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Abstract

This contribution focuses on the matching of local featuresveen images. Given a set of query
descriptors and a database of candidate descriptors, tlatigao decide which ones should be matched.
This is a crucial issue, since the matching procedure isnoftgreliminary step for object detection,
scene identification or image matching. In practice, thigehang step is often reduced to a specific
threshold on the Euclidean distance to the nearest neighbor

We first introduce a robust distance between descriptorgjmgause of the Earth Mover’s Distance
(EMD). We then propose aa contrarioframework for the matching procedure, which enables us to
control the number of false alarms. This approach yieldghadion thresholds automatically adapted to
the complexity of the descriptor to be matched and to thasliyeand size of the database. The method
makes it possible to detect multiple occurrences and to tfagevalidated matches according to their
meaningfulness.

1. Introduction

Matching local features is a very convenient way of comgasgaveral pictures. Many applications
-such as object detection, stereo correspondence, imi&gersy, 3D reconstruction- are based on such
procedures. An exhaustive list of the applications of théchiag of local descriptors is beyond the
scope of this paper. lllustrating examples can be foundini, 9].

Such methods require two preliminary steps. First, a fewragt points are selected to reduce the
coding of information. A descriptor is then built for eachtelgted interest point. Many studies have
proposed different interest points and geometric desmspt In a comparative study §], the SIFT
descriptor [L3] has proven to be the most robust and invariant representatethod.

The second step consists in matching some ofjtrery descriptorga‘};—;. v, (e.g extracted from
a query image) witltandidate descriptor$t’ },_; v, from a databasee(g another image or a set of
images), using a dissimilarity measure and a selectioarmit. For each query descriptar, elements
b from the database are ranked according to their similavitly w/. Then, a criterion is used to validate
the matches, that is to decide which candidates should behethtvith the query.

In many applications, the matching procedure is followedabyalidating step based on the global
coherence of matches and making use of the Hough transfokiMSRC or alternatives, seeg [13, 4,



]. In more specific applications, it is possible to get rid @kE matches using geometrical constraints,
seee.g [5]. The quality of the results of such methods strongly depemr the proportion of false
matches and it is crucial to have a high true matching rape@slly in the case of multiple or complex
transformations.

Whereas the extraction and representation of descriptsdben thoroughly studied (ses the
references in15)]), there are few studies about their matching. In the lite®g most matching processes
start by computing distances between ffiequery descriptors’ and the databasg’};__n,. Then
three different criteria are used in practice to validateéames, as detailed inLf]. The simplest one
uses a global threshold on distanc#s’, 1’). A refinement is to restrict such matches to only the
closest neighbor for eaait, in order to avoid multiple false detections that often accBuch simple
approaches are not satisfactory, essentially becausmalgtiresholds vary greatly depending on the
guery and candidate descriptors. For that purpose, Laowarjtroduces another criterion by comparing
the distance betweeti and its closest and second-closest neighbors. Only mateitieshe closest
neighbor are validated if the ratio between the two distansdelow a threshold. This method often
performs well in image matching, but it has several drawbadkere is at most one match per query
and the optimal threshold varies greatly from one query &dther. Moreover, the diversity of the
whole database is not taken into consideration in the magghiocess, since only the first and second
neighbors are considered. A variant on this criteria has Ipeeposed inj] and consists in averaging
the distance to the second neighbor over several images pdréorming multi-image matching, for
instance in the context of panorama stitching. Anotheripdiy -when thresholding the distance to the
nearest neighbor- is to keep only matckes) for which a is also the nearest neighborigfsee f].

In different settings, the control of false matches has lhaken into account, seé{, 11, 16]. Butto
the best of our knowledge, no generic procedure for the nragabf local, SIFT-like features has been
proposed beyond the already mentioned thresholds applit@ thearest neighbor.

In this contribution, we propose to validate matches betwhbe query and candidate descriptors by
rejecting casual matches, that is matches that can be @ddiycchance. Specifically, we make use of
ana contrariomethodology, first introduced irs] and then applied, among other things, to groupirg [
and shape matching §]. The principle of such approaches is to detect or matclufeatwhen a certain
null hypothesiss rejected.

The plan of the paper is as follows. In Secti&nwe detail the keypoints and descriptors to be used,
in a very similar way to [ 3]. In Section3 a robust dissimilarity measure between features is inttedpu
based on the Earth Mover’s Distance described ifj [Section4 is the main contribution of this commu-
nication, where we present a new matching criterion thatspired from the contrariomethodology.

It provides an adaptive threshold on the dissimilarity nneaghat allows multiple detections over a
database. Experimental validations are performed in @eBti

2. Features extraction

This section briefly presents our version of SIFT-like (s&d)[descriptors. Classically, a scale-
space representation is used to detect and select inteiast.pDescriptors based on the distribution of
gradient orientations are then built for each of these goint

Detection of interest points A “Laplace-Harris” detector is used to select high curvatstructures,
typically multi-scale corners and “blobs”. First, the ingalg is convolved with Gaussian kernejs, to



obtain its linear scale-space representafidy }. Then, the local extrema in scale and spac¢ of}

- the normalized Laplacian operator responsg &f } [1(]- provide a set of possible interest points
{(z4,yi, s;) } with their scale estimatios; = 0. Finally, the multi-scale Harrisj] criterion is applied
to eliminate edge structures which are redundant and noifisignt enough for the matching process.

Orientation assignment In order to achieve rotation invariance, up to two differenientations are
given to each interest point. A circular histogram of grati@rientations is built from the neighborhood
of each interest point. We then use an automatic histogrgmesetation method proposed if] fthat
we adapted to circular histograms- to extract the modes aed the two most significant ones (or only
one if it is unique). For each mode the center of mass is comopyielding oriented interest points.
This orientation assignment procedure is more robust tektisng the extrema of the histogram (as in
[13]) and is performed very quickly.

Descriptor design In the same manner as SIFT, the descriptor consists of h&stwyof gradient ori-
entations, weighted by the gradient magnitude and comgatedifferent subregions of a location grid.
Each histogram is quantized 10 bins (V. = 12 by default) and normalized to have unit weight. Orien-
tations are defined with respect to the reference directiwrd is one descriptor per reference direction,
thus one or two descriptors for each interest point).

We use a circular location grid divided indd sectors on a disk\{( = 9 by default, see Figur®). This
is known to be more robust to rotations than square secttik, The size of the disk is proportional
to the scales; to achieve scale invariancéd, and sectors are defined so that they contain the same
number of pixels. Thanks to the central sector and angulétiisg, the descriptor is robust to small
angular or translation shifts. Nevertheless, it is impurta define a dissimilarity measure robust to
angular quantization, and also to local deformations thsullt in angular shifts in the histograms. This
is the aim of the next section.

Figure 1. Location grid for the computation of orientatidatbgrams

3. Dissimilarity measure

Bin-to-bin distances (such as the Euclidean, MahalanabManhattan distances) measure simply
and quickly the dissimilarity between two vectors. Howeteese distances are obviously not robust to
the orientation histogram quantization as shownilii],[whereN is limited to8 to make a compromise
between angular quantization error and robustness to amgtlilar shifts.



This quantization problem can be avoided by using a crasslistance, like the Earth Mover’s Dis-
tance, proposed by Rubnett] as a metric for color histograms. This distance can be seehea
solution to a “transportation” problem. Iif], Ling and Okada use an interesting variant of this mea-
sure (called “EMD4,") for SIFT descriptors as three dimensional histogramsweier, this measure
remains computationally too expensive to be applied effttye¢o the matching problem when the num-
ber of descriptors increases (see Secfid)). Moreover, using the samg' ground distance for the
three dimensions of the histogram yields tricky parameteiny. Indeed, mixing orientation and space
makes transportation costs depend on the number of setftaad on the angular quantization step
N. We propose in the next paragraph a dissimilarity measwedan the Earth Mover’s Distance for
unidimensional and circular histograms which is specificatlapted to SIFT descriptors and has a low
time complexity.

3.1. Earth Mover’s Distance between normalized circular histograms

Consider two discrete circular (or periodic) histografns- (f[i]);=1..x andg = (g[i])i=1..n with
samples orV bins and normalized, in the sense thal , f[i] = >_.', g[i] = 1. In the non-circular case,
it is well known [20] that the Earth Mover’s Distance (EMD) between two unidisienal normalized
histograms is equal to the'-distance between their cumulative histograms. In theop@icase, it can
be shown that the EMD betweeghandg is the minimum ink of the L!-distance betweef), andG,,
the cumulative histograms gfandg starting at théi'* quantization cell. That is, writind( f, g) for the
EMD betweenf andg,

A(f.9) = _min {%ZIFM—GM@'H}, ®

ke{l,..,N} 1
1=

where,Y k € {1,..., N} (the definition is similar foiG;, by replacingf by g),

i:f[j] it >k
=k

Fk[z] = N - i
SO+ fl i i<k
j=k j=1
A descriptora, as defined in Sectiof, is made ofM circular normalized histogram@, ..., ax;).

The dissimilarity measure between two descriptoendb is then defined as the sum of the distances
between,,, andb,,,

M
D(a,b) :="Y " d(am,bm). (2)

We choose this dissimilarity measure because it is lessétserts the context (change of background or
occlusion) than using_ d(a,,, b,,)? or max d(a,,, by,).
3.2. Perfor mance evaluation

The performances of this dissimilarity measure can be at@tlby comparing the descriptors of an
image with the descriptors of the same image after an affarestorm (an approximation for a limited



viewpoint change). For each descriptor of the original imabge best match among the descriptors of
the transformed image is kept if the distance between thveseléscriptors is below a threshold. By
varying this threshold value, we get a performance curvelwbBhows the evolution of the number of
correct matches according to the number of false matches.diberent curves are obtained (Figutke
depending on the distance (EMD or Euclidean) and the quatidiz used for the histogramd/(= 12

or 24). This experiment confirms the advantage of the EMD over tndifean distance in this context:
the EMD vyields a higher proportion of correct matches andlitha more efficient as the histogram
guantization increases, which is obviously not the cask thié Euclidean distance.
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Figure 2. Comparison between the EMD and the Euclideanmtistabetween descriptors, with two different
histogram quantizations\ = 12 or N = 24).

Another interesting asset of our dissimilarity measuréha tts time complexity is close to that of
the Euclidean distance. Indeed, the time complexity of tagenEMD computation betweel pairs
of circular histograms withV bins isO(M N?), but a computation trick using the median reduces this
time complexity taO(M N log(N)). This is not far from the time complexity (1 V) obtained with the
Euclidean distance. In contrast, using the ENIDdistance empirically1”] yields a time complexity
of O(M?*N?).

4. Matching criterion

A dissimilarity measure between descriptors being defidedijding whether a query descriptar
matches one or several descriptors from the datafidse. . , b2} boils down to the setting of a thresh-
old on the distances. Ideally, this threshold should beetaatically and should depend ahand on
the entire database. As explained in the introduction, dtlssomost popular matching criteria has been
introduced by Lowe 3] and consists in thresholding the distance ratio betweerfitht and second
nearest neighbors af in the database. If this ratio is below a thresho)dhe nearest neighbor is
matched with:’, otherwise there is no match.

This criterion (that from now on we will refer to as NN-2) béitefrom its simplicity and the fact that
it is by far more robust than a simple threshold on distanidesvever, it has the following drawbacks:
— only the first and second nearest neighbors are considedestoibe the complexity of the database;
— if a structure appears more than once in the database, ibthamatched. This is a strong limitation
whenever objects appear several times or have repetitivetstes;

— the choice of an optimal greatly depends on the experiment.



In the next section, we show how it is possible to overcomssdtubfficulties by computing adaptive
thresholds. Roughly speaking, the method rests on thetiejeaf matches that are due to chance.

4.1. A contrario methodology

Thea contrarioframework has been initially proposed by Desolnetial.[6] in order to group low-
level visual features. The basic principle is to detect geoof features that are very unlikely under the
hypothesis that features are independent. In what follewescall such a hypothesisraull hypothesis
The unlikeliness is ensured by controlling the average rarabfalse detections. This generic approach
has been applied with success to, among other things, teetaet of alignmentsd], contrasted edges,
vanishing points, and grouping]|

Recently, this methodology has been adapted to shape m@tchij. The main idea (also present in
previous works such as |, 17]) is again to reject matches that can happen “by chance™ i$haelevant
matches are detectedcontrarioas events contradicting the null hypothesis. Again, thehmgothesis
is based on an independence assumption.

4.2. The background model

A candidate descriptat’ being given, it is matched with’ if D(a’,7) is small enough under the
assumption that al’s from the database follow a random model that is callddekground model
This model should be seen as a model of generic descriptoeseRber that each descriptaris

made of M orientation histograms;’ = (a!, ..., d%,) and that the distance introduced in Sectiis
defined asD(a’, ) = S°M_ d(a?,, b7,). Two descriptors are all the more similar as distances katwe

histograms are simultaneously small. The background msd#gfined through the independence of
these distances, as inf]. That is, the background model is any probabilistic modebhalescriptob
such that, for all query descriptou§

Ho: “d(al,, by) (m € {1,... M}) are mutually independent random variables”.
For a random descriptor following such a background model prrobability that the distance between
a* andb is smaller thard can be written

6 .
P () do | (3)

1

P (D(a',b) < 5| Ho) :/

— 00

Tz

wherex denotes the convolution product apigl the density of the random variabi¢a® ,b,,). For each

i € {1,...N4} and eachm € {1,... M}, the lawsp! are empirically estimated over the database
{bt,..., b5}, In other words, for each circular histograsf), one computes the distribution function of
the distancel(a! , b,,) whenb,, spans then!" histogram of the descriptors in the database.

4.3. Number of falsealarms

A match between' and an elemerit in the database is considered as meaningful and validated as
soon as the distande= D(a’,1’) between them is much smaller than it can be expected to be unde
the hypothesig{, i.e. as soon as the probabiliB(D(a’, b) < 6| H,) is small enough. Now, setting a
thresholdo; for each descriptoti; is not an easy task. With thee contrario framework, the choice of
these thresholds is replaced by a unique bound on the exipeatd the global number of false alarms,
which is more intuitive and handy. To this end, we introdueefollowing function ofa’ andé,

NFA(a',0) = Ny NgP(D(a’,b) < §|Ho). (4)



The valueNFA (o, §) measures how likely it is that the distance betweeandb is lower thanj under
the hypothesi{, onb. It also enables us to sort all the possiblg x Nz matches and to evaluate their
relevance. Thereby, a match betweérand¥’ is said to bes-meaningful if NFA(a?, D(a’,¥)) < e,
With this definition, it is easy to prove that,
the expected number ©imeaningful matches, when testiNg queries againsiVz candidates following
the background model, is smaller than

Along these lines, the threshold

bi(e) = arg max {NFA(d',d) <} (5)

makes it possible to validate or reject the different cqroeslences betweert and the elements of
the database. A match is validatedlifz’, ') < 4;(¢). For each descriptar’, the threshold; (<) is
automatically computed in function of the valeie

Anticipating on the experimental section, let us undertime conceptual advantages of fixingo
control the matches over other thresholds on distancest, £inas the relatively intuitive meaning of a
number of false alarms. Second, as said earlier, a singl®auyrelds thresholds that adapt to the query
and the database. Last, the number of possible matchesnsstiatted.

5. Results

As defined in the previous section, the smaller the threshplithe more significant the selected
matches. In practice, the threshald= 10~! appears to be satisfying for most experiments, since it
limits the number of matches perceived as false detectimasches of descriptors belonging to differ-
ent objects- even though these matches are not always fateesaas they can represent really similar
geometrical structures. In order to illustrate the efficieaf the proposed approach, we present various
experiments comparing the following three matching proces : “original SIFT” using D. Lowe’s al-
gorithm' (with the Euclidean distance between features and the Niitetion), “SIFT-EMD-NN2” and
“SIFT-EMD-NFA’ using our SIFT-like descriptors (Sectid) and the EMD distance (Sectid), with
the NN-2 anda contrariomatching criteria respectively.

In the first experiment, two photographs of the same gratfiken with a very different viewpoint
are matched. Figurd(a) shows the matching result with tlecontrario criterion, usinge = 10~1.
Figure3(b) shows the number of correct detections against the numidaltsef detections for the three
different matching methods (3105x4123 original SIFT dggors are computed and 3857x5193 with
our scheme). The first observation concerns the superiafribpth SIFT-EMD-NN2 and SIFT-EMD-
NFA over the original SIFT. In this case the use of the EMDatse is efficient, similarly as in Sec-
tion 3.2 The second observation is that the NN-2 @andontrario criteria perform quite similarly in
this experiment. There are nor multiple occurrences nergetitive structures and it seems sound to
restrict matches to the nearest neighbor. This is a kindrofyseheck for the matching criterion that we
propose. Indeed, no restriction is made on the number offreatwhen using tha contrarioapproach.
Nevertheless, the criterion adapts to the situation, anst matches are unique. Another observation
is that when using high thresholds for both criteria (NN-2 arcontrario) to obtain a large number of
matches, tha contrariocriterion permits a better control of the number of falseedgons.

1The original Lowe’s algorithm is kindly made available by &uthor on httg/www.cs.ubc.ca/"lowe/keypoints/
2from the INRIA Graffiti dataset available at hitftear.inrialpes.fr/people/mikolajczyk/Databaseérdtml
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(a) Result of matching witBIFT- (b) The number of correct detections is plotted against timaber of
EMD-NFA, ate = 10~} false detections for the three methods: Origi®igT, SIFT-EMD-NN2,
andsIFT-EMD-NFA.

Figure 3. Matching two pictures from the INRIA Graffitiimadataset, with three different methods.

The two next experiments (Figureandb) illustrates one of the drawbacks of the NN-2 criterion
described in the introductiong. the difficulty of matching objects with repetitive strucs.

The first example with the White House front clearly shows tha difficult to detect an object which
has many repetitive structures with the NN-2 criterion yahood detections among atr = 0.8 using
the original SIFT). Our approach avoids this problem by carmg each candidate to the whole database
(68 good detections amorigp ate = 10~ using the SIFT-EMD-NFA).

Two pictures of the leaning tower of Pisa and the front of tke@hboring cathedral -with a little
change in the viewpoint- are matched, using the same me#isadshe previous experiment with several
thresholds: the original SIFT results are shown at 0.6 (13 matches od(a)), 0.7 (45 matches od(b)),

0.8 (203 matches 0#(c)); the SIFT-EMD-NN2 results are shownrat= 0.7 (8 matches or(d)) and0.8

(62 matches o (e) -there is no match at = 0.6; the SIFT-EMD-NFA results are shown at= 102

(41 matches o#(f)), 10~ (104 matches o#(g)), 1 (292 matches on(h)). The first observation is that,
as expected, the NN-2 criterion fails to match the tower s&Pso that the matches obtained with a low
threshold are mostly false detections (O correct match $MET-EMD-NN2 atr = 0.7, and 3 correct
matches with the original SIFT at= 0.6). On the contrary, tha contrario criterion, with the same
descriptors and dissimilarity measure, makes it possibhadtch these structures: all descriptors with
¢ = 10~2 are matched with the correct object (the cathedral or therpw

The second point highlighted by this experiment is the evatuof results as a function of the thresh-
oldsr ande. On the one hand, it is difficult to choose an optimal resultti@ NN-2 criterion since the
number of matches increases dramatically witiMoreover, in order to obtain a few correct detections
on the cathedral and on the tower, it is necessary to use atligbhold » = 0.8 as recommended



(a) OriginalsIFT, r = 0.6 (b) OriginalSIFT, 7 = 0.7

(d) SIFT-EMD-NN2,7 = 0.7 (e) SIF-EMD-NN2, 7 = 0.8

(f) SIFFEMD-NFA, ¢ = 1072 (9) SIFT-EMD-NFA, ¢ = 107! (h) SIFT-EMD-NFA, ¢ = 1

Figure 4. Matching an object with repetitive structures thwer of Pisa. Three different matching procedures are
used: original SIFT, SIFT-EMD-NN2, and SIFT-EMD-NFA. Thard method permits to match the tower even
though it contains many repetitions.



in [13]- validating many false detections (nearly all the matdoesSIFT-EMD-NNZ2 and roughly 75%
of the matches for the original SIFT). On the other hand, whércreases fronl0~! to 1 with thea
contrariocriterion, the number of matches increases from 104 to 282hle number of false detections
is limited to only a few points.

(a) SIFT-EMD-NFA ate = 10~!: 68 good (b) Original siFT atr = 0.8: 8 good detec-
detections amon@3 tions amongt1

Figure 5. Matching an object with repetitive structurese ttont of the White House. The contrario criterion
(Figure5(a)) provides a higher number of good detections than NN-2 fig)).!

In the last three experiments, SIFT-EMD-NN2 and SIFT-EMBANare compared in the case of mul-
tiple occurrences of an object, in order to illustrate thegplity offered by thea contrariomatching.

The first one, Figure, shows the matching result between two pictures of cans. Idde of the
central can in the query image appears several times in domdemage. The result shown for= 0.8
on Figure6(b) confirms the difficulty of matching an object which appeangesal times when using
the NN-2 criterion. Most matches are correct detection® wit= 0.8 (20 matches out of 29) but it
is not sufficient to detect the logo; when the threshold valug increased, we obtain mostly false
detections (only 33 out of 254 are correct between 0.8 and0.9). In contrast, the contrariocriterion
ate = 107! gives 1115 matches between the logos out of 1120 matchegy the same SIFT-EMD
descriptors.

A similar experiment is shown on Figurewith a can of bean. Our SIFT-EMD-NFA approach selects
automatically the correspondances between the cans ietoad image with only few false detections
(20 among 228 at = 10~1), whereas the NN-2 criterion -using original SIFT or SIFWHE descriptors-
hardly separates the good and the false detections (20dateetions among 55 with SIFT-EMD-NN2
atr = 0.8 and 301 among 378 at= 0.9, 95 among 165 with original SIFT at= 0.8).

In the last experiment, Figui& a query picture of a remote control is matched with a da@bé$é
pictures, the first two of which contain the same object. kheorto detect this object in the database,
the NN-2 criterion is applied when matching the query imagf@ anly one image at a time. By using



(a) SIFTFEMD-NFA, ¢ = 107! (b) SIFT-EMD-NN2,7 = 0.8

Figure 6. Multiple occurrences of a soda can in the datab@bke. two matching criteria are used on the same
SIFT-EMD descriptors: NN-2 matching with= 0.8 anda contrario matching withs = 107!,

r = 0.6 (Figure 8(a)), only one remote control is detected (5 matches in the skepwture of the
database) and a few false detections are obtained (6 mattthebe “Rubik’s cube” in the last picture).
To obtain matches on the second remote control (in the ficsti@),» = 0.8 has to be used (Figure
8(b)) but the number of false detections is then very high (thezealy 81 matches between the remote
controls among 268). This also shows that the choice of tteshiold- greatly depends on the similarity
between the two objects and their context. Figusés (54 matches withe = 1072) and 8(d) (116
matches withe = 107!) shows the result obtained with the sames descriptors \Wilatcontrario
criterion. Mostly matches are between the remote conté@sa(d 105 respectively).

6. Conclusion

In this contribution, we propose a procedure for the matghuhlocal, SIFT-like descriptors. The
procedure rests on a robust distance between descriptbes)arutomatic matching criterion. In contrast
with most existing approaches, the criterion is not reitddo the nearest neighbor and allows multiple
matches.

Several extensions of this work are foreseen. First, eveagi the computation of the proposed
matching thresholds is not computationally demandingr(iy oequires to comput&/ convolutions for
each query descriptar), it cannot benefit in a straightforward way from fast netairesghbor search
schemes 13, 1]. We plan to adapt these by approximating the NFA using ongmall number of
candidate descriptors.

Another interesting point is that the matching methodolpggsented in Sectiod is completely
generic and could be applied to other local descriptorsh siscaffine invariant descriptors described
in [14]. We are currently working on the joint use of color and dii@c histograms as descriptors,
within the same matching framework.

Next, we plan to take the global coherence of matches intouatcas it is classical in object detection.



Here again, the sansecontrariomethodology can be used, in the same way as]inif particular, this
makes it possible to take the size and content of the datab&saccount, as it is the case with the
matching step presented in this paper. The adaptivity ofd¢kelting object detection method will then
be tested on very large databases, for instance througllglobge search over the Internet. Several
recent applications such as9 could benefit from searches for which the number of falsedgins
remains controlled.

References

[1] J. Beis and D. Lowe. Shape indexing using approximataestaneighbour search in high-
dimensional spaces. Proc. CVPR pages 1000-1006, 1997.1

[2] M. Brown, R. Szeliski, and S. Windner. Multi-image maitotp using multi-scale oriented patches.
In Proc. CVPRpages 510-517, 2003, 2

[3] F. Cao, J. Delon, A. Desolneux, P. Musé, and F. Sur. A uhiiamework for detecting groups and
application to shape recognitiod. of Mathematical Imaging and Visip@7(2), 2007.2, 12

[4] O. Chum and J. Matas. Matching with PROSAC - progressivae@e consensus. roc. CVPR
pages 220-226, 20052

[5] R. Deriche, Z. Zhang, Q. Luong, and O. Faugeras. Robuesivery of the epipolar geometry for
an uncalibrated stereo rig. Proc. ECCV pages 567-576, 1994

[6] A. Desolneux, L. Moisan, and J.-M. Morel. Meaningful giiments. Int. J. Comput. Vision
40(1):7-23, 2000.2, 6

[7] A. Desolneux, L. Moisan, and J.-M. Morel. A grouping peiple and four applicationsIEEE
Transactions on Pattern Analysis and Machine Intelliger2&4):508-513, 20032, 3, 6

[8] C. Harris and M. Stephens. A combined corner and edgettgt®roceedings of The Fourth Alvey
Vision Conferencepages 147-151, 1988

[9] A. Kushal and J. Ponce. Modeling 3D objects from steremwand recognizing them in pho-
tographs. IfProc. ECCV 2006. 1

[10] T. Lindeberg. Scale-Space Theory in Computer Visiadorwell, MA, USA. Kluwer Academic
Publishers, 19943

[11] M. Lindenbaum. An integrated model for evaluating threoaint of data required for reliable
recognition.IEEE Trans. Pattern Anal. Mach. Intell1l9(11):1251-1264, 19972, 6

[12] H. Ling and K. Okada. An efficient Earth Mover’s distaradgorithm for robust histogram com-
parison. IEEE Transactions on Pattern Analysis and Machine Inteltige 29(5):840-853, may
2007. 4,5

[13] D. G. Lowe. Distinctive image features from scale-inaat keypoints. Int. J. Comput. Vision
60(2):91-110, 20041, 2, 3,5, 10, 11

[14] K. Mikolajczyk and C. Schmid. Scale & affine invariant@nest point detectordnt. J. Comput.
Vision, 60(1):63-86, 200411

[15] K. Mikolajczyk and C. Schmid. A performance evaluatadfocal descriptorslEEE Trans. Pattern
Anal. Mach. Intell, 27(10):1615-1630, 20051, 2, 3



[16] P. Musé, F. Sur, F. Cao, Y. Gousseau, and J.-M. Morel. Aardrario decision method for shape
element recognitionint. J. Comput. Vision69(3):295-315, 20062, 6

[17] C. Olson and D. Huttenlocher. Automatic target rectigni by matching oriented edge pixels.
IEEE Transactions on Image Processjieg12):103-113, 19972, 6

[18] Y. Rubner, C. Tomasi, and L. J. Guibas. The Earth Mowissance as a metric for image retrieval.
Int. J. Comput. Visiopd0(2):99-121, 20002, 4

[19] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourisgmploring photo collection in 3D. IACM
Transactions on Graphics (SIGGRAPH Proceedingsjume 25, pages 835-846, 20062

[20] C. Villani. Topics in optimal transportatianrAmerican Math. Soc., 20034



(a) SIFT-EMD-NFA &¢ = 107! (b) OriginalsiFTar = 0.8

(d) SIFT-EMD-NN2 &r = 0.9

(c) SIFT-EMD-NN2 ar = 0.8

Figure 7. Multiple occurrences of a can of bean in the datab#ike a contrario matching criterion selects auto-
matically the thresholds to match simultaneously desaripof the query object with those of the 3 cans in the
database (208 good detections among 228). The false detectte is low contrary to NN-2 criterion (10% with
SIFT-EMD-NFA ate = 1071, 36% withSIFT-EMD-NN2 atr = 0.8, 80% withSIFT-EMD-NN2 atr = 0.9 and 59%

with original SIFT atr = 0.8).



(C)NFA, e =102 (d)NFA, e = 1071

Figure 8. The remote control in the top picture is presenhénfirst two pictures of the database. Figures (a) and
(b) show the results of the NN-2 matching criterion (appkegharately to each picture in the database, to allow
multiple detections) forr = 0.6 (no detection in the first picture) and= 0.8 (the remote control in the first
picture is matched). Figures (c) and (d) show the resulte@étcontrario matching criterion foe = 10~2 and
10—, enabling us to match the two objects simultaneously witl ariew false detections.



