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Abstract

This contribution focuses on the matching of local featuresbetween images. Given a set of query
descriptors and a database of candidate descriptors, the goal is to decide which ones should be matched.
This is a crucial issue, since the matching procedure is often a preliminary step for object detection,
scene identification or image matching. In practice, this matching step is often reduced to a specific
threshold on the Euclidean distance to the nearest neighbor.

We first introduce a robust distance between descriptors, making use of the Earth Mover’s Distance
(EMD). We then propose ana contrarioframework for the matching procedure, which enables us to
control the number of false alarms. This approach yields validation thresholds automatically adapted to
the complexity of the descriptor to be matched and to the diversity and size of the database. The method
makes it possible to detect multiple occurrences and to ratethe validated matches according to their
meaningfulness.

1. Introduction

Matching local features is a very convenient way of comparing several pictures. Many applications
-such as object detection, stereo correspondence, image stitching, 3D reconstruction- are based on such
procedures. An exhaustive list of the applications of the matching of local descriptors is beyond the
scope of this paper. Illustrating examples can be found in [13, 2, 9].

Such methods require two preliminary steps. First, a few interest points are selected to reduce the
coding of information. A descriptor is then built for each detected interest point. Many studies have
proposed different interest points and geometric descriptors. In a comparative study [15], the SIFT
descriptor [13] has proven to be the most robust and invariant representation method.

The second step consists in matching some of thequery descriptors{ai}i=1...NA
(e.g. extracted from

a query image) withcandidate descriptors{bj}j=1...NB
from a database (e.g. another image or a set of

images), using a dissimilarity measure and a selection criterion. For each query descriptorai, elements
bj from the database are ranked according to their similarity with ai. Then, a criterion is used to validate
the matches, that is to decide which candidates should be matched with the query.

In many applications, the matching procedure is followed bya validating step based on the global
coherence of matches and making use of the Hough transform, RANSAC or alternatives, seee.g. [13, 4,



3]. In more specific applications, it is possible to get rid of false matches using geometrical constraints,
seee.g. [5]. The quality of the results of such methods strongly depends on the proportion of false
matches and it is crucial to have a high true matching rate, especially in the case of multiple or complex
transformations.

Whereas the extraction and representation of descriptors has been thoroughly studied (seee.g. the
references in [15]), there are few studies about their matching. In the literature, most matching processes
start by computing distances between theNa query descriptorsai and the database{bj}j=1...NB

. Then
three different criteria are used in practice to validate matches, as detailed in [15]. The simplest one
uses a global threshold on distancesd(ai, bj). A refinement is to restrict such matches to only the
closest neighbor for eachai, in order to avoid multiple false detections that often occur. Such simple
approaches are not satisfactory, essentially because optimal thresholds vary greatly depending on the
query and candidate descriptors. For that purpose, Lowe [13] introduces another criterion by comparing
the distance betweenai and its closest and second-closest neighbors. Only matcheswith the closest
neighbor are validated if the ratio between the two distances is below a threshold. This method often
performs well in image matching, but it has several drawbacks. There is at most one match per query
and the optimal threshold varies greatly from one query to the other. Moreover, the diversity of the
whole database is not taken into consideration in the matching process, since only the first and second
neighbors are considered. A variant on this criteria has been proposed in [2] and consists in averaging
the distance to the second neighbor over several images whenperforming multi-image matching, for
instance in the context of panorama stitching. Another possibility -when thresholding the distance to the
nearest neighbor- is to keep only matches(a, b) for whicha is also the nearest neighbor ofb, see [5].

In different settings, the control of false matches has beentaken into account, see [17, 11, 16]. But to
the best of our knowledge, no generic procedure for the matching of local, SIFT-like features has been
proposed beyond the already mentioned thresholds applied to the nearest neighbor.

In this contribution, we propose to validate matches between the query and candidate descriptors by
rejecting casual matches, that is matches that can be produced by chance. Specifically, we make use of
ana contrariomethodology, first introduced in [6] and then applied, among other things, to grouping [7]
and shape matching [16]. The principle of such approaches is to detect or match features when a certain
null hypothesisis rejected.

The plan of the paper is as follows. In Section2, we detail the keypoints and descriptors to be used,
in a very similar way to [13]. In Section3 a robust dissimilarity measure between features is introduced,
based on the Earth Mover’s Distance described in [18]. Section4 is the main contribution of this commu-
nication, where we present a new matching criterion that is inspired from thea contrariomethodology.
It provides an adaptive threshold on the dissimilarity measure that allows multiple detections over a
database. Experimental validations are performed in Section5.

2. Features extraction

This section briefly presents our version of SIFT-like (see [13]) descriptors. Classically, a scale-
space representation is used to detect and select interest points. Descriptors based on the distribution of
gradient orientations are then built for each of these points.

Detection of interest points A “Laplace-Harris” detector is used to select high curvature structures,
typically multi-scale corners and “blobs”. First, the image I0 is convolved with Gaussian kernelsgσk

to



obtain its linear scale-space representation{Iσk
}. Then, the local extrema in scale and space of{Lk}

- the normalized Laplacian operator response of{Iσk
} [10]- provide a set of possible interest points

{(xi, yi, si)} with their scale estimationsi = σk. Finally, the multi-scale Harris [8] criterion is applied
to eliminate edge structures which are redundant and not significant enough for the matching process.

Orientation assignment In order to achieve rotation invariance, up to two differentorientations are
given to each interest point. A circular histogram of gradient orientations is built from the neighborhood
of each interest point. We then use an automatic histogram segmentation method proposed in [7] -that
we adapted to circular histograms- to extract the modes and keep the two most significant ones (or only
one if it is unique). For each mode the center of mass is computed, yielding oriented interest points.
This orientation assignment procedure is more robust than selecting the extrema of the histogram (as in
[13]) and is performed very quickly.

Descriptor design In the same manner as SIFT, the descriptor consists of histograms of gradient ori-
entations, weighted by the gradient magnitude and computedfor different subregions of a location grid.
Each histogram is quantized toN bins (N = 12 by default) and normalized to have unit weight. Orien-
tations are defined with respect to the reference direction (there is one descriptor per reference direction,
thus one or two descriptors for each interest point).

We use a circular location grid divided intoM sectors on a disk (M = 9 by default, see Figure1). This
is known to be more robust to rotations than square sectors, [15]. The size of the disk is proportional
to the scalesi to achieve scale invariance [13], and sectors are defined so that they contain the same
number of pixels. Thanks to the central sector and angular splitting, the descriptor is robust to small
angular or translation shifts. Nevertheless, it is important to define a dissimilarity measure robust to
angular quantization, and also to local deformations that result in angular shifts in the histograms. This
is the aim of the next section.

Figure 1. Location grid for the computation of orientation histograms

3. Dissimilarity measure

Bin-to-bin distances (such as the Euclidean, Mahalanobis or Manhattan distances) measure simply
and quickly the dissimilarity between two vectors. However, these distances are obviously not robust to
the orientation histogram quantization as shown in [13], whereN is limited to8 to make a compromise
between angular quantization error and robustness to smallangular shifts.



This quantization problem can be avoided by using a cross-bin distance, like the Earth Mover’s Dis-
tance, proposed by Rubner [18] as a metric for color histograms. This distance can be seen as the
solution to a “transportation” problem. In [12], Ling and Okada use an interesting variant of this mea-
sure (called “EMD-L1”) for SIFT descriptors as three dimensional histograms. However, this measure
remains computationally too expensive to be applied efficiently to the matching problem when the num-
ber of descriptors increases (see Section3.2). Moreover, using the sameL1 ground distance for the
three dimensions of the histogram yields tricky parameter tuning. Indeed, mixing orientation and space
makes transportation costs depend on the number of sectorsM and on the angular quantization step
N . We propose in the next paragraph a dissimilarity measure based on the Earth Mover’s Distance for
unidimensional and circular histograms which is specifically adapted to SIFT descriptors and has a low
time complexity.

3.1. Earth Mover’s Distance between normalized circular histograms

Consider two discrete circular (or periodic) histogramsf = (f [i])i=1...N andg = (g[i])i=1...N with
samples onN bins and normalized, in the sense that

∑N

i=1
f [i] =

∑N

i=1
g[i] = 1. In the non-circular case,

it is well known [20] that the Earth Mover’s Distance (EMD) between two unidimensional normalized
histograms is equal to theL1-distance between their cumulative histograms. In the periodic case, it can
be shown that the EMD betweenf andg is the minimum ink of theL1-distance betweenFk andGk,
the cumulative histograms off andg starting at thekth quantization cell. That is, writingd(f, g) for the
EMD betweenf andg,

d(f, g) = min
k∈{1,...,N}

{

1

N

N
∑

i=1

|Fk[i] − Gk[i] |

}

, (1)

where,∀ k ∈ {1, . . . , N} (the definition is similar forGk by replacingf by g),

Fk[i] =























i
∑

j=k

f [j] if i ≥ k

N
∑

j=k

f [j] +
i

∑

j=1

f [j] if i < k

.

A descriptora, as defined in Section2, is made ofM circular normalized histograms(a1, . . . , aM).
The dissimilarity measure between two descriptorsa andb is then defined as the sum of the distances
betweenam andbm,

D(a, b) :=
M

∑

m=1

d(am, bm). (2)

We choose this dissimilarity measure because it is less sensitive to the context (change of background or
occlusion) than using

∑

d(am, bm)2 or max d(am, bm).

3.2. Performance evaluation

The performances of this dissimilarity measure can be evaluated by comparing the descriptors of an
image with the descriptors of the same image after an affine transform (an approximation for a limited



viewpoint change). For each descriptor of the original image, the best match among the descriptors of
the transformed image is kept if the distance between these two descriptors is below a threshold. By
varying this threshold value, we get a performance curve which shows the evolution of the number of
correct matches according to the number of false matches. Four different curves are obtained (Figure2)
depending on the distance (EMD or Euclidean) and the quantization used for the histograms (N = 12
or 24). This experiment confirms the advantage of the EMD over the Euclidean distance in this context:
the EMD yields a higher proportion of correct matches and is all the more efficient as the histogram
quantization increases, which is obviously not the case with the Euclidean distance.
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Figure 2. Comparison between the EMD and the Euclidean distances between descriptors, with two different
histogram quantizations (N = 12 or N = 24).

Another interesting asset of our dissimilarity measure is that its time complexity is close to that of
the Euclidean distance. Indeed, the time complexity of the naive EMD computation betweenM pairs
of circular histograms withN bins isO(MN2), but a computation trick using the median reduces this
time complexity toO(MN log(N)). This is not far from the time complexityO(MN) obtained with the
Euclidean distance. In contrast, using the EMD-L1 distance empirically [12] yields a time complexity
of O(M2N2).

4. Matching criterion

A dissimilarity measure between descriptors being defined,deciding whether a query descriptorai

matches one or several descriptors from the database{b1, . . . , bNB} boils down to the setting of a thresh-
old on the distances. Ideally, this threshold should be set automatically and should depend onai and on
the entire database. As explained in the introduction, one of the most popular matching criteria has been
introduced by Lowe [13] and consists in thresholding the distance ratio between the first and second
nearest neighbors ofai in the database. If this ratio is below a thresholdr, the nearest neighbor is
matched withai, otherwise there is no match.

This criterion (that from now on we will refer to as NN-2) benefits from its simplicity and the fact that
it is by far more robust than a simple threshold on distances.However, it has the following drawbacks:
− only the first and second nearest neighbors are considered todescribe the complexity of the database;
− if a structure appears more than once in the database, it cannot be matched. This is a strong limitation
whenever objects appear several times or have repetitive structures;
− the choice of an optimalr greatly depends on the experiment.



In the next section, we show how it is possible to overcome these difficulties by computing adaptive
thresholds. Roughly speaking, the method rests on the rejection of matches that are due to chance.

4.1. A contrario methodology

Thea contrarioframework has been initially proposed by Desolneuxet al. [6] in order to group low-
level visual features. The basic principle is to detect groups of features that are very unlikely under the
hypothesis that features are independent. In what follows,we call such a hypothesis anull hypothesis.
The unlikeliness is ensured by controlling the average number of false detections. This generic approach
has been applied with success to, among other things, the detection of alignments [6], contrasted edges,
vanishing points, and grouping [7].

Recently, this methodology has been adapted to shape matching [16]. The main idea (also present in
previous works such as [11, 17]) is again to reject matches that can happen “by chance”. That is, relevant
matches are detecteda contrarioas events contradicting the null hypothesis. Again, the null hypothesis
is based on an independence assumption.

4.2. The background model

A candidate descriptorai being given, it is matched withbj if D(ai, bj) is small enough under the
assumption that allbjs from the database follow a random model that is called abackground model.
This model should be seen as a model of generic descriptors. Remember that each descriptorai is
made ofM orientation histograms,ai = (ai

1
, . . . , ai

M) and that the distance introduced in Section3 is
defined asD(ai, bj) =

∑M

m=1
d(ai

m, bj
m). Two descriptors are all the more similar as distances between

histograms are simultaneously small. The background modelis defined through the independence of
these distances, as in [16]. That is, the background model is any probabilistic model on a descriptorb
such that, for all query descriptorsai,
H0: “ d(ai

m, bm) (m ∈ {1, . . .M}) are mutually independent random variables”.
For a random descriptor following such a background model, the probability that the distance between
ai andb is smaller thanδ can be written

P
(

D(ai, b) ≤ δ | H0

)

=

∫ δ

−∞

M
∗

m=1

pi
m(x) dx , (3)

where∗ denotes the convolution product andpi
m the density of the random variabled(ai

m, bm). For each
i ∈ {1, . . .NA} and eachm ∈ {1, . . .M}, the lawspi

m are empirically estimated over the database
{b1, . . . , bNB}. In other words, for each circular histogramai

m, one computes the distribution function of
the distanced(ai

m, bm) whenbm spans themth histogram of the descriptors in the database.

4.3. Number of false alarms

A match betweenai and an elementbj in the database is considered as meaningful and validated as
soon as the distanceδ = D(ai, bj) between them is much smaller than it can be expected to be under
the hypothesisH0, i.e. as soon as the probabilityP(D(ai, b) ≤ δ | H0) is small enough. Now, setting a
thresholdδi for each descriptorai is not an easy task. With thea contrario framework, the choice of
these thresholds is replaced by a unique bound on the expectation of the global number of false alarms,
which is more intuitive and handy. To this end, we introduce the following function ofai andδ,

NFA(ai, δ) = NA NB P(D(ai, b) ≤ δ | H0). (4)



The valueNFA(ai, δ) measures how likely it is that the distance betweenai andb is lower thanδ under
the hypothesisH0 on b. It also enables us to sort all the possibleNA ×NB matches and to evaluate their
relevance. Thereby, a match betweenai andbj is said to beε-meaningful if NFA(ai, D(ai, bj)) ≤ ε.
With this definition, it is easy to prove that,
the expected number ofε-meaningful matches, when testingNA queries againstNB candidates following
the background model, is smaller thanε.

Along these lines, the threshold

δ̃i(ε) = arg max
δ

{

NFA(ai, δ) ≤ ε
}

(5)

makes it possible to validate or reject the different correspondences betweenai and the elements of
the database. A match is validated ifd(ai, bj) ≤ δ̃i(ε). For each descriptorai, the threshold̃δi(ε) is
automatically computed in function of the valueε.

Anticipating on the experimental section, let us underlinethe conceptual advantages of fixingε to
control the matches over other thresholds on distances. First,ε has the relatively intuitive meaning of a
number of false alarms. Second, as said earlier, a single number yields thresholds that adapt to the query
and the database. Last, the number of possible matches is notrestricted.

5. Results

As defined in the previous section, the smaller the thresholdε, the more significant the selected
matches. In practice, the thresholdε = 10−1 appears to be satisfying for most experiments, since it
limits the number of matches perceived as false detections -matches of descriptors belonging to differ-
ent objects- even though these matches are not always false alarms, as they can represent really similar
geometrical structures. In order to illustrate the efficiency of the proposed approach, we present various
experiments comparing the following three matching procedures : “original SIFT” using D. Lowe’s al-
gorithm1 (with the Euclidean distance between features and the NN-2 criterion), “SIFT-EMD-NN2” and
“SIFT-EMD-NFA” using our SIFT-like descriptors (Section2) and the EMD distance (Section3), with
the NN-2 anda contrariomatching criteria respectively.

In the first experiment, two photographs of the same graffiti2 taken with a very different viewpoint
are matched. Figure3(a) shows the matching result with thea contrario criterion, usingε = 10−1.
Figure3(b) shows the number of correct detections against the number offalse detections for the three
different matching methods (3105x4123 original SIFT descriptors are computed and 3857x5193 with
our scheme). The first observation concerns the superiorityof both SIFT-EMD-NN2 and SIFT-EMD-
NFA over the original SIFT. In this case the use of the EMD distance is efficient, similarly as in Sec-
tion 3.2. The second observation is that the NN-2 anda contrario criteria perform quite similarly in
this experiment. There are nor multiple occurrences neither repetitive structures and it seems sound to
restrict matches to the nearest neighbor. This is a kind of sanity check for the matching criterion that we
propose. Indeed, no restriction is made on the number of matches when using thea contrarioapproach.
Nevertheless, the criterion adapts to the situation, and most matches are unique. Another observation
is that when using high thresholds for both criteria (NN-2 and a contrario) to obtain a large number of
matches, thea contrariocriterion permits a better control of the number of false detections.

1The original Lowe’s algorithm is kindly made available by its author on http://www.cs.ubc.ca/˜lowe/keypoints/
2from the INRIA Graffiti dataset available at http://lear.inrialpes.fr/people/mikolajczyk/Database/index.html



(a) Result of matching withSIFT-
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(b) The number of correct detections is plotted against the number of
false detections for the three methods: OriginalSIFT, SIFT-EMD-NN2,
andSIFT-EMD-NFA.

Figure 3. Matching two pictures from the INRIA Graffiti imagedataset, with three different methods.

The two next experiments (Figure4 and5) illustrates one of the drawbacks of the NN-2 criterion
described in the introduction,i.e. the difficulty of matching objects with repetitive structures.

The first example with the White House front clearly shows that it is difficult to detect an object which
has many repetitive structures with the NN-2 criterion (only 8 good detections among41 atr = 0.8 using
the original SIFT). Our approach avoids this problem by comparing each candidate to the whole database
(68 good detections among73 at ε = 10−1 using the SIFT-EMD-NFA).

Two pictures of the leaning tower of Pisa and the front of the neighboring cathedral -with a little
change in the viewpoint- are matched, using the same methodsas in the previous experiment with several
thresholds: the original SIFT results are shown atr = 0.6 (13 matches on4(a)), 0.7 (45 matches on4(b)),
0.8 (203 matches on4(c)); the SIFT-EMD-NN2 results are shown atr = 0.7 (8 matches on4(d)) and0.8
(62 matches on4(e)) -there is no match atr = 0.6; the SIFT-EMD-NFA results are shown atε = 10−2

(41 matches on4(f)), 10−1 (104 matches on4(g)), 1 (292 matches on4(h)). The first observation is that,
as expected, the NN-2 criterion fails to match the tower of Pisa, so that the matches obtained with a low
threshold are mostly false detections (0 correct match withSIFT-EMD-NN2 atr = 0.7, and 3 correct
matches with the original SIFT atr = 0.6). On the contrary, thea contrariocriterion, with the same
descriptors and dissimilarity measure, makes it possible to match these structures: all descriptors with
ε = 10−2 are matched with the correct object (the cathedral or the tower).

The second point highlighted by this experiment is the evolution of results as a function of the thresh-
oldsr andε. On the one hand, it is difficult to choose an optimal result for the NN-2 criterion since the
number of matches increases dramatically withr. Moreover, in order to obtain a few correct detections
on the cathedral and on the tower, it is necessary to use a highthreshold -r = 0.8 as recommended



(a) OriginalSIFT, r = 0.6 (b) OriginalSIFT, r = 0.7 (c) OriginalSIFT, r = 0.8

(d) SIFT-EMD-NN2, r = 0.7 (e) SIFT-EMD-NN2, r = 0.8

(f) SIFT-EMD-NFA, ε = 10
−2 (g) SIFT-EMD-NFA, ε = 10

−1 (h) SIFT-EMD-NFA, ε = 1

Figure 4. Matching an object with repetitive structures: the tower of Pisa. Three different matching procedures are
used: original SIFT, SIFT-EMD-NN2, and SIFT-EMD-NFA. The third method permits to match the tower even
though it contains many repetitions.



in [13]- validating many false detections (nearly all the matchesfor SIFT-EMD-NN2 and roughly 75%
of the matches for the original SIFT). On the other hand, whenε increases from10−1 to 1 with the a
contrariocriterion, the number of matches increases from 104 to 292, but the number of false detections
is limited to only a few points.

(a) SIFT-EMD-NFA at ε = 10
−1: 68 good

detections among73

(b) Original SIFT at r = 0.8: 8 good detec-
tions among41

Figure 5. Matching an object with repetitive structures: the front of the White House. Thea contrario criterion
(Figure5(a)) provides a higher number of good detections than NN-2 (fig.5(b)).!

In the last three experiments, SIFT-EMD-NN2 and SIFT-EMD-NFA are compared in the case of mul-
tiple occurrences of an object, in order to illustrate the possibility offered by thea contrariomatching.

The first one, Figure6, shows the matching result between two pictures of cans. Thelogo of the
central can in the query image appears several times in the second image. The result shown forr = 0.8
on Figure6(b) confirms the difficulty of matching an object which appears several times when using
the NN-2 criterion. Most matches are correct detections with r = 0.8 (20 matches out of 29) but it
is not sufficient to detect the logo; when the threshold valuer is increased, we obtain mostly false
detections (only 33 out of 254 are correct betweenr = 0.8 and0.9). In contrast, thea contrariocriterion
at ε = 10−1 gives 1115 matches between the logos out of 1120 matches, using the same SIFT-EMD
descriptors.

A similar experiment is shown on Figure7 with a can of bean. Our SIFT-EMD-NFA approach selects
automatically the correspondances between the cans in the second image with only few false detections
(20 among 228 atε = 10−1), whereas the NN-2 criterion -using original SIFT or SIFT-EMD descriptors-
hardly separates the good and the false detections (20 falsedetections among 55 with SIFT-EMD-NN2
atr = 0.8 and 301 among 378 atr = 0.9, 95 among 165 with original SIFT atr = 0.8).

In the last experiment, Figure8, a query picture of a remote control is matched with a database of 6
pictures, the first two of which contain the same object. In order to detect this object in the database,
the NN-2 criterion is applied when matching the query image with only one image at a time. By using



(a) SIFT-EMD-NFA, ε = 10
−1 (b) SIFT-EMD-NN2, r = 0.8

Figure 6. Multiple occurrences of a soda can in the database.The two matching criteria are used on the same
SIFT-EMD descriptors: NN-2 matching withr = 0.8 anda contrariomatching withε = 10

−1.

r = 0.6 (Figure 8(a)), only one remote control is detected (5 matches in the second picture of the
database) and a few false detections are obtained (6 matcheswith the “Rubik’s cube” in the last picture).
To obtain matches on the second remote control (in the first picture),r = 0.8 has to be used (Figure
8(b)) but the number of false detections is then very high (there are only 81 matches between the remote
controls among 268). This also shows that the choice of the thresholdr greatly depends on the similarity
between the two objects and their context. Figures8(c) (54 matches withε = 10−2) and8(d) (116
matches withε = 10−1) shows the result obtained with the sames descriptors with the a contrario
criterion. Mostly matches are between the remote controls (52 and 105 respectively).

6. Conclusion

In this contribution, we propose a procedure for the matching of local, SIFT-like descriptors. The
procedure rests on a robust distance between descriptors and an automatic matching criterion. In contrast
with most existing approaches, the criterion is not restricted to the nearest neighbor and allows multiple
matches.

Several extensions of this work are foreseen. First, even though the computation of the proposed
matching thresholds is not computationally demanding (it only requires to computeM convolutions for
each query descriptorai), it cannot benefit in a straightforward way from fast nearest neighbor search
schemes [13, 1]. We plan to adapt these by approximating the NFA using only asmall number of
candidate descriptors.

Another interesting point is that the matching methodologypresented in Section4 is completely
generic and could be applied to other local descriptors, such as affine invariant descriptors described
in [14]. We are currently working on the joint use of color and direction histograms as descriptors,
within the same matching framework.

Next, we plan to take the global coherence of matches into account, as it is classical in object detection.



Here again, the samea contrariomethodology can be used, in the same way as in [3]. In particular, this
makes it possible to take the size and content of the databaseinto account, as it is the case with the
matching step presented in this paper. The adaptivity of theresulting object detection method will then
be tested on very large databases, for instance through global image search over the Internet. Several
recent applications such as [19] could benefit from searches for which the number of false detections
remains controlled.
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(a) SIFT-EMD-NFA àε = 10
−1 (b) OriginalSIFT àr = 0.8

(c) SIFT-EMD-NN2 àr = 0.8 (d) SIFT-EMD-NN2 àr = 0.9

Figure 7. Multiple occurrences of a can of bean in the database. The a contrario matching criterion selects auto-
matically the thresholds to match simultaneously descriptors of the query object with those of the 3 cans in the
database (208 good detections among 228). The false detections rate is low contrary to NN-2 criterion (10% with
SIFT-EMD-NFA atε = 10

−1, 36% withSIFT-EMD-NN2 atr = 0.8, 80% withSIFT-EMD-NN2 atr = 0.9 and 59%
with original SIFT at r = 0.8).



(a) NN2, r = 0.6 (b) NN2, r = 0.8

(c) NFA, ε = 10
−2 (d) NFA, ε = 10

−1

Figure 8. The remote control in the top picture is present in the first two pictures of the database. Figures (a) and
(b) show the results of the NN-2 matching criterion (appliedseparately to each picture in the database, to allow
multiple detections) forr = 0.6 (no detection in the first picture) andr = 0.8 (the remote control in the first
picture is matched). Figures (c) and (d) show the results of thea contrario matching criterion forε = 10

−2 and
10

−1, enabling us to match the two objects simultaneously with only a few false detections.


