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DEGENERATIONS OF QUADRATIC DIFFERENTIALS

ON CP
1

CORENTIN BOISSY

Abstract. We describe the connected components of the comple-
ment of a natural “diagonal” of real codimension 1 in a stratum of
quadratic differentials on CP

1. We establish a natural bijection be-
tween the set of these connected components and the set of generic
configurations that appear on such “flat spheres”. We also prove
that the stratum has only one topological end. Finally, we elabo-
rate a necessary toolkit destined to evaluation of the Siegel-Veech
constants.
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1. Introduction

The article deals with families of flat metric on surfaces of genus
zero, where the flat metrics are assumed to have conical singularities,
Z/2Z linear holonomy and a fixed vertical direction. The moduli space
of such metrics is isomorphic to the moduli space of meromorphic qua-
dratic differential on CP

1 with at most simple poles and is naturally
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2 CORENTIN BOISSY

stratified by the number of poles and by the orders of zeros of a qua-
dratic differential.

Any stratum is non compact and a neighborhood of its boundary
consists of flat surfaces that admit saddle connections of small length.
The structure of the neighborhood of the boundary is also related to
counting problems in a generic surface of the strata (the “Siegel-Veech
constants, see [EMZ] for the case of Abelian differentials).

When the length of a saddle connection tends to zero, some other
saddle connections might also be forced to shrink. In the case of an
Abelian differential this correspond to homologous saddle connections.
In the general case of quadratic differentials, the corresponding collec-
tions of saddle connections on a flat surface are said to be ĥomologous1

(pronounced “hat-homologous”). Configurations associated to collec-

tions of ĥomologous saddle connections have been described for general
strata in [MZ] and more specifically in genus zero and in hyperelliptic
connected components in [B].

Usually, the study of the structure of the neighborhood of the bound-
ary is restricted to a thick part, where all short saddle connections are
pairwise ĥomologous (see [MS], and also [EMZ, MZ]). Following this
idea, we will consider the complement of the codimension 1 subset ∆
of flat surfaces that admit a pair of saddle connections that have both
minimal length, but which are not ĥomologous.

For a flat surface in the complement of ∆, we can define the configu-
ration of the maximal collection of ĥomologous saddle connections that
contains the smallest saddle connection of the surface. This defines a
locally constant map outside ∆ (see section 5 for more details).

We will prove the following result.

Main Theorem. Let Q1(k1, . . . , kr) be a stratum of quadratic differ-
entials on CP

1 with at most simple poles. There is a natural bijection
between the configurations of ĥomologous saddle connections existing
in that stratum and the connected components of Q1(k1, . . . , kr)\∆.

We will call the connected components of Q1(k1, . . . , kr)\∆ the con-
figuration domains of the strata. These configuration domains might
be interesting to the extend that they are “almost” manifolds in the
following sense:

Corollary 1.1. Let D be a configuration domain of a strata of qua-
dratic differentials on CP

1. If D admits orbifoldic points, then the cor-
responding configuration is symmetric and the locus of such orbifoldic

1The corresponding cycles are in fact homologous on the canonical double cover

of S, usually denoted as Ŝ, see section 1.2.
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points are unions of copies (or coverings) of submanifolds of smaller
strata.

Restricting ourselves to the neighborhood of the boundary, we show
that these domains have one topological end.

Proposition 1.2. Let D be a configuration domain of a strata of qua-
dratic differentials on CP

1. Let Q1,δ(k1, . . . , kr) be the subset of the
strata corresponding to area one surfaces with at least a saddle connec-
tion of length less than δ. Then D ∩ Q1,δ(k1, . . . , kr) is connected for
all δ > 0.

Corollary 1.3. Any stratum of quadratic differentials on CP
1 has only

one topological end.

Acknowledgements. I would like to thank Anton Zorich for encouraging
me to write this paper, and for many discussions. I also thank Erwan
Lanneau and Pascal Hubert for their useful comment.

1.1. Basic definitions. Here we first review standart facts about mod-
uli spaces of quadratic differentials. We refer to [HM, M, V1] for proofs
and details, and to [MT, Z] for general surveys.

Let S be a compact Riemann surface of genus g. A quadratic differ-
ential q on S is locally given by q(z) = φ(z)dz2, for (U, z) a local chart
with φ a meromorphic function with at most simple poles. We define
the poles and zeroes of q in a local chart to be the poles and zeroes
of the corresponding meromorphic function φ. It is easy to check that
they do not depend on the choice of the local chart. Slightly abus-
ing notations, a marked point on the surface (resp. a pole) will be
referred to as a zero of order 0 (resp. a zero of order −1). An Abelian
differential on S is a holomorphic 1-form.

Outside its poles and zeros, q is locally the square of an Abelian
differential. Integrating this 1-form gives a natural atlas such that the
transition functions are of the kind z 7→ ±z + c. Thus S inherits a flat
metric with singularities, where a zero of order k ≥ −1 becomes a con-
ical singularity of angle (k + 2)π. The flat metric has trivial holonomy
if and only if q is globally the square of any Abelian differential. If
not, then the holonomy is Z/2Z and (S, q) is sometimes called a half-
translation surface since transition surfaces are either half-turns, or
translations. In order to simplify the notation, we will usually denote
by S a surface with a flat structure.

We associate to a quadratic differential the set with multiplicity
{k1, . . . , kr} of orders of its poles and zeros. The Gauss-Bonnet for-
mula asserts that

∑
i ki = 4g − 4. Conversely, if we fix a collection
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{k1, . . . , kr} of integers, greater than or equal to −1 satisfying the pre-
vious equality, we denote by Q(k1, . . . , kr) the (possibly empty) moduli
space of quadratic differential which are not globally squares of Abelian
differential, and which have {k1, . . . , kr} as orders of poles and zeros .
It is well known that Q(k1, . . . , kr) is a complex analytic orbifold, which
is usually called a stratum of the moduli space of quadratic differentials
on a Riemann surface of genus g. We usually restrict ourselves to the
subspace Q1(k1, . . . , kr) of area one surfaces, where the area is given
by the flat metric. In a similar way, we denote by H1(n1, . . . , ns) the
moduli space of Abelian differentials of area 1 having zeroes of degree
{n1, . . . , ns}, where ni ≥ 0 and

∑s
i=1 ni = 2g − 2.

There is a natural action of SL2(R) on Q(k1, . . . , kr) that preserve
its stratification: let (Ui, φi)i∈I is a atlas of flat coordinates of S, with
Ui open subset of S and φi(Ui) ⊂ R2. An atlas of A.S is given by
(Ui, A◦φi)i∈I . The action of the diagonal subgroup of SL2(R) is called
the Teichmller geodesic flow. In order to specify notations, we denote
by gt and rt the following matrix of SL2(R):

gt =

[
e

t
2 0

0 e−
t
2

]
rt =

[
cos(t) sin(t)
− sin(t) cos(t)

]

A saddle connection is a geodesic segment (or geodesic loop) join-
ing two singularities (or a singularity to itself) with no singularities
in its interior. Even if q is not globally a square of an Abelian dif-
ferential we can find a square root of it along the saddle connection.
Integrating it along the saddle connection we get a complex number
(defined up to multiplication by −1). Considered as a planar vector,
this complex number represents the affine holonomy vector along the
saddle connection. In particular, its euclidean length is the modulus of
its holonomy vector. Note that a saddle connection persists under any
small deformation of the surface.

Local coordinates for a stratum of Abelian differential are obtained
by integrating the holomorphic 1-form along a basis of the relative
homology H1(S, sing, Z), where sing denote the set of conical singu-
larities of S. Equivalently, this means that local coordinates are defined
by the relative cohomology H1(S, sing, C).

Local coordinates in a stratum of quadratic differentials are obtained
in the following way: one can naturally associate to a quadratic differ-

ential (S, q) ∈ Q(k1, . . . , kr) a double cover p : Ŝ → S such that p∗q is

the square of an Abelian differential ω. The surface Ŝ admits a natural

involution τ , that induces on the relative cohomology H1(Ŝ, sing, C) an

involution τ ∗. It decomposes H1(Ŝ, sing, C) into a invariant subspace
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H+
1 (Ŝ, sing, C) and an anti-invariant subspace H−

1 (Ŝ, sing, C). One

can show that the anti-invariant subspace H−
1 (Ŝ, sing, C) gives local

coordinates for the stratum Q(k1, . . . , kr).

1.2. Ĥomologous saddle connections. Let S ∈ Q(k1, . . . , kr) be a

flat surface and denote by p : Ŝ → S its canonical double cover and τ
its corresponding involution. Let Σ be the set of singularities of S and

Σ̂ = p−1(Σ).
To an oriented saddle connection γ on S, we can associate γ1 and

γ2 its preimages by p. If the relative cycle [γ1] satisfies [γ1] = −[γ2] ∈

H1(Ŝ, Σ̂, Z), then we define [γ̂] = [γ1]. Otherwise, we define [γ̂] =
[γ1] − [γ2]. Note that in all cases, the cycle [γ̂] is anti-invariant with
respect to the involution τ .

Definition 1.4. Two saddle connections γ and γ′ are ĥomologous if
[γ̂] = ±[γ̂′].

Example 1.5. Consider the flat surface S ∈ Q(−1,−1,−1,−1) given in
Figure 1 (a “pillowcase”), it is easy to check from the definition that

γ1 and γ2 are ĥomologous since the corresponding cycles for the double

cover Ŝ are homologous.

1′

1

2

2

3

3
1

S γ1

γ2

1′

2′

Ŝ 2′

Figure 1. An unfolded flat surface S with two ĥomo-
logous saddle connections γ1 and γ2.

Example 1.6. Consider the flat surface given in Figure 2, the reader
can check that the saddle connections γ1, γ2 and γ3 are pairwise ĥomo-
logous.
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Figure 2. Unfolded flat surface with three ĥomologous
saddle connections γ1, γ2, and γ3.

The following theorem is due to Masur and Zorich [MZ]. It gives in
particular a simple geometric criteria for deciding whether two saddle
connections are ĥomologous. We give in the appendix an alternative
proof.

Theorem (H. Masur; A. Zorich). Consider two distinct saddle con-
nections γ, γ′ on a half-translation surface. The following assertions
are equivalent:

• The two saddle connections γ and γ′ are ĥomologous.
• The ratio of their length is constant under any small deforma-

tion of the surface inside the ambient stratum.
• They have no interior intersection and one of the connected

component of S\{γ ∪ γ′} has trivial linear holonomy.

Furthermore, if γ and γ′ are ĥomologous, then the ratio of their length
belongs to {1/2, 1, 2} and they are parallel.

A saddle connection γ1 will be called simple if they are no other sad-
dle connections ĥomologous to γ1. Now we consider a set of ĥomologous
saddle connections γ = {γ1, . . . , γs} on a flat surface S. Slightly abus-
ing notation, we will denote by S\γ the subset S\

(
∪s

i=1γi

)
. This subset

is a finite union of connected half-translation surfaces with boundary.
We define a graph Γ(S, γ) called the graph of connected components
in the following way (see [MZ]): the vertices are the connected compo-
nents of S\γ, labelled as “◦” if the corresponding surface is a cylinder,
as “+” if it has trivial holonomy (but is not a cylinder), and as “−”
if it has non-trivial holonomy. The edges are given by the saddle con-
nections in γ. Each γi is on the boundary of one or two connected
components of S\γ. In the first case it becomes an edge joining the
corresponding vertex to itself. In the second case, it becomes an edge
joining the two corresponding vertices.
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Each connected components of S\γ is a non-compact surface but
can be naturally compactified (for example considering the distance
induced by the flat metric on a connected component of S\γ, and the
corresponding completion). We denote this compactification by Sj. We
warn the reader that Sj might differ from the closure of the compo-
nent in the surface S: for example, if γi is on the boundary of just
one connected component Sj of S\γ , then the compactification of Sj

contains two copies of γi in its boundary, while in the closure of Sj

these two copies are identified. The boundary of each Si is a union of
saddle connections; it has one or several connected components. Each
of them is homeomorphic to S1 and therefore the orientation of S de-
fines a cyclic order in the set of boundary saddle connections. Each
consecutive pair of saddle connections for that cyclic order defines a
boundary singularity with an associated angle which is a integer mul-
tiple of π (because the boundary saddle connections are parallel). The
surface with boundary Si might have singularities in its interior. We
call them interior singularities.

Definition 1.7. Let γ = {γ1, . . . , γr} be a maximal collection of ĥo-
mologous saddle connections on a flat surface. A configuration is the
following combinatorial data:

• The graph Γ(S, γ)
• For each vertex of this graph, a permutation of the edges ad-

jacent to the vertex (encoding the cyclic order of the saddle
connections on each connected component of the boundary of
the Si).

• For each pair of consecutive elements in that cyclic order, the
angle between the two corresponding saddle connections.

• For each Si, a collection of integers that are the orders of the
interior singularities of Si.

We refer to [MZ] for a more detailed definition of a configuration (see
also [B]).

1.3. Neighborhood of the boundary, thick-thin decomposition.

For any compact subset K of a stratum, there exists a constant cK such
that the length of any saddle connection of any surface in K is greater
than cK . Therefore, we can define the δ-neighborhood of the boundary
of the strata to be the subset of area 1 surfaces that admit a saddle
connection of length less than δ.

According to Masur and Smillie [MS], one can decompose the δ-
neigborhood of the boundary of a stratum into a thin part (of negligibly
small measure) and a thick part. The thin part being for example the
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subset of surfaces with a pair of nonĥomologous saddle connections of
length respectively less than δ and Nδ, for some fixed N ≥ 1 (the
decomposition depends on the choice of N). We also refer to [EMZ] for
the case of Abelian differentials and to [MZ] for the case of quadratic
differentials.

Let N ≥ 1, we consider QN (k1, k2, . . . , kr) the subset of flat surfaces
such that, if γ1 is the shortest saddle connection and γ′

1 is another

saddle connection nonĥomologous to γ1, then |γ′
1| > N |γ1|. Similarly,

we define QN
1 (k1, k2, . . . , kr) the intersection of QN (k1, k2, . . . , kr) with

the subset of area 1 flat surfaces.
For any surface in QN(k1, k2, . . . , kr), we can define a maximal col-

lection F of ĥomologous saddle connections that contains the smallest
one. This is well defined because if there exists two smallest saddle
connections, they are necessary ĥomologous. We will show in sec-
tion 5 the associated configuration defines a locally constant map from
QN

1 (k1, k2, . . . , kr) to the space of configurations. This leads to the
following definition:

Definition 1.8. A configuration domain of Q1(k1, . . . , kr) is a con-
nected component of QN

1 (k1, . . . , kr).

Remark 1.9. The previous definition of a configuration domain is a little
more general than the one stated in the introduction that corresponds
to the case N = 1.

Definition 1.10. An end of a space W is a function

ǫ : {K, K ⊂ W is compact} → {X, X ⊂ W}

such that:

• ǫ(K) is a (unbounded) component of W\K for each K
• if K ⊂ L, then ǫ(L) ⊂ ǫ(K).

Proposition. If W is σ−compact, then the number of ends of W is the
maximal number of unbounded components of W\K, for K compact.

We refer to [HR] for more details on the ends of a space.

1.4. Example on the moduli space of flat torus. If T is a flat
torus (i.e. a Riemann surface with an Abelian differential ω), then,
up to rescaling ω, we can assume that the holonomy vector of the
shortest geodesic is 1. Then, choosing a second smallest non horizontal
geodesic with a good choice of its orientation, this defines a complex
number z = x + iy, with y > 0 , −1/2 ≤ x ≤ 1/2 and |z| ≥ 1. The
corresponding domain D in C is a fundamental domain of H/SL2(Z).
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It is well know that this defines an map from the moduli space of
flat torus with trivial holonomy (i.e. H(∅)), to H/SL2(Z) which is a
bundle, with C

∗ as fiber. Orbifoldic points of H(∅) are over the complex

number z1 = i and z2 = 1+i
√

3
2

. They correspond to Abelian differential
on torus obtained by identifying the opposite sides of a square, or a
regular hexagon.

Now with this representation, HN(∅) is obtained by restricting our-
selves to the subdomain DN = D ∪ {z, |z| > N} (see Figure 3). This
subdomain contains neither z1 nor z2, so HN(∅) is a manifold. In the
extreme case N = 1, the codimension one subset ∆ is an arc joining z1

to z2.

∆N

P1

P2

∆

P2

P1

Figure 3. Configuration domain in H(∅).

1.5. Reader’s guide. Now we sketch the proof of the Main Theorem.

(1) We first prove the theorem for the case of configuration do-
mains defined by a simple saddle connection (we will refer to
these configuration domains as simple). We will explain how we
can shrink a simple saddle connection, when its length is small
enough (therefore, describe the structure of the stratum in a
neighborhood of an adjacent one). This is done in section 4.

There is one easy case, when the shrinking process is done
by local and canonical surgeries. The other case involves some
non-local surgeries (hole transport) that depend on a choice of
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a path. We will have to describe the dependence of the choice of
the path. More details on these surgeries appears in section 3.

(2) The list of configurations was established by the author in [B].
The second step of the proof is to consider each configuration
and to show that the subset of surface associated to this con-
figuration is connected. This will be done in section 5 and will
use the “simple case”.

2. Families of quadratic differentials defined by an

involution

Consider a polygon whose sides come by pairs, and such that, for
each pair, the corresponding sides are parallel and have the same length.
Then identifying these pair of sides by appropriate isometries, this gives
a flat surface. In this section we show that any flat surface can arise
from such a polygon and give an explicit construction. We end by a
technical lemma that will be one of the key arguments of Theorem 4.1.

ζ8 = ζ3

ζ10 = ζ1

ζ1

ζ2

ζ3

ζ4 = ζ2

ζ5

ζ6

ζ7 = ζ6

ζ9 = ζ5

Figure 4. Flat surface unfolded into a polygon.

2.1. Constructions of a flat surface. Let σ be an involution of
{1, . . . , l + m}, without fixed points.

We denote by Qσ,l the set ζ = (ζ1, . . . , ζl+m) ∈ Cl+m such that:

(1) ∀i ζi = ζσ(i)

(2) ∀i Re(ζi) > 0.
(3) ∀1 ≤ i ≤ l − 1 Im(

∑
k≤i ζk) > 0

(4) ∀1 ≤ j ≤ m − 1 Im(
∑

1≤k≤j ζl+k) < 0

(5)
∑

k≤l ζk =
∑

1≤k≤m ζl+k.

Note that Qσ,l is convex and might be empty for some σ. Now we
will construct a map ZR from Qσ,l to the moduli space of quadratic
differentials. Slightly abusing conventional terminology, we will call a
surface in ZR(Qσ,l) a suspension over (σ, l), and a vector in Qσ,l is then
a suspension data.
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Furthermore, since Qσ,l is convex, the connected component of the
stratum is uniquely determined by (σ, l).

Easy case. Now we consider a broken line L1 whose edge number i
(1 ≤ i ≤ l) is represented by the complex number ζi. Then we con-
sider a second broken line L2 which starts from the same point, and
whose edge number j (1 ≤ j ≤ m) is represented by ζl+j. The last
condition implies that these two lines also end at the same point. If
that they have no other intersection points, then they form a polygon
(see Figure 4). The sides of the polygon, enumerated by indices of the
corresponding complex number, naturally come by pairs according to
the involution σ. Gluing these pair of sides by isometries respecting
the natural orientation of the polygon, this construction defines a flat
surface which have trivial or non-trivial holonomy.

First return map on a horizontal segment. Let S be a flat surface and
X be a horizontal segment with a choice of a positive vertical direction
(or equivalently, a choice of left and right ends). We consider the first
return map T1 : X → X of the vertical geodesic flow in the positive
direction. Any infinite vertical geodesic starting from X will intersect
X again. Therefore, the map T1 is well defined outside a finite number
of points that correspond to vertical geodesics that stop at a singularity
before intersecting again the interval X. This set X\{sing} is a finite
union X1, . . . , Xl of open intervals and the restriction of T1 on each Xi

is of the kind x 7→ ±x + ci. The time of first return of the geodesic
flow is constant along each Xi. Similarly, we define T2 to be the first
return map of the vertical flow in the negative direction and denote
by Xl+1, . . . , Xl+m the corresponding intervals. Remark that for i ≤ l
(resp. i > l) , T1(Xi) = Xj (resp. T2(Xi) = Xj) for some 1 ≤ j ≤ l+m.
Therefore, (T1, T2) induce a permutation σX of {1, l+m}, and it is easy
to check that σX is an involution without fixed points. When S is a
translation surface, T2 = T−1

1 and T1 is called an interval exchange
transformation.

If S ∈ ZR(Qσ,l), constructed as previously, we choose X to be the
horizontal line whose left end is the starting point of the broken lines,
and of length Re(

∑
k≤l ζk) . Then it is easy to check that σX = σ.

Veech zippered rectange construction. The broken lines L1 and L2 might
intersect at other points (see Figure 5). However, we can still define
a flat surface by using an analogous construction as the well known
zippered rectangles construction due to Veech. We give a description
of this construction and refer to [V1, Y] for the case of Abelian differ-
entials. This construction is very similar to the usual one, although its
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precise description is quite technical. Still, for completeness, we give
an equivalent but rather implicit formulation.

ζ7

ζ2

ζ3ζ1

ζ4

ζ5

ζ8

ζ9

ζ10

ζ6

Figure 5. Suspension data that does not give a “suit-
able” polygon.

We first consider the previous case when L1 and L2 define an ac-
ceptable polygon. For each pair of interval Xi, Xσ(i) on X, the return
time hi = hσ(i) of the vertical flow starting from x ∈ Xi and returning
in y ∈ Xσ(i) is constant. This value depends only on (σ, l) and on the
imaginary part of ζ . For each pair α = {i, σ(i)} there is a natural
embedding of the open rectangle Rα = (0, Re(ζi))× (0, hi) into the flat
surface S (see Figure 6). For each Rα, we glue a horizontal side to Xi

and the other to Xσ(i). The surface S is then obtained after suitable
identifications of the vertical sides of the the rectangles {Rα}. These
vertical identifications only depend on (σ, l) and on the imaginary part
of ζ .

2

1

1

2

R{1,10}

R{2,4}

Figure 6. Zippered rectangle construction, for the case
the flat surface of Figure 4.
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For the general case, we construct the rectangles Rα by using the
same formulas. Identifications for the horizontal sides are staightfor-
ward. Identifications for the vertical sides do not depends on the hori-
zontal parameters, and will be the same as for a suspension data ζ ′ that
have the same imaginary part as ζ , but that correspond to a suitable
polygon. This will be well defined after the following lemma.

Lemma 2.1. Let ζ be a collection of complex numbers in Qσ,l then
there exists ζ ′ ∈ Qσ,l with the same imaginary part as ζ, that defines a
suitable polygon.

Proof. We can assume that
∑l

k=1 Im(ζk) > 0 (the negative case is
analogous and there is nothing to prove when the sum is zero). It is
clear that σ(l+m) 6= l otherwise there would be no possible suspension
data. If σ(l + m) < l, then we can shorten the real part of ζl+m and of
ζσ(l+m), keeping conditions (1)—(5) satisfied, and get a suspension data
ζ ′ with the same imaginary part as ζ , and such that Re(ζ ′

l+m) < Re(ζ ′
l).

This last condition implies that ζ ′ defines a suitable polygon.
If σ(l + m) > l, then condition (5) might imply that Re(ζl+m) is

necessary bigger than Re(ζl). However, we can still change ζ into a
suspension data ζ ′, with same imaginary part, and such that Re(ζ ′

l+m)
is very close to Re(ζ ′

l). In that case, ζ ′ also defines a suitable polygon.
�

2.2. The converse: construction of suspension data from a flat

surface. Now we give a sufficient condition for a surface to be in some
Qσ,l. Note that an analogous construction for hyperelliptic flat surfaces
has been done in [V2].

ζ4

τ1,1

x1,2

τ1,2

x1,1 T1(X2)X2

ζ1

ζ2
ζ3

X

Figure 7. Construction of a polygon from a surface.
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Proposition 2.2. Let S be a flat surface with no vertical saddle con-
nection. There exists an involution σ and an integer l such that S ∈
ZR(Qσ,l).

Proof. Let X be a horizontal segment whose left end is a singularity.
Up to cutting X on the right, we can assume that the vertical geodesic
starting from its right end hits a singularity before meeting X again.

Let x1,1 < . . . < x1,l−1 be the points of discontinuity of T1 and
(x1,0, x1,l) be the end points of X. For each k, there exists τ1,k > 0 such
that the vertical geodesic starting from x1,k in the positive direction
stops at a singularity at time τ1,k (here τ1,0 = 0, since by convention
x1,0 is located at a singularity). Then for k ≥ 1 we define ζk : (x1,k −
x1,k−1)+ i(τ1,k − τ1,k−1). Now we perform a similar construction for the
vertical flow in the negative direction: let x2,1 < . . . < x2,m−1 be the
points of discontinuity of T2 and (x2,0, x2,m) be the extremities of X. For
each k /∈ {0, m}, the vertical geodesic starting from x2,k in the positive
direction stops at a singularity at time τ2,k < 0 (here again τ2,0 = 0 and
τ2,l > 0). For 1 ≤ k ≤ m, we define ζk+l : (x2,k−x2,k−1)+i(τ2,k−τ2,k−1).
So, we have a collection of complex numbers ζl+1, . . . , ζm+l that defines
a polygon P.

We have always Re(ζk) = Re(ζσX(k)) = |Xk|. Let 1 ≤ k ≤ l. If
σX(k) ≤ l, then τ1,k−1 + τ1,σX (k) = τ1,k + τ1,σX(k)−1 = hk (with hk the
time of first return to X of the vertical geodesic flow starting from
the subinterval Xk), otherwise there would exist a vertical saddle con-
nection (see figure 8). So Im(ζk) = Im(ζσX(k)). The other cases are
analogous. Thus ζ is a suspension data, and ZR(ζ) is isometric to
S. �

Vertical
saddle connection

T1(Xk)

A

B

A
B

Xk XkT1(Xk)

Figure 8. The complex numbers ζk and ζσX(k) are nec-
essary equal.

Remark 2.3. In the previous construction, the suspension data con-
structed does not necessary give a “suitable” polygon. However, we
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can show that by choosing carefully a subinterval X ′ of X, the con-
struction will give a true polygon. Since for any surface, we can find
a direction with no saddle connection, we can conclude that any sur-
face can be unfolded into a polygon as in Figure 4, up to rotating that
polygon.

2.3. A technical lemma. The following lemma is a technical lemma
that will be needed in section 4.2. It can be skipped in a first reading.
We previously showed that a surface with no vertical saddle connection
belongs to some ZR(Qσ,l). Furthermore, the corresponding pair (σ, l)
is completely defined by a first return map of the vertical flow on a well
chosen horizontal segment.

We define the set Q′
σ,l defined in a similar way as Qσ,l, but here we

replace condition 2 by the following two conditions:

(2) ∀i /∈ {1, σ(1)} Re(ζi) > 0.
(2′) Re(ζ1) = 0.

In other words, the first vector of the top broken line is now vertical and
no other vector is vertical except the other one of the corresponding
pair. Then we define in a very similar way a map ZR′ from Q′

σ,l to a
stratum of the moduli space of quadratic differentials.

Note that the subset Q′
σ,l is convex.

Lemma 2.4. Let S be a flat surface with a unique vertical saddle con-
nection joining two singularities P1 and P2. Let X be a horizontal
segment whose left end is P1, and such that the vertical geodesic start-
ing from its left end is the unique vertical saddle connection joining P1

to P2. There exists (σ, l) that depends only on the first return maps on
X of the vertical flow and on the degree of P2, such that S ∈ ZR′(Q′

σ,l).

Proof. We define as in Proposition 2.2 the xi,j , τi,j and ζj, with the
slight difference that now, τ1,0 > 0. Now, because there exists only one
vertical saddle connection, the same argument as before says that there
exists at most one unordered pair {ζi0, ζσ(i0)} such that ζi0 6= ζσ(i0). If
this pair doesn’t exists, then the union of the vertical geodesics starting
from X would be a strict subset of S, with boundary the unique vertical
saddle connection. Therefore, we would have P1 = P2, contradicting
the hypothesis.

Now we glue on the polygon P an Euclidean triangle of sides given
by {ζi, ζσ(i), iτ1,0}, and we get a new polygon. The sides of this poly-
gon appear in pairs that are parallel and of the same length. We can
therefore glue this pair and get a flat surface. By construction, we get
a surface isometric to S, and so S belongs to some ZR′(Q′

σ̃,l). The
permutation σ̃ is easily constructed from σ as soon as we know i0.
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This value is obtained by the following way: we start from the vertical
saddle connection, close to the singularity P2. Then, we turn around
P2 counterclockwise. Each half-turn is easily described in terms of the
permutation σ. Then after performing k2+2 half-turns, we must arrive
again on the vertical saddle connection. This gives us the value of i0.

�

3. Hole transport

Hole transport is a surgery used in [MZ] to show the existence of some
configurations and especially to break an even singularity to a pair of
odd ones. It was defined along a simple path transverse to the vertical
foliation. In this part, we generalize this construction to a larger class
of paths and show that breaking a zero using that procedure does not
depend on small perturbations of the path.

Hole transport also appears in [EMZ] in the computation of the
Siegel-Veech constants for the moduli space of Abelian differentials.
This improved surgery, and “dependence properties” that are Corollary
3.5 and Lemma 4.4 are a necessary toolkit for the computayion of these
these Siegel-Veech constants for the case of quadratic differentials.

Definition 3.1. A hole is a connected component of the boundary of a
flat surface given by a single saddle connection. The saddle connection
bounds a singularity. If this singularity has angle 3π, this hole is said
to be simple.

Convention 1. We will always assume that the saddle connection defin-
ing the hole is vertical

A simple hole τ has a natural orientation given by the orientation
of the underlying Riemann surface. In a neighborhood of the hole, the
flat metric has trivial holonomy and therefore q is locally the square of
an Abelian differential.

Convention 2. When defining the surgeries around a simple hole using
flat coordinates, we will assume (unless explicit warning) that the flat
coordinates come from a local square root ω of q, such that that

∫
τ
dz ∈

iR+.

Remark 3.2. Under convention 2, we may speak of the left or the right
direction in a neighborhood of a simple hole. Note that there exists
two horizontal geodesics starting from the singularity of and going to
the right, and only one starting from the singularity and going to the
left.
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simple hole

S

Figure 9. A hole in flat coordinates.

3.1. Parallelogram constructions. We first describe the three basic
surgeries on the surface that allow us to transport a simple hole along
a segment. Consider a simple hole τ and chose flat coordinates in a
neighborhood of the hole that satisfy convention 2. We consider a
vector v such that Re(dz(v)) > 0 (i.e. the vector v goes “to the right”
in our flat coordinates). Consider the domain Ω obtained as the union
of geodesics of length |v|, starting at a point of τ with direction v. When
Ω is an embedded parallelogram, we can remove it and glue together
by translation the two sides parallel to v. Here we have transported
the simple hole by the vector v. Note that the area changes under this
construction.

When Re(dz(v)) < 0, this construction (removing a parallelogram)
cannot work. The singularity is the unique point of the boundary
that can be the starting point of a geodesic of direction v. Now from
the corresponding geodesic, we perform the reverse construction with
respect to the previous one: we cut the surface along a segment of
length v and paste in a parallelogram. By means of this construction
we transport the hole along the vector v.

When Re(dz(v)) = 0, we consider a geodesic segment of direction v
starting from the singularity, and cut the surface along the segment,
then glue it with a shift (“Earthquake construction”).

There is an easy way to create a pair of holes in a compact flat
surface: we consider a geodesic segment imbedded in the surface, we
cut the surface along that segment and paste in a parallelogram as in
the previous construction. We get parallel holes of the same length
(but with opposite orientation). Note that we can assume that the
length of these holes is arbitrary small. In a similar way, we can create
a pair of holes by removing a parallelogram.

3.2. Transport along a piecewise geodesic path. Now we consider
a piecewise geodesic simple path γ = γ1 . . . γn with edges represented
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Figure 10. Parallelogram constructions.

by the vectors v1, v2, . . . , vn. We assume for simplicity that neither of vi

is vertical. The spirit is to transport the hole by iterating the previous
constructions. We make the hole to “follow the path” γ in the following
way (under convention 2):

• At step number i, we ask that the geodesic γi starts from the
singularity of the hole.

• When Re(dz(vi)) > 0, we ask γi to be the bottom of the paral-
lelogram Ω defined in the previous construction.

Naive iteration does not necessary preserve these conditions. The
surgery can indeed disconnect the path but then we can always recon-
nect γ by adding a geodesic segment. If the first condition is satisfied,
but not the second, we can add a surgery along a vertical segment of
the size of the hole to fulfill it. We just have to check that each itera-
tion between two consecutive segments of the initial path can be done
in a finite number of steps, see Figure 11.

(1) If Re(dz(vi)) and Re(dz(vi+1)) have the same sign, then as soon
as both transports are successively possible, our two conditions
keep being fulfilled.

(2) If Re(dz(vi)) > 0 and Re(dz(vi+1)) < 0, and if (vi, vi+1) is
positively oriented, the surgery with vi disconnect the path, and
we must add a new segment ṽ, but then Re(ṽ) and Re(vi+1) are
both negative, therefore, we can iterate the surgery keeping the
two conditions fulfilled.

(3) If Re(dz(vi)) < 0 and Re(dz(vi+1)) > 0, and if (vi, vi+1) is
negatively oriented, we must add a surgery along a vertical
segment to fulfill the second condition.
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3)

2)

1)

vi+1

vi+1

ṽ

vi vi+1

vi

vi+1

vi+1

vi
vi+1

vi+1

Figure 11. Hole transport along a piecewise geodesic curve.

(4) It is an easy exercise to check that for any other configuration of
(vi, vi+1), the direct iteration of the elementary surgeries works.

Of course, in the process we have just described, we implicitly as-
sumed that at each step, the condition imposed for the basic surgeries
(i.e. the parallelogram must be imbedded in the surface) is fulfilled.
But considering any compact piecewise geodesic path, the process will
be well defined as soon as the hole is small enough.

Remark 3.3. We can also define hole transport along a piecewise geo-
desic path that have self intersections. Here hole transport will discon-
nect the path at each intersections, but we can easily reconnect it and
hole transport also ends in a finite number of steps. We will not need
hole transport along such paths.

3.3. Application: breaking up an even singularity. We consider
a singularity P of order k = k1 + k2. When k1 and k2 are not both
odd, there is a local surgery that continuously break this singularity
into pair of singularities of order k1 and k2 (see section 4.1.1). When
k1 and k2 are both odd, this local surgery fails. Following [MZ] we use
hole transport instead.

Consider a pair (I, II) of sectors of angle π in a small neighborhood
of P , and such that the image of the first one by a rotation of (k2 +1)π
is the second sector. Now let γ be a simple broken line that starts and
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II I

Figure 12. Breaking a singularity.

ends at P , and such that its first segment belongs to sector I and its
last segment belongs to sector II. We ask that parallel transport along
γ to be Z/2Z (this has sense because k is even, so P admits a parallel
vector field in its neighborhood).

Then, we create a pair of holes by cutting the first segment and
pasting in a parallelogram. Denote by ε the length of these holes. One
hole is attached to the singularity. The other one is a simple hole.
We can transport it along γ, to the sector II. Then gluing the holes
together, we get a singular surface with a pair of conical singularities
that are glued together. If we desingularise the surface, we get a flat
surface with a pair of singularities of order k1 and k2 and a vertical
saddle connection of length ε. We will denote be Ψ(S, γ, ε) this surface.
The construction is continuous with respect to the variations of ε.

3.4. Dependence on small variations of the path. The previous
construction might depend on the choice of the broken line. We show
the following proposition:

Proposition 3.4. Let γ and γ′ be two broken lines that both start from
P , sector I and end to P , sector II. Let ε be a positive real number.
We assume that there exists an open subset U of S, such that:

• U contains γ\{P} and γ′\{P}.
• U is homeomorphic to a disc and have no conical singularities.
• The surgery described in section 3.3, with parameters (γ, ε) or

(γ′, ε) does not affect ∂U\P .

Then Ψ(S, γ, ε) and Ψ(S, γ′, ε) are isometric.
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γ

I

II

U V or V ′

Figure 13. The boundary of U and V (or V ′).

Proof. We denote by ∂U the boundary of the natural compactification
of U (that differ from the closure of U in S, see section 1.2). We

denote by P̃ and P̃ ′ the ends of γ in ∂U (that are also the ends of γ′ by
assumption). We denote by V (resp. V ′) the flat discs obtained from
U after the hole surgery along γ (resp. γ′). Our goal is to prove that
V and V ′ are isometric.

The hole surgery along γ (resp. γ′) does not change the metric in a
neighborhood of ∂U\{P̃ , P̃ ′}. Furthermore, the fact that both γ and γ′

starts and ends at sectors I and II correspondingly implies that V and
V ′ are isometric in a neighborhood of their boundary. We denote by f
this isometry. Surprisingly, we can find two flat discs that are isometric
in a neighborhood of their boundary but not globally isometric (see
Figure 14).

Figure 14. Immersion in R
2 of two non isometric flat

discs with isometric boundaries.

In our case, we have an additional piece of information that will make
the proof possible: hole transport does not change the vertical foliation
(recall that the hole is always assumed to be vertical). Therefore,
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for each vertical geodesics in V with end points {x, y} ⊂ ∂V , then
{f(x), f(y)} are the end points of a vertical geodesic of V ′.

z

xz

yz

lz

Figure 15. Parameters on a flat disc.

For each z ∈ V we define xz ∈ ∂V (resp. yz) the intersection of
the vertical geodesic starting from z in the negative direction (resp.
positive direction) and the boundary of V (see Figure 15). We also
call lz the length of this geodesic. We can assume that ∂V is piecewise
smooth. So we can restrict ourself to the open dense subset V1 ⊂ V of
z such that xz and yz are regular and nonvertical points.

Then we define Φ : V1 → V ′ that send z to φlz(f(xz)), where, φ is
the vertical geodesic flow. Because V and V ′ are translation structures,
the length of the vertical segment [xz, yz] is obtained by integrating
the corresponding 1−form along any path between xz and yz. Such a
path can be chosen in a neighborhood of the boundary of V . Then,
the isometry f implies that this length is the same as the length of
the vertical segment [f(xz), f(yz)]. Therefore Φ is well defined and
coincide to f in a neighborhood of the boundary of V . This map is
also smooth because z 7→ (xz, lz) are smooth on V1. It’s easy to check
that DΦ(z) ≡ Id and that Φ continuously extends to an isometry from
V to V ′. �

Corollary 3.5. Let γ′ be close enough to γ and such that γ and γ′

intersect the same sectors of a neighborhood of P . Then Ψ(S, γ, ε) and
Ψ(S, γ′, ε) are isomorphic for ε small enough.

Proof. If γ′ is close enough to γ (and intersect the same sectors in a
neighborhood of P ), then there exists a open flat disk that contains γ
and γ′. �

Remark 3.6. Using proposition 3.4, one can also extend hole transport
along a differentiable curve.
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4. Simple configuration domains

We recall the following notation: if Q(k1, k2, . . . , kr) is a stratum
of meromorphic quadratic differentials with at most simple poles, then
Q1(k1, k2, . . . , kr) is the subset of area 1 flat surfaces in Q(k1, k2, . . . , kr),
and Q1,δ(k1, k2, . . . , kr) is the subset of flat surfaces in Q1(k1, k2, . . . , kr)
that have at least a saddle connection of length less than δ.

The goal of this section is to prove the following theorem:

Theorem 4.1. Let Q(k1, k2, . . . , kr) be a stratum of quadratic differ-
entials with (k1, k2) 6= (−1,−1) and such that the stratum Q(k1 +
k2, k3, . . . , kr) is connected. Let C be the subset of flat surfaces S in
QN(k1, . . . , kr) such that the shortest saddle connection of S is simple
and joins a singularity of order k1 to a singularity of order k2. For
any pair N ≥ 1 and δ > 0, the sets C, C ∩ Q1(k1, k2, . . . , kr) and
C ∩ Q1,δ(k1, k2, . . . , kr) are non empty and connected.

In this part we denote by P1 and P2 the two zeros of order k1 and
k2 respectively and by γ the simple saddle connection between them.
There are two different cases.

• When k1 and k2 are not both odd, then there exists a canonical
way of shrinking the saddle connection γ if it is small enough.
Furthermore, this surgery doesn’t change the metric outside a
neighborhood of γ. This is the local case.

• When k1 and k2 are both odd, then we still can shrink γ, to get
a surface in the stratum Q(k1 +k2, k3, . . . , kr), but this changes
the metric outside a neighborhood of γ and this is not canonical.
This is done by reversing the procedure of section 3.3.

4.1. Local case.

4.1.1. Breaking up a singularity. Here we follow [EMZ, MZ]. Consider
a singularity P of order k ≥ 0, and a partition k = k1 + k2 with
k1, k2 ≥ −1. We assume that k1 and k2 are not both odd. If ρ is small
enough, then the set {x ∈ S, d(x, P ) < ρ} is a metric disc embedded in
S. It is obtained by gluing k + 2 standards half-disks of radius ρ.

There is a well known local construction that breaks the singularity
P into two singularities of order k1 and k2, and which is obtained by
changing continuously the way of gluing the half-discs together (see
figure 16, or [EMZ, MZ]). This construction is area preserving.

4.1.2. Structure of the neighborhood of the principal boundary. When γ
is small enough, (for example |γ| ≤ |γ′|/10, for any other saddle connec-
tion γ′), then we can perform the reverse construction because a neigh-
borhood of γ is precisely obtained from a collection of half-discs glued
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Figure 16. Breaking up a zero into two zeroes (af-
ter [EMZ, MZ]).

as before. This defines a canonical map Φ : V → Q(k1 +k2, k3, . . . , kr),
where V is a subset of Q(k1, k2, k3, . . . , kr). We can choose UN ⊂ V

such that Φ−1({S̃})∩UN is the set of surfaces such that the shrinking

process leads to S̃, and whose smallest saddle connection is of length

smaller than min(
˜|γ|

100
,

˜|γ|
2N

)) with γ̃ the smallest saddle connection of S̃.
From the proof of Lemma 8.1 of [EMZ], this map gives to UN a struc-
ture of a topological orbifold bundle over Q(k1+k2, k3, . . . , kr), with the
punctured disc as a fiber. By assumption, Q(k1 +k2, k3, . . . , kr) is con-
nected, and therefore UN is connected, so the proof will be completed
after the following three steps:

• UN ⊂ C.
• There exists L > 0 such that QL(k1, . . . , kr) ∩ C ⊂ UN .
• For any S ∈ C, there exists a continous path (St)t in C that

joins S to QL(k1, . . . , kr).

4.1.3. Proof of Theorem 4.1: local case. To prove the first step, it is
enough to show that UN is a subset of QN (k1, k2, . . . , kr): let S be a flat

surface in UN and let S̃ = Φ(S). We denote by γ the smallest saddle
connection of S. The surgery doesn’t change the surface outside a small

neighborhood of the corresponding singularity of S̃. If |γ̃| is the length
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of the smallest saddle connection of S̃, then S has no saddle connection

of length smaller than ˜|γ|− |γ| except γ, which has length smaller than
˜|γ|

2N
by construction. We have |γ̃|−|γ|

|γ| = |γ̃|
|γ| − 1 > 2N − 1 ≥ N , so S

belongs to QN (k1, k2, . . . , kr). Hence we have proved that UN ⊂ C.
To prove the second step, we remark that if S ∈ QL(k1, . . . , kr) ∩ C,

for L ≥ 10, then the smallest saddle connection of Φ(S) is of length at
least L|γ| − |γ|, where γ is the smallest saddle connection of S. Hence

if |γ| ≤ min( (L−1)|γ|
100

, (L−1)|γ|
2N

) then S ∈ UN . So we have proved that
QL(k1, . . . , kr) ∩ C ⊂ UN for L ≥ max(101, 2N + 1).

The last step is given by the following lemma:

Lemma 4.2. Let S be a surface in QN (k1, . . . , kr) whose smallest sad-
dle connection S is simple and joins a singularity of order k1 to a sin-
gularity of order k2, and let L be a positive number. Then we can find
a continuous path in QN (k1, . . . , kr), that joins S to a surface whose
second smallest saddle connection is at least L times greater than the
smallest one.

Proof. The set QN(k1, . . . , kr) is open, so up to a small continuous per-
turbation of S, we can assume that S has no vertical saddle connection
except the smallest one.

Now we apply the geodesic flow gt to S. There is a natural bijection
from the saddle connections of S to the saddle connections of gt.S.
The holonomy vector v = (v1, v2) of a saddle connection becomes vt =
(e−tv1, e

tv2). This imply that the quotient of the length of a given
saddle connection to the length of the smallest one increases and goes
to infinity.

The set of holonomy vectors of saddle connections is discrete, and
therefore, any other saddle connection of gt.S has length greater than
L times the length of the smallest one, as soon as t is large enough. �

Note that the previous proof is the same if we restrict ourselves to
area 1 surfaces. The case for when restricted to the δ-neighborhood
of the boundary is also analogous, since UN ∩Q1,δ(k1, . . . , kr) is still a
bundle over Q1(k1, . . . , kr) with the punctured disc as a fiber.

Hence the theorem is proven when k1 and k2 are non both odd.

4.2. Proof of theorem 4.1: non-local case. We first show that two
surfaces that are close enough to the stratum Q(k1 + k2, k3, . . . , kr)
(in a certain sense that will be specified below) belong to the same
configuration domain. Then we show that we can always continuously
reach that neighborhood.
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4.2.1. Neighborhood of the principal boundary. Contrary to the local
case, we do not have a canonical map from a subset of Q(k1, k2, . . . , kr)
to Q(k1 + k2, . . . , kr) that gives to this subset a structure of a bundle.

Let S ∈ Q(k1 +k2, . . . , kr), and let ν be a path in S, we will say that
ν is admissible if it satisfies the hypothesis of the singularity breaking
procedure of section 3.3. Let ν be an admissible closed path whose end
point is a singularity P of degree k1 +k2 and let ε > 0 be small enough
for the breaking procedure. Recall that Ψ(S, ν, ε) denotes the surface
in Q(k1, k2, . . . , kr) obtained after breaking the singularity P , using the
procedure of section 3.3 along the path ν, with a vertical hole of length
ε.

Proposition 4.3. Let (S, S ′) be a pair of surfaces in Q(k1+k2, . . . , kr)
and ν ( resp. ν ′) be an admissible broken line in S ( resp. S ′). Then
Ψ(S, γ, ε) and Ψ(S ′, γ′, ε) belong to the same configuration domain for
any sufficiently small ε.

Proof. By assumption, Q(k1 + k2, . . . , kr) is connected, so there exists
a path (St)t∈[0,1], that joins S and S ′. We can find a family of broken
lines γt of St such that, for ε small enough, the map t 7→ Ψ(St, γt, ε)
is well defined and continuous for t ∈ [0, 1]. The surface Ψ(S ′, γ1, ε)
might differ from Ψ(S ′, γ′, ε) for two reasons:

• The paths γ1 and γ′, that both start from the same singularity
P , might not start and end at the same sectors. In that case,
we consider the path rθS

′ obtained by rotating the surface S ′

by an angle of θ. We find as before a family of broken lines
γ1,θ ∈ rθS

′. Then, for some θk an integer multiple of π, we
will have rθk

S ′ = S ′ and γ1,θk
that starts and ends on the same

sectors than γ′.
• Even if the paths γ1 and γ′ start and end in the same sectors of

the singularity P , they might be very different (for example in a
different homotopy class of S ′\{sing}), so Proposition 3.4 does
not apply. This case is solved by the following lemma, which
says that the resulting surfaces are in the same configuration
domain.

�

Lemma 4.4. For any surface S ∈ Q(k1 +k2, k3, . . . , kr), the configura-
tion domain that contains a surface obtained by the non-local singular-
ity breaking construction does not depend on the choice of the admissible
path, once sector I is chosen, and the hole is small enough.
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Proof. We consider a surface S in Q(k1 + k2, . . . , kr) and perform the
breaking procedure. We do not change the resulting configuration do-
main if we perform some small perturbation of S. Therefore, we can
assume that the vertical flow of S is minimal (this is the case for almost
all surface). Now we consider an admissible path and perform the cor-
responding singularity breaking procedure and get a surface S1. Then
we consider a horizontal segment in sector I adjacent to the singular-
ity k1. Then we perform the same construction for another admissible
path (and get a surface S2) and consider a horizontal segment of the
same length as before.

Because the hole transport preserves the vertical foliation, the first
return maps of the vertical flow in the two surfaces are the same as
soon as the hole is small enough.

Now from Lemma 2.4, there exists (σ, l) such that S1 and S2 belong
to ZR′(Q′

σ,l), with parameters ζ1
1 , . . . , ζ

1
l+m and ζ2

1 , . . . , ζ
2
l+m. Note that

Re(ζ1
i ) = Re(ζ2

i ), because these depends only on the first returns maps
of the vertical flow (and they coincide). The family of polygons with
parameters tζ1

i + (1− t)ζ2
i gives a path in MZ ′(Q′

σ,l) that joins S1 and
S2. Furthermore, the singularity breaking procedure is continuous with
respect to ε. Hence, for all i, ζ1

i and ζ2
i are arbitrary close as soon as

ε is small enough. Consequently, the constructed path in MZ ′(Q′
σ,l)

keeps being in a configuration domain.
�

Now for each S ∈ Q(k1 + k2, . . . , kr) and each admissible path γ,
we can find εS,γ maximal such that Ψ(S, γ, ε) ∈ QN (k1, . . . , kr) for all
ε < εS,γ. Now we consider the set

UN =
⋃

θ∈[0,2π]

⋃

S,γ

⋃

0<ε<εS,γ

rθ(Ψ(S, γ, ε))

This subset of QN (k1, . . . , kr) is a subset of a configuration domain
from Proposition 4.3.

4.2.2. Reaching a neighborhood of the principal boundary. Now we con-
sider a surface in QN (k1, . . . , kr) whose unique smallest saddle connec-
tion joins a singularity of order k1 to a singularity of order k2. As in
the local case, we can assume that its smallest saddle connection is
vertical and that there are no other vertical saddle connections. Then
we apply the Teichmller geodesic flow. This allows us to assume that
the smallest saddle connection is arbitrary small compared to any other
saddle connection.

We then want to contract the saddle connection using the reverse
procedure of section 3.3.
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Figure 17. Breaking a singularity with two different paths.

Proposition 4.5. Let N be greater than or equal to 1. There exists
L > N such that QL(k1, . . . , kr) ∩ C ⊂ UN .

Proof. We choose L large enough such that we can find L′ satisfying
2N < L′, and 1 ≪ L′ ≪ L. Denote by γ the smallest saddle connection
and by ε its length. We want to find a path suitable for reversing the
construction of section 3.3. When contracting γ in such way, we must
insure that the surface stay in QN(k1, . . . , kr), by keeping a lower bound
of the length of the saddle connections different from the shortest one.

Let B be the open L′ε-neighborhood of γ, and {Bi}i∈{3,...,r} the open
L′ε-neighborhoods of the singularities that are not end points of γ.
Note that each of these neighborhoods is naturally isometric to a col-
lection of half-disk glued along their boundary. We denote by S ′ the
closed subset of S obtained by removing to S the set ∪iBi ∪ B.

Now we consider the set of paths of S ′ whose end points are on ∂B
and with nontrivial holonomy (which makes senses in a neighborhood
of ∂B), and we choose a path ν1 of minimal length with this property.
Note that, we do not change the holonomy of a path by “uncrossing”
generic self intersections (see figure 19). Therefore, we can choose our
path such that, after a small perturbation, it has no self intersections.
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ν3

B1
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Figure 18. Constructing a suitable path.

ν′ν

Figure 19. Uncrossing an intersection does not change
the holonomy.

Now the condition L′ ≪ L implies that we can find find a path
ν2 in the same homotopy class, such that the ε-neighborhood of ν2 is
homeomorphic to a disk. Now joining carefully the end points of ν2

to each sides of γ, we get a path ν3. By construction, we can use this
path to contract the saddle connection γ. The surgery doesn’t touch
the εN -neigborhoods of the singularities, except for the end points
of γ, hence any saddle connection that starts from such singularity
will have a length greater than Nε during the shrinking process. A
saddle connection starting from an end point a γ, and different from
γ will leave B. Choosing properly ν3, then the length of such saddle
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connection will have a length greater than (L′−1)ε during the shrinking
process, and L′ − 1 ≥ N + (N − 1) ≥ N .

Therefore, when contracting γ, there is no saddle connection except
γ that is of length smaller than N |γ| ≤ Nε, were ε is the initial length
of the saddle connection γ. Up to rescaling the surface, we can assume
that the area of the surface is constant under the deformation process.

�

Now let C be the open subset of surfaces in QN(k1, . . . , kr) whose
unique smallest saddle connection joins a singularity of order k1 to a
singularity of order k2. The previous proposition shows that there exists
a path from any S ∈ C to UN , which is pathwise connected. Therefore
C is pathwise connected and hence, connected. Then we have proven
the theorem for the case when k1 and k2 are odd.

5. Configuration domains in strata of quadratics

differentials on the Riemann sphere

In [B] we proved Theorem 5.1 describing all the configurations of

ĥomologous saddle connections that exist on a given stratum of qua-
dratic differential on CP

1. We now show that they are in bijections with
the configuration domains. In this section, we denote by γ a collection
{γi} of saddle connections.

Theorem 5.1. Let Q(kα1

1 , . . . , kαr
r ,−1s) be a stratum of quadratic dif-

ferentials on CP
1 different from Q(−14), and let γ be a maximal col-

lection of ĥomologous saddle connections on a generic surface in that
stratum. Then the possible configurations for γ are given in the list
below (see Figure 20).

a) Let {k, k′} ⊂ {kα1

1 , . . . , kαr
r ,−1s} be an unordered pair of in-

tegers with (k, k′) 6= (−1,−1). The set γ consists of a single
saddle connection joining a singularity of order k to a distinct
singularity of order k′.

b) Consider (a1, a2) a pair of strictly positive integers such that
a1 +a2 = k ∈ {k1, . . . , kr} (with k 6= 1), and a partition A1⊔A2

of {kα1

1 , . . . , kαr
r }\{k}. The set γ consists of a simple saddle

connection that decomposes the sphere into two 1-holed spheres
S1 and S2, such that each Si has interior singularities of positive
order given by Ai and si = (

∑
a∈Ai

a) + ai + 2 poles, and has
a single boundary singularity of order ai.

c) Consider {a1, a2} ⊂ {kα1

1 , . . . , kαr
r } a pair of integers. Let A1 ⊔

A2 be a partition of {kα1

1 , . . . , kαr
r }\{a1, a2}. The set γ consists

of two closed saddle connections that decompose the sphere into
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e)

b)

c)

a)

d)

Figure 20. “Topological picture” of configurations for CP
1.

two 1-holed spheres S1 and S2 and a cylinder, and such that
each Si has interior singularities of positive orders given by Ai

and si = (
∑

a∈Ai
a)+ai +2 poles and has a boundary singularity

of order ai.
d) Let k ∈ {k1, . . . , kr}. The set γ is a pair of saddle connections

of different lengths, and such that the largest one starts and
ends from a singularity of order k and decompose the surface
into a 1- holed sphere and a half-pillowcase, while the shortest
one joins a pair of poles and lies on the other end of the half
pillowcase.

When the stratum is Q(−14), there is only one configuration, which
correspond to two saddle connections are the two boundary components
of a cylinder (the surface is a “pillowcase”, see Figure 1).

The following lemma (due to Kontsevich) implies that Theorem
4.1 will apply for any stratum of quadratic differentials on CP

1 (see
also [KZ]).

Lemma (Kontsevich). Any stratum of quadratic differentials on CP
1

is non empty and connected.

Proof. There is only one complex structure on CP
1. Therefore, we can

work on the standard atlas C ∪ (C∗ ∪∞) of the Riemann sphere.
Now we remark that if we fix (z1, . . . , zr) ∈ Cr that are pairwise

distinct, and k1, . . . , kr some integers greater than or equal to −1, then
the quadratic differential on C, q(z) =

∏
(z − zi)

kidz2, extends to a
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quadratic differential on CP
1 with possibly a singularity of order −4−∑

i ki over the point ∞. Now two quadratic differentials on a compact
Riemann surface with the same singularity points are equal up to a
multiplicative constant (because they differ by a holomorphic function).

Therefore, any strata of quadratic differentials on CP
1 is a quotient

of C times a space of configurations of points on a sphere, which is
connected. �

Now let S ∈ QN (kα1

1 , . . . , kαr
r ,−1s) . We can define FS to be the

maximal collection of ĥomologous saddle connections that contains the
smallest one. We have the following lemma.

Lemma 5.2. The configuration associated to FS is locally constant
with respect to S.

Proof. Any saddle connection in FS persists under small deformation.
This lemma is obvious as soon the number of elements of FS is locally
constant.

Let γ1 be a saddle connection of minimal length. We assume that
after a small perturbation S ′ of S, we get a bigger collection of saddle
connections. That means that a new saddle connection γ2 appears.
Therefore there was another saddle connection γ3 nonĥomologous to
γ1, of length less than or equal to |γ2/2| (see figure 21). But this is
impossible since it would therefore be of length less than or equal to
the length of γ1, contradicting the hypothesis. �

S′

γ2

γ3γ3

S

Figure 21. The configuration associated to FS is lo-
cally constant.

Main Theorem. Let Q(kα1

1 , . . . , kαr
r ,−1s) be a stratum of quadratic

differentials with at most simple poles. Let N be greater than or equal
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to 1. There is a natural bijection between the configurations of ĥomologous
saddle connections on Q(kα1

1 , . . . , kαr
r ,−1s) described in Theorem 5.1

and the connected components of QN(kα1

1 , . . . , kαr
r ,−1s)

Proof. Lemma 5.2 implies that there is a well defined map Ψ from the
set of connected components of QN (kα1

1 , . . . , kαr
r ,−1s) to the set of ex-

isting configurations for the stratum. This map is surjective because if
we choose a generic surface S with a maximal collection of ĥomologous
saddle connections γ that realizes the given configuration C, then after
a small continuous perturbation of the surface, we can assume that
there are no other saddle connections on S parallel to an element of γ.
Then we apply the Teichmller geodesic flow to contract the elements of
γ, until γ contains the smallest saddle connection of the surface. Then
by construction, this surface belongs to Ψ−1(C).

Now we prove that Ψ is injective. We keep the notations of the
previous theorem, and consider U = Ψ−1({C}), for C any existing con-
figuration:

-If C belongs to the a) case, then U is connected from Theorem 4.1
and the lemma of Kontsevich.

-If C belongs to the b) case, then we consider a surface S in U . Its
smallest saddle connection γ0 is closed and separates the surface in a
pair (S1, S2) of 1-holed spheres with boundary singularities of orders a1

and a2 correspondingly. Now for each Si we decompose the boundary
saddle connection of Si in two segments starting from the boundary
singularity, and glue together these two segments, then we get a pair

of closed flat spheres Ŝi ∈ Q(Ai, ai − 1,−1si+1), i = 1, 2. For each
of the sphere, the smallest saddle connection γ′

i is simple and joins a
singularity Qi of order (ai − 1) to a newborn pole Pi, and is of length
|γ0|/2, where |γ0| is the length of γ0. Let ηi be the smallest saddle

connection of Ŝi except γ′
i.

• If ηi intersects the interior of γ′
i, then it is easy to find another

saddle connection on Ŝi, smaller than ηi and different from γ′
i.

• If ηi does not intersect γ′
i, or intersect it in Qi, then ηi was a

saddle connection on S, hence |ηi| > 2N |γ′
i|.

• If ηi intersects Pi, then we can find a saddle connection in S of
length smaller than |ηi| + |γ0|/2.

These remarks imply hat Ŝi is in Q2N−1(Ai, ai−1,−1si+1) which is a
subset of QN (Ai, ai − 1,−1si+1). Hence we have defined a map f from
U to U1 × U2, with Ui a simple configuration domain of QN(Ai, ai −
1,−1si+1).
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Conversely, let {Ŝi}i∈{1,2} be two surfaces in Q2N (Ai, ai − 1,−1si+1),

such that for each Ŝi, the smallest saddle connection γi is simple and
joins a pole to a singularity of order ai − 1. If γ1 and γ2 are in the
same direction and have the same length, then we can reconstruct a

surface S = f−1(Ŝ1, Ŝ2) in Q(kα1

1 , . . . , kαr
r ,−1s) by cutting Ŝi along

γi, and gluing together the two resulting surfaces. Here, S belongs to
QN(kα1

1 , . . . , kαr
r ,−1s). Note that in the reconstruction of the surface,

the length of smallest saddle connection is doubled, hence we must
start from Q2N(Ai, ai − 1,−1si+1), and not QN (Ai, ai − 1,−1si+1).

Now we proove the connectedness of U : let X1, X2 be two flat sur-
faces in U . After a small perturbation and after applying the geodesic
flow, we get a surface S1 (resp. S2) in the same connected component
of U as X1 (resp X2), with S1 and S2 in Q2N(kα1

1 , . . . , kαr
r ,−1s).

There exists continuous paths (Si,t)t∈[1,2] ∈ Q2N (Ai, ai − 1,−1si+1)
such that (S1,j , S2,j) = f(Sj) for j = 1, 2. The pair (S1,t, S2,t) belongs
to f(U) if and only if their smallest saddle connections are parallel
and have the same length. This condition is not necessary satisfied,
but rotating and rescaling S2,t gives a continous path At in GL2(R)
such that S1,t and At.S2,t satisfy that condition. Note that we nec-
essary have A2.S2,2 = S2,2. Therefore f−1

(
S1,t, A2.S2,t

)
is a contin-

uous path in U that joins S1 to S2. So the subset U is connected.
Note that the connectedness of U clearly implies the connectedness of
U ∩ Q1(k

α1

1 , . . . , kαr
r ,−1s).

The cases c) and d) are analogous and left to the reader. �

Corollary 5.3. Let Q(k1, . . . , kr) be a stratum of quadratic differentials
on CP

1, and let N ≥ 1. If a connected component of QN(k1, . . . , kr) ad-
mit orbifoldic points, then the corresponding configuration is symmetric
and the locus of orbifoldic points are unions of copies (or coverings) of
open subset of configuration domains of other strata, which are mani-
folds.

Proof. Recall that S correspond to an orbifoldic point if and only if
S admits a nontrivial orientation preserving isometry. Now let U be
a connected component of QN(kα1

1 , . . . , kαr
r ,−1s), S ∈ U an orbifoldic

point, and τ an isometry.
Suppose that U correspond to the a) case. Then τ must preserve the

smallest saddle connection γ0 of S. Either τ fixes the end points of S,
either it interchanges them. In the first case, τ = Id, in the other case
it is uniquely determined and is an involution that fixes the middle of
γ0. In that case the end points of γ0 have the same order k ≥ 0. Then
S/τ is a half-translation surface whose smallest saddle connection is
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of length |γ0|/2 and joins a singularity of order k ≥ 0 to a pole. Any
other saddle connection in S/τ is of length l or l/2 for l the length of a
saddle connection (different from γ0) on S. Therefore, S/τ belongs to a
configuration domain of a) type in the corresponding stratum. The flat
surface S/τ does not have a nontrivial orientation preserving isometry
because k 6= −1. Therefore the configuration domain that contains
S/τ is a manifold. The involution τ induces an involution on the set
of zeros of S and the stratum and configuration domain corresponding
to S/τ depends only on that involution. This induces a covering from
the locus of orbifoldic points whose corresponding involution share the
same combinatorial data to an open set of a manifold.

If U belongs to the b) case, then similarly, a nontrivial isometric
involution τ interchanges the two 1-holed sphere of the decomposition.
We have A1 = A2 and a1 = a2 > 0 (see notations of Theorem 5.1).
The set of orbifoldic points is isomorphic to the configuration domain
of a) type with data {a1,−1} which is a manifold.

If U belongs to the c) case then similarly, τ interchanges the two
1-holed sphere of the decomposition. We must have A1 = A2 and
a1 = a2 > 0. The set of orbifoldic points is isomorphic to an open
subset of a configuration domain of d) type, which is a manifold (see
next).

In the d) case, any isometry τ fix the saddle connection γ1 that
separates the surface in a 1-holed sphere and a half-pillowcase, which
are nonisometric. Hence they are fixed by τ . Now since τ is orientation
preserving, it is easy to check that necessary, τ is trivial.

�

Here we use Theorem 4.1 and the description of configurations to
show that any stratum of quadratic differentials on CP

1 admits only
one topological end.

Proposition 5.4. Let Q1(k1, . . . , kr,−1s) be any strata of quadratic
differential on CP

1. Then the subset Q1,δ(k1, . . . , kr,−1s) is connected
for any δ > 0.

Proof. Let S ∈ Q1,δ(k1, . . . , kr,−1s). We first describe a path from S
to a simple configuration domain with corresponding singularities of
orders {−1, k}. Then we show that all of these configuration domains
are in the same connected component of Q1,δ(k1, . . . , kr,−1s).

Let γ1 be a saddle connection of S of length less than δ. Up to the
Teichmller geodesic flow action, we can assume that γ1 is of length less
than δ2. Now let P be a pole. There exists a saddle connection γ2 of
length less than 1 starting from P , otherwise the 1−neighborhood of P
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PP ′ γ3

γ2

Figure 22. Deformation of a surface in Q1,δ(k1, . . . , kr,−1s).

would be an embedded half-disk of radius 1 in the surface, and would
be of area π

2
> 1. Then up to a slight deformation, we can assume

that there are no other saddle connections parallel to γ1 or γ2 (except

the ones that are ĥomologous to γ1 or γ2). Now we contract γ2 using
the Teichmller geodesic flow. This gives a path in Q1,δ(k1, . . . , kr,−1s),
and we now can assume that γ2 is of length smaller than δ.

The other end of γ2 is a singularity of order k. If k ≥ 0, then from
the list of configurations given in Theorem 5.1, the saddle connection
γ2 is simple.

We assume that k = −1, then the surface is a 1−holed sphere glued
with a cylinder, one end of this cylinder is γ2 (we have a half-pillowcase),
and the other end of that cylinder is a closed saddle connection whose
end point is a singularity P ′ of order k′ > 0. We can assume, up to ap-
plying the Teichmller geodesic flow, that γ2 is of length at most (1−c)δ,
where c is the area of the cylinder. Now we consider γ3 to be the short-
est path from P to P ′. It is clear that γ3 is a simple saddle connection.
Now up to twisting and shrinking the cylinder, we can make this saddle
connection as small as possible (see Figure 22). However, this trans-
formation, is not area preserving and we must rescale the surfaces to
keep area one surfaces . This rescalling increase the length of γ2 by a
factor which is at most 1

1−c
, and therefore the length of γ2 is always

smaller than δ during this last deformation, and the resulting surface
is in a simple configuration domain with corresponding singularities of
orders {−1, k′}.

Now let (Ui)i=1,2 be simple configuration domains whose correspond-
ing configurations are represented by simple paths that joins a pole
to a singularity of order ki > 0 (here we assume that r ≥ 2, the
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case r ≤ 1 is trivial). From Theorem 4.1, for each i = 1, 2, the set
Ui ∩ Q1,δ(k1, . . . , kr,−1s) is connected. So, it is enough to find a path
between two specific surfaces in Ui that stays in Q1,δ(k1, . . . , kr,−1s).
We start from a surface in Q(k1 − 1, k2 − 1, k3, . . . , kr,−1s−2) and we
successively break each singularity of order ki−1 into two singularities
of order ki and −1. We get a surface in Q1,δ(k1, . . . , kr) with two arbi-
trary small saddle connections. We can assume that one of these short
saddle connections is verticakl, and the other not. Then action on this
surface by the Teichmller geodesic flow easily give a path between U1

and U2 that keeps being in Q1,δ(k1, . . . , kr,−1s). �

Appendix. A geometric criteria for ĥomologous saddle

connections

Here we give a proof of the following theorem:

Theorem (H. Masur, A. Zorich). Consider two distinct saddle con-
nections γ, γ′ on a half-translation surface. The following assertions
are equivalent:

a) The two saddle connections γ and γ′ are ĥomologous.
b) The ratio of their length is constant under any small deforma-

tion of the surface inside the ambient stratum.
c) They have no interior intersection and one of the connected

component of S\{γ ∪ γ′} has trivial linear holonomy.

Proof. The the proofs of the statements a ⇔ b and c ⇒ b are easy and
the arguments are same as in [MZ]. We will write them for complete-
ness. Our proof of b ⇒ c is new and more geometric than the initial
proof.

• We first show that statement a) is equivalent to statement b).

We have defined [γ̂] and [γ̂′] in H−
1 (Ŝ, P̂ , Z). They both are

cycles associated to simple paths, therefore, they are primitive

cycles of H−
1 (Ŝ, P̂ , Z).

If γ and γ′ are ĥomologous, then integrating ω along the
cycles [γ̂] and [γ̂′], we see that the ratio of their length belongs
to {−1/2, 1, 2}, and this ratio is obviously constant under small

deformations of the surface. Conversely, if they are not ĥomolo-

gous, then (γ, γ′) is a free family on H−
1 (Ŝ, P̂ , C) (since they

are primitive elements of H−
1 (Ŝ, P̂ , Z)) and so

∫
γ̂
ω and

∫
γ̂′

ω

correspond to two independent coordinates in a neighborhood
of S. Therefore the ratio of their length is not locally constant.
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• Now assume c). We denote by S+ a connected component of
S\{γ, γ′} that has trivial holonomy. Its boundary is a union
of components homeomorphic to S

1. The saddle connections
have no interior intersections, so this boundary is a union of
copies of γ and γ′ and it is easy to check that both γ and γ′

appears in that boundary. The flat structure on S+ is defined
by an Abelian differential ω. Now we have

∫
∂S+ ω = 0, which

impose a relation on |γ| and |γ′|. This relation is preserved in a
neighborhood of S, and therefore, the ratio is locally constant
and belongs to {1/2, 1, 2} depending on the number of copies
of each saddle connections on the boundary os S+.

• Now assume b). We can assume that the saddle connection σ
is vertical. Then applying the Teichmller geodesic flow gt on
S, for some small t, induce a small deformation of S . The
hypothesis implies that the saddle connection γ′ is necessary
vertical too, and so the two saddle connections are parallel and
hence have no interior intersections. Let S1 and S2 the con-
nected components of S\{γ, γ′} that bounds γ (we may have
S1 = S2), and assume that S1 has nontrivial linear holonomy.
That implies there exists a simple broken line ν with nontrivial
linear holonomy that starts and ends on the boundary of S1

that correspond to γ. Now, we create an small hole by adding
a parallelogram on the first segment of the path ν. This cre-
ate only one hole τ in the interior of S1 because the other one
is sent to the boundary (this procedure add the length of the
hole to the length of the boundary). If we directly move the
hole τ to the boundary, we obtain a flat surface isometric to
the initial surface S1. But if we first transport τ along ν, then
this will change its orientation, and its length will be added
again to the length of the boundary. So the resulting surface
have a boundary component corresponding to γ bigger than
the initial surface S1. The surgery did not affect the boundary
corresponding to γ′. Assume now that S2 has also nontrivial
holonomy, then performing the same surgery on S2, and gluing
back S1 and S2, this gives a slight deformation of S that change
the length of γ and not the length of γ′. This contradict the
hypothesis b).

�
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