A Statistical Approach to the Matching of Local Features - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Imaging Sciences Année : 2009

A Statistical Approach to the Matching of Local Features

Résumé

This paper focuses on the matching of local features between images. Given a set of query descriptors and a database of candidate descriptors, the goal is to decide which ones should be matched. This is a crucial issue, since the matching procedure is often a preliminary step for object detection or image matching. In practice, this matching step is often reduced to a specific threshold on the Euclidean distance to the nearest neighbor. Our first contribution is a robust distance between descriptors, relying on the adaptation of the Earth Mover's Distance to circular histograms. It is shown that this distance outperforms classical distances for comparing SIFT-like descriptors, while its time complexity remains reasonable. Our second contribution is a statistical framework for the matching procedure, which yields validation thresholds automatically adapted to the complexity of each query descriptor and to the diversity and size of the database. The method makes it possible to detect multiple occurrences, as well as to deal with situations where the target is not present. Its performances are tested through various experiments on a large image database.
Fichier principal
Vignette du fichier
RABIN_preprint_08.pdf (8.24 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00168285 , version 1 (27-08-2007)
hal-00168285 , version 2 (07-10-2008)
hal-00168285 , version 3 (07-10-2008)

Identifiants

Citer

Julien Rabin, Julie Delon, Yann Gousseau. A Statistical Approach to the Matching of Local Features. SIAM Journal on Imaging Sciences, 2009, 2 (3), pp.28. ⟨10.1137/090751359⟩. ⟨hal-00168285v3⟩
433 Consultations
531 Téléchargements

Altmetric

Partager

More