way
from fast nearest neighbor search schemes [11], [27]. It is
of interest to investigate the possibility to approximate
the probability of false detections using only a small

subset of candidate descriptors.

The distance introduced in Section 2 can also be
applied to other descriptors made of circular histograms,
such as color (hue) histograms. Observe also that the
matching methodology presented in Section 3 is com-
pletely generic and could be applied to other local
descriptors, such as the affine invariant descriptors de-
scribed in [41]. This matching methodology also enables
us to simultaneously use different local features, by
adapting the independence assumptions made in Sec-
tion 3. Preliminary experiments on the joint use of color
and direction histograms show promising results.
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(a) query image and 8 images dataset (b) Distance CEMD and AC matching criterion with ε = 10
−2

(c) Euclidean distance and NN-DR matching criterion with r = 0.8 (d) Euclidean Distance and NN-DT matching criterion with t < .45

Fig. 11. Comparison of different matching procedures (Distance + Matching Criterion). One query image (blue framed)

containing a can is matched separately against 8 images (Fig. 11(a)). Only half of these images contain the can,

present one or several times. For each matching procedure, the query image is compared with all 8 images using the

same threshold. These thresholds are chosen such that the number of correct matches with the image at the center

of the left column is the same for all procedures. Observe that for a given number of correct matches with this left-

centered image, the matching procedure introduced in this paper (CEMD + AC criterion) yields more correct matches

in other images while providing a better control of the number of false detections than classical procedures.
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