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Abstract 

 

Chloroplasts are bounded by a pair of outer membranes, the envelope, that is the only 

permanent membrane structure of the different types of plastids. Chloroplasts have had a long 

and complex evolutionary past and integration of the envelope membranes in cellular 

functions is the result of this evolution. Plastid envelope membranes contain a wide diversity 

of lipids and terpenoid compounds serving numerous biochemical functions and the flexibility 

of their biosynthetic pathways allow plants to adapt to fluctuating environmental conditions 

(for instance phosphate deprivation). A large body of knowledge has been generated by 

proteomic studies targeted to envelope membranes, thus revealing an unexpected complexity 

of this membrane system. For instance, new transport systems for metabolites and ions have 

been identified in envelope membranes and new routes for the import of chloroplast-specific 

proteins have been identified. The picture emerging from our present understanding of plastid 

envelope membranes is that of a key player in plastid biogenesis and the co-ordinated gene 

expression of plastid-specific protein (owing to chlorophyll precursors), of a major hub for 

integration of metabolic and ionic networks in cell metabolism, of a flexible system that can 

divide, produce dynamic extensions and interact with other cell constituents. Envelope 

membranes are indeed one of the most complex and dynamic system within a plant cell. In 

this review, we present an overview of envelope constituents together with recent insights into 

the major functions fulfilled by envelope membranes and their dynamics within plant cells. 

(240 words) 
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Introduction 

In higher plants, photosynthesis occurs within chloroplasts that are membrane-bound large (5-

10 µm diameter) organelles found in the cytosol of leaf cells in apposition to the cytoplasmic 

and tonoplastic membranes. Chloroplasts present three major structural regions: (a) a highly 

organized internal membrane network formed of flat compressed vesicles, the thylakoids, (b) 

an amorphous background rich in soluble proteins and ribosomes, the stroma and (c) a pair of 

outer membranes, the chloroplast envelope. The two limiting envelope membranes are 

actually the only permanent membrane structure of the different types of plastids (proplastids, 

chloroplasts, chromoplasts, etioplasts…); they are present in every plant cell, with very few 

exceptions (such as the highly specialized male sexual cells). 

As semi-autonomous organelles, plastids transcribe and translate the information present 

in their own DNA but are strongly dependent on the nuclear DNA and the cytoplasmic 

translation system. Consistent with this theory, plastid genomes encode about 80 to 100 

proteins, while between 2500 and 3500 nuclear-encoded proteins are predicted to be targeted 

to the chloroplast. Since plastids rely mostly on the nucleus for their development, the 

coordination between the expression of plastid and nuclear genes requires an exchange of 

information between the nucleus and the organelle. Envelope membranes, at the border 

between plastids and the cytosol, play a role in this coordination at least at two levels: by 

interacting with the plastid translation and transcription apparatus, and through the import of 

nuclear-encoded proteins.  

Chloroplasts are crucial for plant cell metabolism. Performing photosynthesis, they are the 

site of carbon dioxide reduction and its assimilation into carbohydrates, amino acids, fatty 

acids, and terpenoid compounds. They are also the site of nitrite and sulfate reduction and 

their assimilation into amino acids. The envelope membranes, as the interface between 

plastids and their surrounding cytosol, control the uptake of raw material for all synthesis 

occurring in the plastids and regulate the export to the cytosol of the newly synthesized 

molecules. The same is true in all types of plastids. Envelope membranes are therefore a key 

structure for the integration of plastid metabolism within the cell.  

Biogenesis of the chloroplast membranes as well as membranes from all plastid types 

requires biosynthesis of an astonishing variety of specific lipids including polar glycerolipids 

(galactolipids, phospholipids, sulfolipid), pigments (chlorophylls, carotenoids) and 

prenylquinones (plastoquinone, tocopherols…). Glycerolipids are necessary to constitute the 
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membrane bulk matrix structure and together with chlorophylls, carotenoids and 

prenylquinones are essential for the functioning of the photosynthetic apparatus. Generation 

and regulation of this diversity requires sophisticated metabolic pathways, in which envelope 

membranes are of striking importance. 

A significant part of our present knowledge on the structure and function of plastid 

envelope membranes within plant cells relies on the development of reliable procedures to 

prepare and characterize highly purified envelope membranes from spinach chloroplasts. 

Andy Benson laboratory was among the very first contributors to this emerging field (Douce 

et al. 1973; Douce 1974; Jeffrey et al. 1974) which has developed considerably since this 

time. Actually, the first functional studies of chloroplast envelope membranes concern 

metabolite transport into intact chloroplasts (Heber 1974; Heldt 1976; Walker 1976). The 

availability of highly purified envelope membranes was a second step that paved the way for 

the dissection of the molecular constituents and enzymatic equipment of envelope membranes 

(Douce and Joyard 1979, 1990; Douce et al. 1984; Rolland et al. 2003). Then, the extensive 

use of molecular genetics placed research on envelope membranes within the context of 

whole plant functional studies (Ohlrogge et al. 1991; Ohlrogge and Browse 1995; Weber et al. 

2004). Today’s research combines all these approaches to analyze, for instance, lipid 

trafficking within the plant cell (Kelly and Dormann 2004; Benning and Ohta 2005; Benning 

et al. 2006; Jouhet et al. 2007), protein import processes into chloroplasts (Cline and Henry 

1996; Chen and Schnell 1999; May and Soll 1999; Keegstra and Froehlich 1999; Jarvis and 

Soll 2002; Soll and Schleiff 2004; Bedard and Jarvis 2005; Hofmann and Theg 2005), solute 

transporters (Flügge 1999; Weber et al. 2004, 2005) or chloroplast division (Kuroiwa et al. 

1998; Osteryoung 2001; Miyagishima et al. 2003; Aldridge et al. 2005; Haswell and 

Meyerowitz 2006). Interestingly, the evolutionary origin of chloroplasts is analyzed owing to 

studies of the prokaryotic and eukaryotic features of envelope membranes (see for instance 

Archer and Keegstra 1990; Hashimoto 2003; Steiner and Loffelhardt 2005; Reumann et al. 

2005; Vothknecht and Soll 2005; Ishida 2005; Bredemeier et al. 2007).  

A large body of knowledge is now available on chloroplast envelope membranes. Here, a 

brief overview of envelope constituents is provided together with recent insights into the 

major functions fulfilled by envelope membranes and their dynamics within plant cells. 
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Glycerolipids and terpenoid compounds as membranes 
constituents of chloroplast envelopes 

Glycerolipids 

Envelope membranes are a very lipid-rich structure compared to thylakoids or mitochondrial 

membranes and this confers to the envelope membranes a low density. The outer envelope 

membrane has the highest lipid to protein ratio among plant cells membranes (2.5 to 3 mg 

lipids/mg proteins), and this is responsible for its very low density (1.08 g/cm3, Block et al. 

1983a). The lipid to protein ratio of the inner membrane is rather high (1-1.2 mg lipids/mg 

proteins), corresponding to a density of 1.13 g/cm3, Block et al. 1983a). 

 Plastid membranes possess several polar neutral lipids containing galactose and called 

galactolipids (Benson 1964). They represent the most abundant lipid class in the biosphere 

because of their high proportion (80%) in plastid membranes (mostly thylakoids) together 

with the abundance of plants and algae on earth (Benson et al. 1958). As shown in Table 1, 

plastid membranes (outer and inner envelope membranes and thylakoids) are characterized by 

a low phospholipid content and by a high proportion of galactolipids: the outer envelope 

membrane is enriched in DGDG (digalactosyldiacylglycerol) and PC (phosphatidylcholine), 

whereas the main glycerolipid constituent of the inner envelope membrane and thylakoids is 

MGDG (monogalactosyldiacylglycerol). The inner envelope and the thylakoid membranes do 

not differ significantly: they comprise the two galactolipids (MGDG and DGDG), a 

sulfolipid, and phosphatidylglycerol (PG) as the only phospholipid in these membranes (Table 

1). Facing the cytosol, the outer surface of the outer envelope membrane can be probed 

directly with intact chloroplasts by using specific antibodies, proteases or lipases. For 

instance, Billecocq et al. (1972) and Billecocq (1975) have shown, by means of specific 

antibodies, that galactolipids and sulfolipid are present in the cytosolic leaflet of the outer 

envelope membrane. By using phospholipase C treatment of isolated intact chloroplasts, 

Dorne et al. (1985) have demonstrated that the envelope PC is concentrated in the outer leaflet 

of the outer envelope membrane and absent from the other plastidial membranes (inner 

envelope membrane and thylakoids).  

Analyses of whole envelope membranes (containing both outer and inner envelope 

membranes) from spinach chloroplasts, cauliflower proplastids or pea etioplasts led to the 

conclusion that the glycerolipid pattern of envelope membranes from all plastid types is 

almost identical (Douce and Joyard, 1990). In some plastid preparations, like in proplastids, 
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small amounts of PE (phosphatidylethanolamine) can be found. Quantification of membrane 

cross-contamination indicated that these trace amounts of PE are likely reflecting a 

contamination by extraplastidial membranes such as plant mitochondria or peroxisomes (that 

contain only phospholipids: mostly PC and PE). Therefore, determination of the glycerolipid 

composition of isolated plant membranes is a good way to probe their purity. In plants grown 

under normal conditions, galactolipids are restricted to plastid membranes. However, in the 

past decade, it has been shown that, when plants are deprived of Pi, DGDG strongly and 

specifically increases (Härtel et al. 1998, 2000; Klaus et al. 2002), and furthermore, that 

DGDG is present not only in plastid membranes but also in several membranes disconnected 

from plastid membranes: in the plasma membrane (Andersson et al. 2003), in the 

mitochondrial membranes (Jouhet et al. 2004), and in the tonoplast (Andersson et al. 2005). 

Since galactolipids are likely to be synthesized in plastids, these observations raise the 

question of their origin (see below). 

In fact, the situation is rather more complex because each glycerolipid actually exists in 

membranes as various molecular species differing by their fatty acid composition at sn-1 and 

sn-2 position of the glycerol and originating from complex biosynthetic pathways. For 

instance, there are two main classes of galactolipids (Heinz 1977; Heinz and Roughan 1983; 

Mongrand et al. 1998) issued from two specific sources of DAG and notably represented at 

the level of MGDG by different classes. The prokaryotic-type class of galactolipids contains 

16-carbon fatty acids at sn-2 position of glycerol. The eukaryotic-type class contains only 18-

carbon fatty acids at sn-2 position of glycerol (Heinz 1977; Siebertz et al. 1979). Some plants 

such as Arabidopsis and spinach have both prokaryotic-type and eukaryotic-type MGDG, 

whereas other plants such as pea or cucumber have only eukaryotic-type MGDG. DGDG is 

mostly of eukaryotic-type in all plants. PG contains exclusively prokaryotic DAG and is 

unique since it contains a 16:1trans fatty acid at the sn-2 position of the glycerol backbone 

(Siebertz et al. 1979; Fritz et al. 2006). In contrast, PC is a typical eukaryotic lipid. 

 Altogether, these observations reflect the complexity and the flexibility of glycerolipid 

biosynthetic pathways that allow plants to adapt to fluctuating environmental conditions. An 

example of this flexibility will be given below by analyzing galactolipid synthesis and the 

associated lipid trafficking during adaptation of plant cell to phosphate deprivation. 

Other lipid-soluble envelope constituents 

Plants membranes, and especially plastid membranes, contain a wide diversity of compounds 

serving numerous biochemical functions in plants and deriving from the isoprenoid 
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biosynthetic pathway (Lange and Ghassemian 2003): carotenoids (C40) and chlorophylls 

(which contain a C20 isoprenoid side-chain) are pigments essential for photosynthesis; 

plastoquinone, phylloquinone and ubiquinone (all of which contain long isoprenoid side-

chains) participate in electron transport chains; etc… Many of them have been identified as 

basic constituents of chloroplast envelope membranes that play a key role in their synthesis 

(Douce and Joyard 1990). Furthermore, since chloroplasts contain biosynthetic pathways for 

phytohormones derived from isoprenoid intermediates such as gibberellins (C20) and abscisic 

acid (C15), one can suggest a role of envelope membranes in such processes, but despite some 

evidences (Helliwell et al. 2001), we are still missing a global view of the participation of 

envelope membranes to the production of signaling terpenoids derivatives. 

Carotenoids 

They are the most conspicuous envelope membrane pigments: in contrast to thylakoids, 

envelope membranes from chloroplasts and non-green plastids are yellow, due to the presence 

of carotenoids (about 10 µg/mg protein) and the absence of chlorophyll (Table 1). In all 

envelope membranes, violaxanthin is the major carotenoid whereas thylakoids are richer in β-

carotene (Jeffrey et al. 1974). The physiological significance of such a distribution is still 

poorly understood. In thylakoids, a transmembrane violaxanthin cycle is organized with de-

epoxidation taking place on the lumen side and epoxidation on the stromal side of the 

membrane (Yamamoto et al. 1999). In the envelope, violaxanthin undergoes a light-induced 

decrease without a corresponding increase in zeaxanthin: Siefermann-Harms et al. (1978) 

showed that the envelope lacked a violaxanthin cycle and that the decrease of violaxanthin 

paralleled the decrease in thylakoids. An exchange of violaxanthin between the thylakoid and 

envelope but not of zeaxanthin was concluded to occur. Yamamoto (2006) observed that the 

relative solubilities of violaxanthin and zeaxanthin in MGDG, DGDG and phospholipids 

could explain the differential partitioning of violaxanthin between the envelope and thylakoid. 

The violaxanthin cycle is hypothesized to be a linked system of the thylakoid and envelope 

for signal transduction of light stress (Yamamoto 2006). Finally, an enzyme of the zeaxanthin 

pathway, β-carotene hydroxylase, was detected by proteomics in envelope membranes (Ferro 

et al. 2003), thus providing further support to a role of envelope membranes in carotenoid 

biosynthesis (Costes et al. 1979). 

Chlorophyll precursors 
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Although devoid of chlorophyll, envelope membranes contain low amounts of chlorophyllide 

and protochlorophyllide (Pineau et al. 1986, 1993) (Table 1), thus suggesting that part of 

chlorophyll biosynthetic pathway is present in envelope membranes. Interestingly, Ferro et al. 

(2002, 2003) identified protochlorophyllide oxidoreductase in proteomic analysis of spinach 

and Arabidopsis envelope membranes in good agreement with our previous observations 

based on fluorescence (Pineau et al. 1986) or using antibodies (Joyard et al. 1990). The 

question is then to understand why some steps of chlorophyll synthesis are present in 

envelope membranes devoid of photosystems. Reinbothe et al. (1995) suggested that 

protochlorophyllide could regulate plastid import of pPORA and hence its accumulation in 

the plastid inner membranes. Such a mechanism is expected to couple protochlorophyllide 

synthesis to pPORA import (Reinbothe et al. 2000). Furthermore, there is some evidence that 

the synthesis of chlorophyll precursors in envelope membranes is involved in intracellular 

signalling for the control of chloroplast development. This will be discussed more in details 

below. 

Quinones 

Like thylakoids, chloroplast envelope membranes contain several prenylquinones as basic 

constituents (Lichtenthaler et al. 1981; Soll et al. 1985): plastoquinone-9, phylloquinone K1, 

α-tocoquinone and the chromanol, α-tocopherol (Table 1). However, the relative quinone 

composition of the envelope differs distinctively from that of the thylakoid membranes. The 

outer envelope membrane contains more α-tocopherol than the inner one although this 

prenylquinone is the major one in both membranes. On the contrary, plastoquinone-9, the 

major thylakoid prenylquinone, is present in higher amounts in the inner envelope membrane 

than in the outer one. Soll et al. (1985) demonstrated that all the enzymes involved in the last 

steps of α-tocopherol and plastoquinone-9 biosynthesis are localized on the inner envelope 

membrane. These results demonstrate that the inner membrane of the chloroplast envelope 

plays a key role in chloroplast biogenesis, especially for the synthesis of the two major plastid 

prenylquinones. The tocochromanol biosynthetic pathway has been studied in Arabidopsis in 

recent years, and the respective mutants and genes were isolated (reviewed by Dormann 

2007). With the exception of 4-Hydroxyphenylpyruvate dioxygenase (HPPD), a cytosolic 

enzyme (Garcia et al. 1997), and tocopherol cyclase (VTE1) associated to plastoglobules 

(Vidi et al. 2006; Ytterberg et al. 2006), the other enzymes of tocopherol biosynthesis localize 

to the envelope membranes of chloroplasts (Soll and Schultz 1980; Soll et al. 1985; Block et 

al. 1991). The localization of the enzymes of tocopherol synthesis to different sites within the 

chloroplast implies that lipid trafficking is required for the transport of tocopherol 
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intermediates between subplastidial compartments. Mutant characterization revealed that 

tocopherol protects plant lipids against oxidative stress. Dormann (2006) reviewed the various 

roles of tocopherol in plants that are more complex than previously anticipated: further 

aspects such as interference with signaling pathways, subcellular/subplastidial localization 

and interactions with the chlorophyll degradation pathway have to be taken into consideration.  

 Furthermore, enzymes that could be involved in chloroplast prenylquinone biosynthesis 

were also found in proteomic analyses of envelope membranes (Ferro et al. 2003). IEP37 is 

the most conspicuous one. This major inner envelope membrane protein is a SAM-dependent 

methyltransferase (Teyssier et al. 1996) committed to the biosynthesis of plastid 

prenylquinones (Motohashi et al. 2003). These observations are strong arguments in favor of 

a major role of envelope membranes in the biosynthesis of plastid prenylquinones. 

Sterols 

Plastid membranes contain very few sterols (7 µg/mg protein) compared to extraplastidial 

membranes. Hartmann-Bouillon and Benveniste (1987) found that the major sterol in 

envelope membranes was stigmat-7-enol, whereas in the microsomes from the same tissue, it 

is α-spinasterol, thus suggesting that the presence of sterols in envelope membranes is not 

caused by contamination by sterol-rich membranes (endoplasmic reticulum or plasma 

membrane). 

Towards the protein repertoire of chloroplast envelope membranes 

Initially, identifying the functions of the chloroplast envelope was made possible by using 

methods based on classical enzymatic assays, owing to the preparation of highly purified 

envelope membranes (reviewed by Douce and Joyard 1979, 1990): for instance, enzymes 

catalyzing galactolipid synthesis were shown to be restricted to envelope membranes (Douce, 

1974). Still, MGDG synthesis remains the best enzymatic marker for envelope membranes. 

The major plastid envelope solute transporters were identified by biochemical purification and 

peptide sequencing (Weber et al. 2005). Indeed, the phosphate/triose phosphate translocator 

represents about 20% of the envelope proteins and was the first envelope protein identified on 

a molecular basis (Flügge et al. 1989). Polypeptidic markers for the outer envelope 

membranes were then identified after 2D-gel electrophoresis of envelope membranes purified 

from thermolysin-treated chloroplasts (Joyard et al. 1983). However, biochemical approaches 

have shown their limits for identifying chloroplast envelope proteins: the purification and 

assay of minor hydrophobic proteins is extremely difficult because it requires large amounts 
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of detergents (the lipid to protein ratio is very high in envelope membranes). More recently, 

strategies involving molecular genetic approaches also led to the identification of several 

envelope proteins (see for instance the work on identification of chloroplast division 

machinery, recently reviewed by Maple and Møller 2006), but by essence, such a strategy 

cannot be focused on envelope proteins unless functional homologues of the protein of 

interest are known. 

To get a more comprehensive view of the envelope protein equipment, one should use 

more general strategies. Indeed, proteomics, by combining the interest of targeted approaches 

(made possible by the purification of chloroplast envelope membranes) together with the 

availability of an increasing number of genome sequences (see for instance the AGI 2000), 

proved to be a formidable tool to identify new proteins and therefore new functions residing 

to chloroplast envelope membranes. Envelope membranes from spinach and Arabidopsis 

chloroplasts were actually used as models to develop new strategies for identifying membrane 

proteomes owing to a wide set of complementary methods. In most cases, membrane proteins 

separated by SDS-PAGE, were in-gel digested by trypsin and tryptic fragments were analyzed 

by LC-MS/MS (Ferro et al. 2002, 2003). Combined to the use of different extraction 

procedures and analytical techniques, i.e. solubilization in chloroform/methanol, and alkaline 

and saline treatments, this allowed identification of more than 100 proteins with a wide range 

of hydrophobicity. Most of the proteins identified from the plastid envelope, and especially 

proteins localized in the inner membrane, were shown to be basic (Ferro et al. 2003; Sun et al. 

2004; Ephritikhine et al. 2004). Furthermore, the dynamic range of the protein identified in 

envelope membrane was wide. For instance, Ferro et al. (2003) identified by proteomics the 

Pht2;1 protein in the SDS-PAGE band together with the phosphate/triose-phosphate 

transporter. Whereas this last protein represents about 20% of the chloroplast envelope protein 

content, the Pht2;1 protein is present at only trace level and was identified only in 

chloroform/methanol extract because it was extracted by the organic solvent and therefore 

concentrated in the organic phase. During the course of proteomic analyses of spinach 

chloroplast envelope, Ferro et al. (2002) identified a protein (IEP60) homologous to the 

Arabidopsis Pht2;1 Pi transporter. Interestingly, Pht2;1 was previously suggested to be 

localized in the plasma membrane and involved in the uptake and intercellular movement of 

Pi in Arabidopsis shoots (Daram et al. 1999). In support to proteomic analyses, experiments 

based on transient expression of Pht2;1::GFP fusions in Arabidopsis leaves and western blot 

analyses demonstrated unambiguously the localization of this protein in the inner membrane 
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of chloroplast envelope, exclusively (Versaw and Harrisson 2002; Ferro et al. 2002). This 

demonstrates that a proteomic study targeted to a well characterized compartment can provide 

new and reliable data. 

 This envelope protein repertoire was enriched by the study by Froehlich et al (2003) using 

off-line multidimensional protein identification technology (MUDPIT) and further analyses 

are still in progress. Bioinformatics approaches were also shown of significant interest to 

identify envelope membranes (Koo and Ohlrogge 2002; Ferro et al. 2002, 2003; Rolland et al. 

2003; Sun et al. 2004). For instance, Koo and Ohlrogge (2002) made attempts to predict 

plastid envelope proteins from the Arabidopsis nuclear genome by using computational 

methods and criteria such as the presence of N-ter plastid-targeting peptide and of membrane-

spanning domains (known thylakoid membrane proteins being subtracted). Using a 

combination of predictors and experimentally derived parameters, four plastid subproteomes, 

including envelope proteomes, were predicted from the fully annotated Arabidopsis genome 

by Schwacke et al. (2003). They developed a novel database for Arabidopsis integral 

membrane proteins, named ARAMENMON, and identified, among the 5800 proteins 

containing one or two transmembrane domains 660 proteins that are probably targeted to 

plastids and Weber et al. (2005) listed the proteins that could be involved in transport across 

the envelope membranes.  

Envelope proteins and the ionic/metabolic dialog between plastids 
and the cytosol 

Since early work on intact chloroplasts, the inner envelope membrane is known to represent 

the actual permeability barrier between plastids and the surrounding cytosol whereas the outer 

envelope membrane is expected to be freely permeable to small molecules owing to the 

presence of porins (see Weber et al. 2005). This is probably not as simple since substrate-

specific gated pore-forming proteins were characterized in the outer envelope membrane 

(Pohlmeyer et al. 1997, 1998; Bölter et al. 1999; Goetze et al. 2006; Hemmler et al. 2006). 

Altogether, the combined proteomic and in silico approaches suggest that a series of known or 

putative transport systems are likely to be localized in the chloroplast envelope (Seigneurin-

Berny et al. 1999; Ferro et al. 2002; Weber et al. 2005). To date, these proteins can be 

classified as following: (a) proteins of known function already localized in the envelope (e.g. 

triose-P/Pi translocator); (b) proteins of known function previously mislocalized (e.g. a H+/Pi 

transporter); (c) expected proteins of predictable function that were not yet precisely localized 
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(e.g. HPTLC ATP/ADP translocator homologue, sulfate or folate transporters); (d) 

unexpected proteins of predictable function (e.g. IEP60 H+/Pi or taurocholate transporters); 

and (e) proteins of unpredictable function (HP45, HP34, etc.). 

 One of the major findings of such proteomic analyses is the identification of several 

proteins that could be involved in phosphate transport across the envelope (reviewed by 

Weber et al. 2005). Interestingly, whereas some transporters, like the members of the triose-

P/Pi, PEP/Pi, or Glucose-6P/Pi translocators catalyze an equimolar exchange of Pi, others like 

the putative H+/Pi transporter could catalyze a net import of Pi in the chloroplast. Such 

transporters are likely to be essential for controlling the phosphate level in the stroma and the 

homeostasis required to initiate the Calvin cycle, especially during the dark/light and 

light/dark transitions. Identification of these new phosphate transport systems in chloroplasts 

is expected to lead to a better understanding of their role in cell metabolism. 

 The identification, in the same envelope sample, of two members of the 2-

oxoglutarate/malate translocator family (Ferro et al. 2002) suggests that these proteins are 

probably not differentially expressed (either spatially or temporally) but could differ in 

substrate specificity: indeed the HPSOT protein (or DiT2 translocator) was further 

demonstrated to catalyze the transport of glutamate/malate (Renne et al. 2003). The 

identification of several other proteins is consistent with transport activities already associated 

with the chloroplast envelope. For example, although many amino acid transporters were 

identified in plants (Ortiz-Lopez et al. 2001), the nature of the protein that drives the export of 

these compounds from their unique site of synthesis (the chloroplast) to the cytosol remains to 

be identified. Identification of members of the amino acid transporter families during this 

study provides candidates that could catalyze this transport activity. Because of metabolism 

compartmentation, several other organic or inorganic compounds are suspected to cross the 

plastid envelope membranes through as-yet-uncharacterized mechanisms. For example, 

although the mitochondria were demonstrated to be the sole site of dihydrofolate synthesis in 

the plant cell, folate-mediated reactions were identified in the cytosol, the mitochondria, and 

the plastids (Ravanel et al. 2001), thus suggesting that folate must be imported in the 

chloroplast. One candidate for folate transport across the chloroplast envelope had been 

suggested by bioinformatic analysis (Ferro et al. 2002). Recent characterization of chloroplast 

envelope folate transporters has validated this hypothesis (Bedhomme et al. 2005; Klaus et al. 

2005). Another example is the transport of S-adenosylmethionine which is formed exclusively 

in the cytosol but plays a major role in plastids. The demonstration that chloroplasts can 

import S-adenosylmethionine from the cytosol was performed recently (Ravanel et al. 2004) 

 



 14

and the corresponding S-adenosylmethionine transporter was further identified and 

characterized (Bouvier et al. 2006). In good agreement with this former paper, the localization 

of this protein in the chloroplast envelope had previously been suggested by bioinformatic 

analysis (Koo and Ohlrogge 2002) and demonstrated by proteomics (Ferro et al. 2002, 2003). 

It is worth mentioning that this transporter is probably dual targeted since it was also recently 

demonstrated to reside within mitochondria (Palmieri et al. 2006). Another example is the 

participation of envelope membranes in the exchange of metabolites from the cytosolic 

(mevalonate) and the plastidial (methylerythritol phosphate) isoprenoid pathways (see 

Hemmerlin et al. 2003). It is not yet possible to decide which product of the methylerythritol 

phosphate pathway is exported to the cytosol or which cytosolic intermediate enters the 

plastidial compartment. Recent experiments have suggested that, while the 1-deoxy-D-

xylulose 5-phosphate might cross the envelope membrane through the xylulose 5-phosphate 

translocator, the protein catalysing the transport of isopentenyl diphosphate does not 

correspond to one of the previously characterized transporter (Flügge and Gao 2005). 

Identification of new envelope transporters may help understanding the cross-talk between 

plastids and the cytosol for the biosynthesis of plant terpenoid derivatives.  

 Combining proteomic and in silico approaches, Ferro et al. (2002, 2003) also identified a 

series of Na+-dependent putative transporters in the chloroplast envelope membranes such as 

Pi transporters, Na+/taurocholate transporters, Na+/H+ antiporter and Na+-dependent ascorbate 

transporter. Transporters belonging to the same families are expected to play a major role in 

pH and Na+ homeostasis of living organisms, but very little is known on the possible 

physiological role of their chloroplast homologues in higher plants. Interestingly, several 

Na+/H+ antiporters have been identified in the Synechocystis sp. PCC 6803 genome and the 

gene knock-outs were constructed for some of them and functionally analyzed (Wang et al. 

2002). This further demonstrates the interest of cyanobacteria for functional studies and 

suggests that homologous recombination strategies using cyanobacteria could be used to 

identify the function of envelope transporters (for review, see Barbier-Brygoo et al. 2001). 

 Chloroplasts contain a large variety of ions among which metal ions such as copper, iron, 

manganese, and zinc that are essential for their development and function. Unfortunately, little 

is known about ion transport across the chloroplast envelope. Several chloroplast P1B-type 

ATPases were demonstrated as being involved in metal ions transport: PAA1 (Shikanai et al. 

2003), PAA2 (Abdel-Ghany et al. 2005) and HMA1 (Seigneurin-Berny et al. 2006). PAA1 

reside to the chloroplast envelope and supplies copper to the chloroplast (Shikanai et al. 

2003), whereas PAA2, is a thylakoid membrane protein and delivers copper to the thylakoid 
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lumen (Abdel-Ghany et al. 2005). HMA1 was identified by proteomics among the 

Arabidopsis envelope proteins (Ferro et al. 2003). The respective function of the two envelope 

proteins is still unclear. Seigneurin-Berny et al. (2006) performed an extensive functional 

analysis of HMA1. HMA1 is mainly expressed in green tissues, and is indeed located in the 

inner membrane of the chloroplast envelope. Characterization of hma1 Arabidopsis mutants 

revealed lower chloroplast copper content and a diminution of the total chloroplast superoxide 

dismutase activity. No effect was observed on the plastocyanin content in these lines. The 

hma1 mutants grew like WT plants in standard condition but presented a photosensitivity 

phenotype under high light. Finally, direct biochemical ATPase assays performed on purified 

chloroplast envelope membranes showed that the ATPase activity of HMA1 is specifically 

stimulated by copper. These results demonstrate that HMA1 offers an additional way to the 

previously characterized chloroplast envelope Cu-ATPase PAA1 to import copper in the 

chloroplast (Seigneurin-Berny et al. 2006). 

A complex path for proteins across chloroplast envelope 
membranes 
Chloroplast biogenesis relies on protein encoded by both plastid and nuclear genomes, but 

most chloroplast proteins are encoded by nuclear genes and are post-translationally imported 

into chloroplasts across the chloroplast envelope membranes. Protein import consists of 

different steps: protein precursors are specifically recognized by receptors at the outer 

envelope membrane owing to targeting signals (transit sequences), then they are translocated 

across the two envelope membranes. These processes require the co-ordinated action of 

protein translocon complexes in the outer and inner envelope membranes. 

 All proteins targeted to the five different intraplastidic subcompartments (the 

intermembrane space, the inner envelope, the stroma, the thylakoid membranes and the 

lumen) contain cleavable N-terminal transit peptides that are quite variable in length and 

actual amino acid composition. These transit peptides contain all the information that is 

necessary and sufficient for import. In contrast, almost all proteins located at the outer 

envelope membrane do not bear such cleavable extensions and their targeting signals reside 

within the mature part of the proteins (with the only known exception of Toc75; Tranel and 

Keegstra 1996). During the actual import process, transit peptides are proteolytically removed 

by a stromal processing peptidase. Transit peptides can be simple, as found for stroma 

proteins, or bipartite, as found for proteins destined to thylakoids. In the latter case, the N-

terminal part directs the precursor to the stroma, whereas the non-cleaved C-terminal part 
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directs the partially processed precursors to their final intraorganellar destination; i.e. the 

thylakoid membranes and the thylakoid lumen. Ultimate precursor maturation occurs by 

virtue of the thylakoid processing peptidase (Richter and Lamppa 2003). Insertion of the 

overwhelming part of the outer envelope membrane proteins was first though not to require 

either surface-exposed receptors or energy and had generally been assumed to be 

accomplished by a spontaneous mechanism or through interaction with the lipid components 

of the outer membrane (Keegstra and Cline 1999, Schleiff and Klösgen 2001). Although early 

work suggested otherwise, the best-studied outer membrane proteins are now known to use 

both proteins within the chloroplast and NTPs for insertion (Tsai et al. 1999; Tu and Li 2000; 

Tu et al 2004; Hofmann and Theg 2005). 

 During chloroplast import, the transit peptide first recognizes the chloroplast surface in a 

process involving membrane lipids and the TOC complex (Translocon at the Outer 

Chloroplast envelope) (Kouranov et al. 1997). The TOC complex consists of three distinct 

core subunits: the GTP-dependent Toc34 and Toc159 receptors and the translocation channel 

protein Toc75 (Gutensohn et al. 2006; Kessler and Schnell 2006). Translocation across the 

inner envelope is mediated by another multiprotein complex, the TIC complex (Translocon at 

the Inner Chloroplast envelope), and requires ATP in the stroma, most likely providing 

energy for the activity of chaperones (Pain and Blobel 1987). In the inner envelope, the 

translocation channel is presumably composed of Tic110, Tic20 and Tic32. Moreover several 

auxiliary subunits can associate with the TIC core components, including the two redox 

proteins Tic55 and Tic62, the intermembrane space protein Tic22 and the chaperone 

coordinating factor Tic40 (Gutensohn et al. 2006).  

 An emerging concept suggests that multiple types of import complexes could be present 

within the same cell, each having a unique affinity for different plastid precursor proteins, 

depending upon the mix of TIC/TOC isoforms it contains. With the completion of the 

Arabidopsis genome sequencing project, it was possible to identify multiple isoforms of many 

TOC and TIC proteins, including Toc159 (Bauer et al. 2000), Toc34 (Jarvis et al. 1998; 

Gutensohn et al. 2000; Jelic et al. 2003), Toc75 (Eckart et al. 2002), Tic22 and Tic20 

(Jackson-Constan and Keegstra 2001). Using proteomics, Ferro et al. (2002, 2003) identified 

a series of proteins that could be part of TIC/TOC complexes. They can be classified 

according to the following groups: (a) known components of the TOC complex (Toc34, 

Toc75, Toc159) and proteins (HP32b, HP64b) similar to known components of the TOC 

complex (Toc34 and Toc64, respectively); (b) components of the TIC complex such as Tic40, 

Tic55, a Tic55-like (HP62) protein, and proteins with homology with Tic20 (IEP16) and 
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Tic62 (HP26c); (c) chaperones involved in protein import, HP112 (IAP100) and ClpC; (d) 

proteins (HP20, HP22, HP30, HP30-2) with some homology to components of the 

mitochondrial import machinery (Tim17/Tim22). Further evidence was provided for the 

existence of distinct plastid import pathways for NADPH:protochlorophyllide 

oxidoreductases (POR) A and PORB (Reinbothe et al. 2004). Interestingly, the OEP16 

receptor protein specifically required for the PORA import pathway corresponds to one 

member of the Tim17/Tim22 protein family previously identified by proteomics (Ferro et al. 

2002; 2003) and an exhaustive study of this family of preprotein and amino acid transporter 

has recently been performed (Murcha et al. 2007). Studies of Ivanova et al. (2004) and Kubis 

et al. (2004) revealed that different Toc subcomplexes are capable of harbouring different 

precursors. Finally, Nada and Soll (2004) described unusual plastid import characteristics for 

the inner envelope protein Tic32. These results raise questions concerning the possible 

existence of several complexes corresponding to distinct import machineries in chloroplast 

envelope membranes. 

 Proteomic analyses of chloroplast envelope membranes also led to the characterization of 

an inner envelope protein, ceQORH, which was devoid of cleavable N-ter transit sequences 

and contained internal targeting information (Miras et al. 2002). Brix et al. (1999) suggested 

that different import mechanisms probably exist for translocation of cleavable and non-

cleavable preproteins that are targeted to mitochondria (see also Diekert et al. 1999), but this 

still remains to be demonstrated. Thus, the question of whether ceQORH uses or not the 

classical TOC complex comprising TOC75 to cross the outer envelope is presently under 

investigation. 

 Finally, Villajero et al. (2005) identified a probable new import pathway for some 

chloroplast-located proteins via the secretory pathway: CAH1 (a member of the α-type family 

of carbonic anhydrases) takes an alternative route through the secretory pathway, and 

becomes N-glycosylated before entering the chloroplast. In silico analyses predicted that the 

protein sequence targets the protein to the endoplasmic reticulum (ER) and locates a potential 

signal peptidase cleavage at its N-terminus, a characteristic feature of proteins of the secretory 

pathway. However, immunolocalization analysis in Arabidopsis subfractions localized CAH1 

in the chloroplast stroma. This was then confirmed by analyzing transiently expressed CAH1–

GFP in Arabidopsis protoplasts: it was targeted to the chloroplasts. It therefore seems that the 

CAH1 sequence information is sufficient for chloroplast targeting of the fusion protein in 

vivo. This original targeting of N-glycosylated protein from the ER-Golgi system to the 
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chloroplast was supported by more recent and similar results obtained for a rice plastidial N-

glycosylated nucleotide pyrophosphatase/phosphodiesterase (Nanjo et al. 2006).  

Lipid metabolism in chloroplast envelope membranes: from 

synthesis to trafficking 

The chloroplast envelope as a major site of lipid metabolism in plant cells 

MGDG synthase activity was first localized in the envelope by Douce (1974) and further 

studies led to the identification of 2 different families of MGDG synthase both associated 

with the chloroplast envelope membranes (Awai et al. 2001). In Arabidopsis, AtMGD1 is the 

unique member of type A MGDG synthase family and is necessary for chloroplast 

development (Jarvis et al. 2000). The protein is associated with the chloroplast envelope inner 

membrane (Block et al. 1983b; Miège et al. 1999) whereas the type B MGDG synthases 

likely associate with the outer surface of plastids (Awai et al. 2001). Compared to type B 

enzymes, AtMGD1 is very active and can produce with the same efficiency prokaryotic- and 

eukaryotic-type galactolipids (see above). Type B MGDG synthases are less efficient and 

more selective for production of eukaryotic-type galactolipids (Awai et al. 2001). 

Furthermore, MGD1 is strongly expressed in all kinds of plant tissues while type B MGDG 

synthases are expressed only in restricted tissue areas, mainly in flowers and roots, or more 

specifically in some conditions such as Pi deprivation (Awai et al. 2001; Kobayashi et al. 

2004, 2006). 

 The eukaryotic-type DAG originates from phosphatidylcholine (PC) hydrolysis through 

PLD or PLC whereas the prokaryotic-type DAG is formed inside plastids by acylation of 

glycerol-3-P and dephosphorylation of phosphatidic acid (PA) independently of PC 

hydrolysis. Studies with labelled lipid precursors indicated that PC provides its DAG-

backbone to eukaryotic galactolipids (Heinz and Harwood 1977; Slack et al. 1977). This step 

requires desaturated PC since the fad2 Arabidopsis mutant, deficient in the desaturation of 

C18:1 localised in endomembranes (most likely the ER), contains a smaller eukaryotic et 

prokaryotic MGDG ratio than wild type plants (Okuley et al. 1994). Although PC is present in 

the outer membrane of the plastid envelope, the only reported site of PC de novo biosynthesis 

is the endomembrane system (probably ER). A trafficking of PC, or of some molecules 

directly issued from PC, is therefore required for the synthesis of eukaryotic-type 

galactolipids. Partial hydrolysis of PC to LysoPC in endomembranes was proposed to favour 

transfer of DAG-backbone between endomembranes and chloroplast since amphiphilic 
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lysoPC can move easily through the cytosol (Bessoule et al. 1995). In support to this 

hypothesis, a lysoPC acyltransferase activity was detected in the chloroplast envelope 

(Bessoule et al. 1995). Other hypotheses are that transfer of DAG-backbone occurs through 

trafficking of DAG or PA. 

 Chloroplast envelope membranes are also involved in the synthesis of other chloroplast-

specific lipids, such as sulfolipid and phosphatidylglycerol. The last steps in the biosynthesis 

of sulfolipid requires the synthesis of UDP-sulfoquinovose from UDP-glucose and sulfite 

(catalyzed by the SQD1 protein in Arabidopsis; Essigmann et al. 1999), and the transfer of the 

sulfoquinovose moiety from UDP-sulfoquinovose to DAG (produced by the envelope 

Kornberg-Price pathway), catalyzed by the SQD2 gene of Arabidopsis (Yu et al. 2002). This 

last activity has been described in envelope preparations from spinach chloroplasts by Seifert 

and Heinz (1992). T-DNA insertion into this gene in Arabidopsis led to complete lack of 

sulfolipid in the respective sqd2 mutant. This mutant showed reduced growth under 

phosphate-limited growth conditions. The results support the hypothesis that sulfolipid can 

function as a substitute of anionic phospholipids under phosphate-limited growth conditions 

(Yu et al. 2002). Along with phosphatidylglycerol, sulfolipid contributes to maintaining a 

negatively charged lipid-water interface, which presumably is required for proper function of 

photosynthetic membranes (Frentzen 2004). 

 Phosphatidylgycerol is synthesized from cytosine 5′-diphosphate (CDP)-diacylglycerol 

and glycerol-3-phosphate by the same reaction sequence, involving the action of a membrane-

bound PG-phosphate synthase and PG-phosphate phosphatase, in both prokaryotes and 

eukaryotes. In plants, PG biosynthesis occurs in the inner envelope membranes of plastids, in 

the inner membranes of mitochondria and in the endoplasmic reticulum (reviewed by 

Frentzen 2004). The presence, in envelope membranes, of enzymes involved in PG synthesis 

was also demonstrated by proteomics (Ferro et al. 2002, 2003, see below). In Arabidopsis 

thaliana, the PG-phosphate synthase isozymes of the three different compartments are 

encoded by two related genes, PGP1 and PGP2 (Müller and Frentzen 2001). PGP2 encodes 

the microsomal isozyme, whereas PGP1 encodes a preprotein that is targeted to both plastids 

and mitochondria (Müller and Frentzen 2001; Babiychuk et al. 2003). In mutants deficient in 

the plastidial PG-phosphate synthase, the development of chloroplasts in the leaf cells was 

severely arrested (Hagio et al. 2002). On the other hand, deficiency in the mitochondrial PG-

phosphate synthase of Arabidopsis had no significant effects on the biogenesis, the protein 

and glycerolipid composition or the ultrastructure of mitochondria. Hence, PGP1 is essential 
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for plastidial PG biosynthesis and for photoautotrophic growth, whereas it is redundant for the 

biosynthesis of PG in mitochondria (Frentzen 2004). 

Chloroplast envelope proteomics and lipid metabolism 

Proteomic analyses of spinach and Arabidopsis envelope membranes (Ferro et al. 2002, 2003) 

led to the identification of several proteins involved in chloroplast membrane lipid 

biosynthesis: for instance, an enzyme of the Kornberg-Pricer pathway (2-lysophosphatidate 

acyltransferase), MGDG synthase (AtMGD1) and PG synthase (together with a 

phosphatidylglycerophosphate synthase-like protein and a putative CDP-diacylglycerol 

synthetase). Furthermore, a series of enzymes involved in fatty acid metabolism were also 

identified in chloroplast envelope membranes (Ferro et al. 2002, 2003): two subunits of the 

acetyl-CoA carboxylase (ACCase) complex, a long-chain acyl-CoA synthetase (LACS9), two 

desaturases (omega-3 and omega-6 fatty acid desaturases), and enzymes involved in fatty acid 

hydroperoxide metabolism (allene oxide synthase and phospholipid hydroperoxide 

glutathione peroxidase). In silico analyses led to similar results. Some of these proteins, like 

LACS9 (Schnurr et al. 2002) and allene oxide synthase (Blée and Joyard 1996) were known 

envelope enzymes, while others, like the two desaturases, were expected to reside to the 

envelope. The presence of the α and β subunits of ACCase in envelope fraction was not really 

expected, since ACCase is considered as a stromal enzyme. However, these data support a 

series of observations (Thelen and Ohlrogge 2002) suggesting that ACCase is anchored to the 

chloroplast envelope through non-ionic interactions with the carboxyltransferase subunits. 

Altogether, these results provide further evidence for the participation of chloroplast envelope 

membranes to several aspects of lipid metabolism (biosynthesis, transfer, desaturation, 

oxidation…) and in the production of lipid-derived plant growth regulators and defense 

compounds in response to extracellular stimuli. 

Galactolipid synthesis and associated lipid trafficking during adaptation of plant cell to 

phosphate deprivation 

Recent studies concerning the modification of galactolipid content induced by Pi deprivation 

led to a better understanding of how the galactolipid synthesis pathway in envelope 

membranes is coupled to a trafficking of lipids to, across and from the chloroplast envelope. 

In this paragraph, we will consider how processes connected to the chloroplast envelope 

especially lipid trafficking are involved in the lipid adaptation of the cell to Pi deprivation 

(Fig.1). 
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 In plants, Pi deprivation is known to induce a decrease of the phospholipid content 

consistent with a mobilization of the Pi reserve in these molecules, and conversely to induce 

an increase of non-phosphorous membrane lipids such as DGDG (Härtel et al. 1998). A form 

of DGDG with specific fatty acid signature (16:0 at sn-1 position of glycerol and 18:2 at sn-2 

position) is particularly enhanced corresponding to the synthesis of a eukaryotic-type of 

DGDG (Härtel et al. 1998, 2000; Klaus et al. 2002). The newly synthesized DGDG was 

proposed to replace missing PC in cell membranes after relocation outside plastids (Härtel et 

al. 2000). For instance, upon Pi deprivation, oat membrane fractions enriched in plasma 

membranes accumulate tremendous amounts of DGDG, up to 70% of the total plasma 

membrane glycerolipid content (Andersson et al. 2003). The exposure to Pi starvation 

conditions was used as a way to analyze the transfer of the DAG–backbone from PC to 

galactolipids corresponding to a trafficking of unknown lipid molecules from ER to the 

plastid envelope. Jouhet et al. (2003) analyzed the time-course evolution of lipid composition 

of cell suspension after exposure to Pi starvation. DAG level in these cells was rather high and 

its fatty acid composition relatively similar to PC composition. Pi starvation induced a 2 fold 

increase of DAG content in the cells. Since DAG is usually not detected in plastids, Jouhet et 

al. (2003) proposed that DAG could be the molecule transported from ER to chloroplast. 

Indeed some data suggested that phospholipases C and D located outside of plastids are 

involved in the PC hydrolysis necessary for galactolipid formation (Andersson et al. 2005). In 

addition, during Pi deprivation, several phospholipases C such as NPC4 are specifically 

activated (Nakamura et al. 2005; Misson et al. 2005). 

 However, the role in galactolipid synthesis of phospholipases Dζ activated by Pi 

deprivation and the analysis of tgd1/2 knock out mutants indicated that the transported 

molecule can also be PA. The detection of a strongly and early enhanced expression of 

PLDζ2 under Pi deprivation (Misson et al. 2005) paved the way to show that proteins of the 

PLDζ family, PLDζ2 and PLDζ1, play some role in DGDG biosynthesis in roots (Cruz-

Ramirez et al. 2006; Li et al. 2006 a,b). Under strong Pi starvation, PLDζ2 and PLDζ1 

generate DAG that is galactosylated into MGDG and eventually into DGDG (Li et al. 2006b). 

MGD2, MGD3, DGD1 and DGD2, all overexpressed by Pi deprivation and fairly located in 

the envelope outer membrane are likely involved in the final galactosylation steps. Two 

envelope proteins recently characterized by Benning and coworkers apparently contribute to a 

transport of PA in the envelope membranes (Xu et al. 2005; Awai et al. 2006). TGD1 is part 

of an ABC-type transporter and TGD2 is a phosphatidic acid (PA)-binding protein. Their 
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removal affects the galactolipid metabolism of the plant. To feed galactolipid synthesis, PA 

should then be converted to DAG. The precise localization of the Phosphatidic acid 

phosphatase (PAP) is therefore crucial. A PAP activity is indeed present in the inner envelope 

membrane (Joyard and Douce 1979; Block et al. 1983b; Andrews et al. 1985). However, in 

some plants such as pea with only eukaryotic-type galactolipids, the activity of the inner 

envelope-associated PAP is very low and ultimately inefficient to generate galactolipids 

(Andrews et al. 1985). Therefore, at least in some plants, transport of DAG up to the inner 

envelope membrane should be necessary to ensure eukaryotic-type galacolipid synthesis and 

the role of a trafficking of PA in the envelope membranes remains to be determined. 

 In order to understand the routes of lipid trafficking towards MGDG synthesis, it will be 

interesting to unravel the localization of phospholipases C and D such as NPC4 and PLDζ1/2. 

Some specific domains of ER called PLAM (PLastid Associated Membrane) are present at the 

periphery of the chloroplast closely interacting with the envelope and possibly involved in 

these lipid transfers (Andersson et al. 2007). Although DGDG has not been detected in the ER 

outside of the PLAM domains, it has been similarly proposed that, during Pi deprivation, 

PLAM may be involved in the transfer of DGDG from envelope to endomembranes 

(Andersson et al. 2007). 

 To investigate how DGDG transfers from chloroplast envelope to mitochondria 

membranes, Jouhet et al. (2004) surveyed cell structures during the course of adaptation to Pi 

deprivation. They failed to observe any formation of vesicles. Rather, they noticed numerous 

tight appositions of membranes from envelope and mitochondria during early phases of Pi 

deprivation which could sustain a contact-favoured transfer. Whereas a transfer of DGDG 

from isolated chloroplasts towards isolated mitochondria was not detected, they observed that 

mitochondria-associated envelope membranes were able to transfer in vitro newly formed 

DGDG to mitochondria. In addition, the transfer was selective for DGDG compared to 

MGDG. 

 Altogether, Pi deprivation affects considerably the membranes of the plant cell: it induces 

a decrease of the phospholipid content consistent with a mobilization of the Pi reserve, and 

conversely an increase of non-phosphorous membrane lipids such as DGDG. These changes 

are focussed on the plastid envelope where galactosylation of DAG occurs but they involve 

the whole cell and integrate intensively pre-existing and new lipid trafficking (Fig.1). The 

close dependence of galactolipid synthesis on phospholipid hydrolysis in extra-plastidial 

membranes indicates an activated transfer of a DAG-backbone to the plastid envelope. 
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Although recent data gave some indications about the nature of several proteins and lipids 

involved in the transfer, we still need investigation to understand the whole process. We 

especially need to determine exactly the respective contribution of PA and DAG and which 

membranes provide for the DAG-backbone. Whether Pi deprivation is correlated to regression 

of some specific membranes and development of others may give us some clues about the 

metabolic management of Pi deprivation at the cell level. The important delocalization of 

DGDG from plastids to some particular membranes of the cell also opens a new area of 

research. Future works include elucidation of the molecular mechanisms involved in the 

transfer of DGDG from plastid envelope to these membranes. Since membrane biogenesis is 

specific, it is very likely that the modes of transfer are different for mitochondria and for 

membranes connected to the endomembrane network such as the plasma membrane or the 

tonoplast. Under standard situation, the lipid composition of each type of membrane is very 

stable even when comparing different plants. Therefore an intriguing question concerns the 

regulation of the lipid modifications. The triggering of the lipid modification upon Pi 

deprivation is an interesting challenge. 

Chlorophyll synthesis in the envelope and the chloroplast-nucleus 
dialog  

The development of photosynthetic membranes is dependent upon the synthesis of 

chlorophylls and their specific integration into photosynthetic complexes. Chlorophylls are 

Mg tetrapyrrole molecules issued from condensation of δ−ALA. The initial steps up to 

protoporphyrinogen IX occur in the soluble phase of plastids whereas the subsequent steps are 

membrane-bound. Since chlorophyll binding proteins are inserted into photosystems in 

thylakoids, chlorophylls were anticipated to be synthesized in thylakoids and indeed one of 

the last step of the synthesis i.e. addition of the prenyl chain onto chlorophyllide is found only 

in thylakoids (Block et al. 1980). However, a number of investigations indicated that the 

envelope is also involved in chlorophyll synthesis despite the fact that it is devoid of 

chlorophyll (see above). Here, we will consider some possible explanations for the 

localization at the envelope membranes of some part of the chlorophyll synthesis pathway and 

how this activity could be related to the control of chloroplast development.  

 First indications of the role of the envelope in chlorophyll synthesis came up from the 

observation that several chlorophyll precursors from protoporphyrin IX to 

protochlorophyllide are present in the envelope (Pineau et al. 1986, 1993). Localization of 
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enzymatic activities has further shown that several enzymes of the biosynthetic pathway are 

linked to the envelope (see above). The protochlorophyllide oxidoreductase (POR) generates 

chlorophyllide. POR accumulates in etioplast prolamellar bodies before conversion of 

etioplasts into chloroplasts with light. It remains in low amount in mature chloroplasts where 

its activity is detected in the envelope (Pineau et al. 1986; Joyard et al. 1990). Insertion of Mg 

into protoporphyrin IX is considered as the first typical enzyme of the chlorophyll synthesis 

pathway since metal chelation differentiates this pathway from the heme synthesis pathway. 

Mg chelatase is a multisubunit enzyme, containing 3 soluble proteins: ChlH, ChlI, and ChlD 

(Gibson et al. 1995; Willows et al. 1996; Papenbrock et al. 1997). Subchloroplastic 

localization of CHLH was analyzed immunologically in soybean cells and revealed that 

CHLH localization oscillates between stroma and envelope according to the level of Mg2+ 

(Nakayama et al. 1998). CHLH was not detected in the thylakoid fraction in this study. 

However, Larkin et al. (2003) reported the detection of CHLH in a GUN4-associated complex 

purified from Arabidopsis thylakoids and suggested that a fraction of Mg chelatase may 

associate with thylakoids. Actually, three other different steps of chlorophyll synthesis have a 

dual localization in envelope and thylakoids. It was first reported that PPO, the 

protoporphyrinogen oxidoreductase occurs on both type of membranes (Matringe et al. 1992). 

Moreover, it was demonstrated that CHLM, the Mg-protoporphryn IX methyltransferase, and 

CHL27, a subunit of the Mg-protoporphyrin IX methylester cyclase, exhibit also this dual 

localization although each protein is encoded by a single gene (Block et al. 2002; Tottey et al. 

2003; Pontier et al. 2007). 

 Chlorophyll formation is totally dependent on the CHLM gene product in Arabidopsis 

(Pontier et al. 2007). The inactivation of this gene prevents setting up of chlorophyll binding 

proteins in the thylakoids whereas most other proteins in the chloroplast remain relatively 

stable. Not only photosystem I and II with their associated light harvesting complex are 

affected but also the cytb6f complex that contains very low amounts of chlorophyll (Pierre et 

al. 2003). Chlorophyll is required for maturation of chlorophyll binding proteins, for correct 

folding of the complexes and for their insertion in the thylakoids (for a review Paulsen 2001). 

Chlorophyll has also a stabilizing effect on complexes and when lacking chlorophyll the 

complex proteins becoming substrate for proteases. This was reported for chloroplast-encoded 

proteins such as D1, CP43 and Cyt f (37) and it may explain the absence of these proteins in 

the mutant since the corresponding mRNAs were expressed at relatively normal levels in the 

mutant. Similarly, CHL27 is required for the synthesis of protochlorophyllide (Tottey et al. 
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2003). An antisense approach in Arabidopsis was used to address the function of chloroplast 

CHL27. A clear correlation between the degree of chlorosis and the abundance of CHL27 was 

observed in the antisense mutants. Mg-protoporphyrin IX methylester accumulated in the 

chlorotic plants while there was a decrease of protochlorophyllide. The effect of restricted 

chlorophyll availability upon the two photosystems and their peripheral antennas was 

confirmed by fluorescence emission at 77K.  

 Altogether, the dual localization of CHLM and CHL27 in Arabidopsis may correspond to 

two specific sites of chlorophyll synthesis within the chloroplast. These sites may contribute 

differentially to formation of individual chlorophyll proteins, perhaps depending on the 

developmental state of the chloroplast or environmental factors. 

 Some chlorophyll binding proteins that are synthesized in the cytosol may need to 

associate to chlorophyll or chlorophyll intermediates during import through the envelope. 

Supporting this hypothesis, manipulation of Chlamydomonas in vivo systems and mutagenesis 

of specific residues in the LHCB has shown that accumulation of physiological amounts of 

LHCB by the plastid requires interaction of the protein with chlorophyll within the inner 

membrane of the envelope (White et al. 1996; Hoober and Eggink, 1999). More recently, it 

was demonstrated that chlorophyllide a oxygenase (CAO) is involved in the regulated import 

and stabilization of the chlorophyllide b binding light-harvesting proteins LHCB1 (LHCII) 

and LHCB4 (CP29) in chloroplasts (Reinbothe et al. 2006). 

 The dual localization of single enzymes in the envelope and in thylakoids may 

additionally indicate communication links between the two chlorophyll synthesis sites. Some 

of the intermediates present in envelope may play a role in signaling between chloroplast and 

nucleus in order to coordinate chloroplast development and nuclear gene expression. In 

Chlamydomonas, Mg protoporphyrin IX and Mg protoporphyrin IX methylester were shown 

to substitute for light in the induction of the nuclear gene HSP70 (Kropat et al. 2000). In 

Arabidopsis, an increased accumulation of Mg protoporphyrin IX has been reported in 

Norfluorazon-treated plants in which photooxidation of the plastid compartment leads to the 

repression of nuclear photosynthesis-related genes (Mayfield and Taylor 1984; Strand et al. 

2003). Furthermore, a genetic screen based on the use of Norfluorazon has allowed the 

identification of a series of Arabidopsis gun (for genome-uncoupled) mutants that are 

deficient in chloroplast-to-nucleus signaling. Several of the corresponding mutations have 

been shown to affect genes coding for the protoporphyrin IX manipulating proteins CHLH, 

CHLD and GUN4 (Mochizuki et al. 2001; Larkin et al. 2003; Strand et al. 2003). In these 
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mutants, Norfluorazon treatment induces only a moderate increase in Mg protoporphyrin IX 

level, correlated with partial derepression of transcription of the nuclear photosynthesis-

related genes. These results indicated a role of Mg protoporphyrin IX accumulation in the 

repression of these genes. However, this demonstration was based on manipulation of plants 

with Norflurazon that has obvious pleiotropic effects. Moreover, due to the possibility of 

substrate channeling occurring between Mg chelatase and Mg protoporphyrin IX 

methyltransferase, it was not possible in these experiments to clearly distinguish the specific 

contributions of Mg protoporphyrin IX and its methylester. 

 Supporting the intricacy of the regulation of nuclear photosynthesis-related gene 

expression, it has recently been shown that the barley xantha-l mutant, defective in the Mg 

protoporphyrin IX methylester cyclization step, has a non-gun phenotype in the presence of 

Norflurazon (Rzeznicka et al. 2005; Gadjieva et al. 2005). In the absence of Norflurazon, the 

mutant has a high level of LHCB gene expression despite the accumulation of Mg 

protoporphyrin IX methylester. Furthermore, it has been shown that the Arabidopsis CHLM 

knock-out mutant behaves like a super-repressor of the LHCB promoter and seems more 

efficient in repressing LHCB expression than wild type plants treated with Norflurazon 

(Pontier et al. 2007). The repression basically due to accumulation of Mg protoporphyrin IX 

may be enhanced by the complete absence of Mg protoporphyrin IX methylester or its 

derivatives. One of these components may act as a positive effector of nuclear photosynthetic 

gene expression. Mg protoporphyrin methylester itself may be a positive effector. In support 

of this hypothesis, (Alawady et al. 2005) reported positive correlation between LHCB 

expression and methyltransferase activity in tobacco CHLM antisense and sense RNA 

mutants. Altogether, CHLM would be essential for fine control of LHCB expression. The 

localization of CHLM in the chloroplast envelope may contribute to the export of Mg 

protoporphyrin IX and Mg protoporphyrin IX methylester from chloroplasts for chloroplast-

to-nucleus signaling. 

 The Mg protoporphyrin IX methyltransferase activity is obviously dependent on the 

availability of Mg protoporphyrin IX but is also certainly adjusted to levels of Ado-Met and 

Ado-Hcy. Ado-Met is synthesized in the cytosol and is imported into chloroplast through an 

exchange of Ado-Met and Ado-Hcy (Ravanel et al. 2004). The position of CHLM on the 

chloroplast surface should liberate Mg protoporphyrin IX methylester formation from Ado-

Met and Ado-Hcy chloroplast level. Conversely, the envelope CHLM activity would be 

directly related to the one-carbon metabolism. As a consequence, the differential effects of 
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Mg protoporphyrin IX and Mg protoporphyrin IX methylester on LHCB expression and the 

position of CHLM on the chloroplast surface should finely attune the synthesis of light 

harvesting proteins not only to chlorophyll synthesis but also to the general methylation 

capacity of the cell. 

 In conclusion, the fact that some part of the chlorophyll synthesis pathway is localized at 

the envelope membranes is related to chloroplast development on several aspects. Different 

enzymes present in the chloroplast envelope are encoded by a single gene and are essential for 

chlorophyll synthesis. Several light-harvesting proteins associate with chlorophyll or 

chlorophyll precursors during import through the envelope. Ratio between Mg protoporphyrin 

IX and Mg protoporphyrin IX methylester is monitored by CHLM within the envelope and 

this ratio is apparently important for chloroplast-to-nucleus signaling. This may facilitate both 

the sensing of the status of chlorophyll synthesis flux inside chloroplast and exposure of Mg 

protoporphyrin IX and Mg protoporphyrin IX methylester towards the cytosol. 

Conclusions and perspectives 

The picture emerging from our present understanding of plastid envelope membranes is that 

of a key player in plastid biogenesis and signalling for the co-ordinated gene expression of 

plastid-specific protein and of a major node for integration of metabolic and ionic networks in 

cell metabolism. Envelope membranes are indeed one of the most complex and dynamic 

system within a plant cell. This can be illustrated by the wide diversity of the lipid 

constituents of the envelope membranes, their transformation into numerous signalling 

molecules, and their surprising dynamics during development or adaptation to the changing 

environment. The most striking example is the importance of envelope membranes in the 

control of the membrane homeostasis under phosphate deprivation conditions: the plant cell 

makes an extensive use of the envelope-made galactolipids to ensure an almost normal 

energetic functioning of the whole cell. The understanding of the complexity of the network 

involved in galactolipid synthesis and distribution is still in its infancy. The same is true for 

the participation of envelope membranes in the formation and export of chlorophyll 

precursors, key actors in the dialog between chloroplasts and the nucleus for co-ordinating 

plastid biogenesis and plant cellular development. 

 A large body of knowledge has been generated by proteomic studies targeted on envelope 

membranes, thus revealing an unexpected complexity of this membrane system. Hundreds of 

different proteins have now been identified in purified envelope membranes from chloroplasts 
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(Ferro et al, 2002, 2003; Froehlich et al 2003; Rolland et al 2003). Therefore, although the 

envelope membranes only represent 1 to 2% of the total mass of proteins in chloroplasts, one 

can now estimate that the envelope membranes contain as high as 15-20% of the total number 

of chloroplast proteins. Since only few envelope proteins, such as the phosphate/triose 

phosphate translocator, are present in significant amounts, this means that envelope 

membranes contain mostly minor proteins, thus making functional studies of envelope 

proteins even more difficult. A large number of putative transport systems for metabolites and 

ions have been identified in envelope membranes: they are likely to be responsible for the 

functional integration of plastid metabolism within the whole cell and for the regulation of the 

ionic homeostasis. The large number of unknown proteins with several transmembrane 

domains identified by proteomics indicates that we are far from knowing the whole picture. A 

possible strategy is to analyze the impact of changing environmental conditions (drought, 

light, ions, heavy metals…) on the expression of these genes in mutant plants. Furthermore, it 

is becoming more and more obvious that the envelope membranes contain several protein 

import mechanisms: the idea that the envelope membranes contain a single Tic/Toc import 

mechanism is now challenged by the demonstration that several individual proteins do not 

follow the classical import mechanism. Several groups are presently dissecting the possible 

import machineries. 

 In addition to the questions emerging from our present understanding, several challenging 

problems involving plastid envelope membranes are of key interest. For instance, we now 

need to understand how the envelope participates to the integration of the various types of 

plastids in all plant tissues. Since the original endosymbiotic event from which they originate, 

plastids have diversified within plant cells where they fulfil a wide variety of roles. 

Meristematic cells contain proplastids, which ensure the continuity of plastids from 

generation to generation and are capable of considerable structural and metabolic plasticity to 

develop into various types of plastids that remain interconvertible. When leaves are grown in 

darkness, proplastids differentiate into etioplasts, which can be converted into chloroplasts 

under illumination. The metabolism of these various types of plastids is linked to the function 

of the tissue in which they are found. For instance, whereas the chief function of illuminated 

leaves is the assimilation of CO2 by chloroplasts, root plastids are mainly involved in the 

assimilation of inorganic nitrogen. Amyloplasts, which contain large starch grains, behave as 

storage reservoirs in stems, roots, and tubers. Chromoplasts synthesize large amounts of 

carotenoids and are present in petals, fruits, and even roots. The interconversions between 
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these different plastids are accompanied by dramatic changes including the development or 

the regression of internal membrane systems (thylakoids, prolamellar bodies…) and the 

acquisition of specific enzymatic equipment reflecting specialized metabolism. However, at 

all stages of these transformations, the two limiting envelope membranes remain, apparently 

unchanged, despite the fact that envelope protein profiles undergo considerable 

transformation during development. Therefore, one can easily imagine that the changes in 

plastid functions are tightly linked to functional transformation of plastid envelope 

membranes and thus within the envelope protein repertoire. 

 Understanding the interaction of the plastid surface with the cytosol is a fascinating 

question that can be addressed, for instance, owing to studies of stromules (see for instance 

Gunning 2005). Stromules are stroma-containing tubules formed at the surface of plastids 

(most commonly leucoplasts and chromoplasts). They are an extremely dynamic, but obscure 

system: how they grow, retract, and regrow is not known, the interaction with other cell 

structures (cytoskeleton, membranes…) is poorly understood whereas their exact function 

remains a mystery. The structural and functional basis for this remarkable flexibility is a key 

question.  

 Finally, another main challenge to understand the function of plastid envelope membranes 

is to analyze this system with an evolutionary perspective. Plastids have had a long and 

complex evolutionary past and the envelope membranes are a result of this evolution. Studies 

of the mechanisms of plastid division are some of the best examples of analyzing envelope 

membranes in such a perspective. Interestingly, research on the basic mechanism by which 

plastids divide has exploited mutants and searched for homologues of genes which function in 

prokaryotic cell division (Kuroiwa et al. 1998; Osteryoung 2001; Miyagishima et al. 2003; 

Aldridge et al. 2005; Haswell and Meyerowitz 2006). Furthermore, secondary endosymbiosis 

involving algae and an auxotrophic eukaryote also provide very interesting models to analyse 

envelope membranes in an evolutionary perspective. For instance, studies of the chloroplast-

like organelle, the apicoplast, harboured by protozoan parasites of the phylum Apicomplexa 

provide a unique system to analyze envelope membranes in an endosymbiotic system clearly 

distinct from that was achieved in the chloroplast (reviewed by Maréchal and Cesbron-

Delauw 2001). Furthermore, the biosynthetic pathways localized to this organelle are of 

cyanobacterial origin and therefore offer attractive targets for the development of new drugs 

for the treatment of malaria and toxoplasmosis (see Maréchal and Cesbron-Delauw 2001). In 
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such a perspective, deciphering new functions and proteins in plastid envelope membranes is 

therefore of major interest.  
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Table 1: Distribution of lipid compounds in chloroplasts 

 

 outer 
envelope 

membrane 

inner 
envelope 

membrane 

total 
envelope 

membranes 
thylakoids 

Total polar lipidsa (mg /mg protein) 2.5 - 3 1 1.2 - 1.5 0.6 - 0.8 
Polar lipids (% of total)     

MGDG 17 55 32 57 
DGDG 29 29 30 27 

Sulfolipid 6 5 6 7 
Phosphatidylcholine 32 0 20 0 

Phosphatidylglycerol 10 9 9 7 
Phosphatidylinositol 5 1 4 1 

Phosphatidylethanolamine 0 0 0 0 

Total Chlorophyllsb (µg /mg protein) nd nd 0.1 - 0.3 160 
Chlorophylls (% of total in the fraction)     

Chlorophyll a nd nd 86 72 
Chlorophyll b nd nd 14 28 

Chlorophyll precursorsb 
(Protochlorophyllide + Chlorophyllide, 
µg /mg protein) 

 
nd 

 
nd 

 
0.41 

 
0 - 0.35 

Total Carotenoidsc (µg /mg protein) 2.9 7.2 6 - 12 20 
Carotenoids (% of total)     

β-Carotene 9 12 11 25 
Violaxanthin 49 47 48 22 

Lutein + Zeaxanthin 16 23 21 37 
Antheraxanthin - 5 6 - 

Neoxanthin 26 13 13 16 

Total Prenylquinonesd (µg /mg protein) 4 - 12 4 - 11 4 - 11 4 - 7 
Prenylquinones (% of total)     

α-Tocopherol + α-Tocoquinone 81 67 69 24 
Plastoquinone-9 + Plastoquinol 18 32 28 70 

Phylloquinone K1 1 1 3 6 

 
 

Data are from spinach and the table was adapted from several publications (a): Douce and 

Joyard (1990); (b): Pineau et al. (1993); (c): Block et al; (1986a); (d) Lichtenthaler et al. 

(1981) and Soll et al. (1985) 
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Figure 1. Lipid metabolism and trafficking connected to galactolipid synthesis in the 

chloroplast envelope. Whereas prokaryotic type galactolipids are issued from phosphatidate 

(PAP) synthesized in the chloroplast, formation of eukaryotic type galactolipids is dependent 

on the supply to the envelope of some PC derivatives formed in the ER: either diacylglycerol 

(DAGE) or phosphatidate (PAE). PAP converting PA to DAG is present in the envelope but 

only in the inner membrane. Altogether, a number of lipid transfers noted by dashed arrows 

are important to build plastid membranes. Under phosphate deprivation, DGDG formation is 

stimulated corresponding to activation or stimulation of a part of the galactolipid synthesis 

pathway indicated in red. Under these conditions, DGDG is transferred through membrane 

contact between chloroplast and mitochondria. 
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