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Architecture Optimization of
a 3-DOF Translational Parallel Mechanism for

Machining Applications, the Orthoglide
Damien Chablat, Philippe Wenger (corresponding author)

Abstract— This paper addresses the architecture optimization
of a 3-DOF translational parallel mechanism designed for ma-
chining applications. The design optimization is conducted on
the basis of a prescribed Cartesian workspace with prescribed
kinetostatic performances. The resulting machine, the Orthoglide,
features three fixed parallel linear joints which are mounted
orthogonally and a mobile platform which moves in the Cartesian
x-y-z space with fixed orientation. The interesting features of the
Orthoglide are a regular Cartesian workspace shape, uniform
performances in all directions and good compactness. A small-
scale prototype of the Orthoglide under development is presented
at the end of this paper.

Index Terms— Parallel mechanism, Optimal design, Singular-
ity, Isotropic design, Workspace.

I. I NTRODUCTION

PARALLEL kinematic machines (PKM) are commonly
claimed to offer several advantages over their serial

counterparts, like high structural rigidity, high dynamicca-
pacities and high accuracy [1], [2]. Thus, PKM are interesting
alternative designs for high-speed machining applications.

This is why parallel kinematic machine-tools attract the in-
terest of more and more researchers and companies. Since the
first prototype presented in 1994 during the IMTS in Chicago
by Gidding&Lewis (the VARIAX), many other prototypes
have appeared.

However, the existing PKM suffer from two major draw-
backs, namely, a complex workspace and highly non linear
input/output relations. For most PKM, the Jacobian matrix
which relates the joint rates to the output velocities is not
constant and not isotropic. Consequently, the performances
e.g. maximum speeds, forces, accuracy and rigidity) vary
considerably for different points in the Cartesian workspace
and for different directions at one given point. This is a
serious drawback for machining applications [1], [3], [4].
To be of interest for machining applications, a PKM should
preserve good workspace properties, that is, regular shapeand
acceptable kinetostatic performances throughout. In milling
applications, the machining conditions must remain constant
along the whole tool path [5]. In many research papers, this
criterion is not taken into account in the algorithmic methods
used for the optimization of the workspace volume [6], [7].

Most industrial 3-axis machine-tools have a serial kinematic
architecture with orthogonal linear joint axes along the x,y
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and z directions. Thus, the motion of the tool in any of these
directions is linearly related to the motion of one of the three
actuated axes. Also, the performances are constant throughout
the Cartesian workspace, which is a parallelepiped. The main
drawback is inherent to the serial arrangement of the links,
namely, poor dynamic performances. The purpose of this paper
is to design a translational3-axis PKM with the advantages
of serial machine tools but without their drawbacks. Starting
from a Delta-type architecture with three fixed linear joints and
three articulated parallelograms, an optimization procedure is
conducted in which two criteria are used successively, (i)
the conditioning of the Jacobian matrix of the PKM [8],
[9], [10], [11] and (ii) the manipulability ellipsoid [12].The
first criterion leads to an isotropic architecture that features a
configuration where the tool forces and velocities are equal
in all directions. The second criterion makes it possible to
define the actuated joint limits and the link lengths with
respect to a desired Cartesian workspace size and prescribed
limits on the transmission factors. The resulting PKM, the
Orthoglide, has a Cartesian workspace shape that is close toa
cube whose sides are parallel to the planesxy, yz and xz
respectively. A systematic design procedure is proposed to
define the geometric parameters as function of the size of a
prescribed cubic Cartesian workspace and bounded velocity
and force transmission factors throughout.

Next section presents the existing PKM. The design param-
eters and the kinematics of the mechanism to be optimized
are reported in Section 3. Section 4 is devoted to the design
procedure of the Orthoglide and the presentation of the pro-
totype.

II. EXISTING PKM

Most existing PKM can be classified into two main fam-
ilies. The PKM of the first family have fixed foot points
and variable length struts. These PKM are generally called
“hexapods” when they have 6 degrees of freedom. Hexapods
have a Stewart-Gough parallel kinematic architecture. Many
prototypes and commercial hexapod PKM already exist like
the VARIAX (Gidding&Lewis), the CMW300 (Compagnie
Mécanique des Vosges), the TORNADO 2000 (Hexel), the
MIKROMAT 6X (Mikromat/IWU), the hexapod OKUMA
(Okuma), the hexapod G500 (GEODETIC). In this first family,
we find also hybrid architectures with a 2-axis wrist mounted
in series to a 3-DOF “tripod” positioning structure (e.g. the
TRICEPT from Neos-Robotics [13]). Since many machining
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tasks require only 3 translational degrees of freedom, several
3-axis translational PKM have been proposed. There are
several ways to design such mechanisms [20], [14], [15], [16].
In the first family, we find the Tsai mechanism and its variants.
In these mechanisms, the mobile platform is connected to the
base by three extensible limbs with a special arrangement of
the universal joints that restrains completely the orientation of
the mobile platform [18], [19].

The PKM of the second family have fixed length struts with
moveable foot points gliding on fixed linear joints. In this
category we find the HEXAGLIDE (ETH Zürich) which fea-
tures six parallel (also in the geometrical sense) and coplanar
linear joints. The HexaM (Toyoda) is another example with
three pairs of adjacent linear joints lying on a vertical cone
[21]. A hybrid parallel/kinematic PKM with three inclined
linear joints and a two-axis wrist is the GEORGE V (IFW
Uni Hanover). Many 3-axis translational PKM belong to this
second family and use an architecture close to the linear Delta
robot originally designed by Reymond Clavel for pick-and-
place operations [22]. In this architecture, three parallelograms
are used to provide the moving platform with pure translations.
The TRIGLIDE (Mikron) has three parallel linear joints in an
horizontal plane. The LINAPOD and the INDEX V100 have
three vertical (non coplanar) linear joints [23]. The Urane
SX (Renault Automation) and the QUICKSTEP (Krause &
Mauser) have with three non coplanar horizontal linear joints
[24]. The aforementioned five machines have parallel linear
joints. This feature provides these machines with high stiffness
in the direction of the linear joints and poor stiffness in the
orthogonal directions. Thus, these machines are more suit-
able for specialized operations like drilling, than for general
machining tasks. The STAR mechanism has three horizontal
linear joints intersecting at one point [14]. Isotropic conditions
for the STAR mechanisms were studied in [25] but a special
type of singularity was shown to occur at the isotropic con-
figuration if one prescribes unitary transmission factors [26].
At this singularity (a so-called “RPM-IO-II singularity” in the
classification of [27]), there is a loss of both input and output
motions and, at the same time, a redundant passive motion of
each leg occurs. Recently, one 3-DOF translational mechanism
with gliding foot points was found in three separate works to
be isotropic throughout the Cartesian workspace [15], [16],
[17]. The mobile platform is connected to three orthogonal
linear drives through three identical planar 3-revolute jointed
serial chains. Full isotropy is clearly an outstanding property.
On the other hand, bulky legs are required to assure stiffness
because these legs are subject to bending.

PKM with fixed length struts and moveable foot points are
interesting because the actuators are fixed and the moving
masses are lower than in the hexapods and tripods.

III. PROBLEM FORMULATION

A. Design Parameters

The machine-tool we want to design is a spatial translational
PKM dedicated to general3-axis machining tasks with the
following requirements, (i) a configuration should exist where
the transmission factors are equal to one in all directions,like

in a translational serial machine (ii) the Cartesian workspace
shape should be close to a cube of prescribed size with regular
performances throughout, (iii) the design should be symmetric
and use simple joints to lower the manufacturing costs, (iv)the
PKM should be intrinsically stiff and (v) the PKM should have
fixed linear actuated joints to lower the moving masses. To
meet the last requirement, we start with a PKM architecture of
the second familyi.e. with fixed linear joints. The use of three
articulated parallelograms assembled in an over-constrained
way is an interesting solution to comply with requirement
(iv). Requirements (i) and (ii) will be satisfied in Section 4
by the isotropic conditions and limited transmission factors
constraints. It will be shown that requirement (i) imposes that
the three actuated linear joint must be orthogonal, hence the
name “orthoglide”. To fulfill requirement (iii), finally, the three
legs should use only revolute joints and be identical.

Figure 1 shows the basic kinematic architecture of a PKM
that complies with requirements (iii), (iv) and (v) and that
we will optimize with respect to requirements (i) and (ii). For
more simplicity, the figure shows the PKM with the optimized
(i.e. orthogonal) linear joints arrangement.
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Fig. 1

BASIC KINEMATIC ARCHITECTURE

The linear joints can be actuated by means of linear motors
or by conventional rotary motors with ball screws. Like in the
Delta-type PKM, the output body is connected to the linear
joints through a set of three parallelograms of equal lengths
L = BiCi, so that it can move only in translation. The three
legs arePRPaR identical chains, whereP , R andPa stands
for Prismatic, Revolute and Parallelogram joint, respectively.
Thus, the mechanism is over-constrained. The arrangement of
the joints in thePRPaR chains have been defined to eliminate
any special singularity [26]. Each base pointAi is fixed on the
ith linear axis such thatA1A2 = A1A3 = A2A3. The points
Bi andCi are located on theith parallelogram as shown in
Fig. 2.

The design parameters to be optimized are the parallelogram
length, the position and orientation of each linear actuated joint
axis and the range of the linear actuators.

B. Kinematic Equations and Singular configurations

Let θi andβi denote the joint angles of the parallelogram
about the axesii and ji, respectively (Fig. 2). Letρ1, ρ2, ρ3

denote the linear joint variables,ρi = AiBi.
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LEG KINEMATICS

Let ρ̇ be referred to as the vector of actuated joint rates and
ṗ as the velocity vector of pointP :

ρ̇ = [ρ̇1 ρ̇2 ρ̇3]
T , ṗ = [ẋ ẏ ż]T

ṗ can be written in three different ways by traversing the three
chainsAiBiCiP :

ṗ = niρ̇i + (θ̇iii + β̇iji) × (ci − bi) (1)

wherebi andci are the position vectors, in a given reference
frame, of the pointsBi and Ci, respectively, andni is the
direction vector of the linear joints, fori = 1, 2,3.

We want to eliminate the two passive joint ratesθ̇i and β̇i

from Eqs. (1), which we do upon dot-multiplying Eqs. (1) by
ci − bi:

(ci − bi)
T ṗ = (ci − bi)

Tniρ̇i (2)

Equations (2) can now be cast in vector form, namely

Aṗ = Bρ̇

whereA and B are the parallel and serial Jacobian matrices,
respectively:

A =





(c1 − b1)
T

(c2 − b2)
T

(c3 − b3)
T



 (3a)

B =





η1 0 0
0 η2 0
0 0 η3



 (3b)

with ηi = (ci − bi)
Tni for i = 1, 2, 3.

The parallel singularities occur when the determinant of the
matrix A vanishes,i.e. when det(A) = 0. In such config-
urations, it is possible to move locally the mobile platform
whereas the actuated joints are locked. These singularities are
particularly undesirable because the structure cannot resist any
force. Equation (3a) shows that the parallel singularitiesoccur
when the three vectorsci − bi are linearly dependent, that
is when the pairs of points (Bi, Ci) lie in parallel planes
(Fig. 3). To interpret this singularity, it is more convenient
to regard the pointsCi as coincident (this does not change
the analysis since each offsetCiP can be included inρi).
Then, a parallel singularity occurs when the pointsB1, B2,
B3 and C = C1 = C2 = C3 = P are coplanar. Since, at
a parallel singular configuration,P is always equally distant
fromB1, B2 andB3, P is at the center of a circle of radiusL

that cuts thex, y andz axes atB1, B2 andB3, respectively,
wherex, y andz are parallel to the three linear actuated joints,
respectively (Fig. 3). The parallel singularities are defined by
the surface generated byP when this circle “glides” along the
x, y andz axes. A particular parallel singularity occurs when
the linksBiCi are parallel. The surface generated is a sphere
of radiusL and centered at the intersection of thex, y andz
axes (Fig. 4).
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P

Fig. 3

PARALLEL SINGULAR CONFIGURATION IN THE GENERAL CASE

x

z

y

Fig. 4

PARALLEL SINGULAR CONFIGURATION WHEN BiCi ARE PARALLEL

Serial singularities arise when the serial Jacobian matrix
B is no longer invertiblei.e. when det(B) = 0. At a
serial singularity a direction exists along which any Cartesian
velocity cannot be produced. Eq. (3b) shows thatdet(B) = 0
when for one legi, (bi − ai) ⊥ (ci − bi), whereai is the
position vector ofAi. Thus, the serial singularities form three
planes orthogonal to thex, y andz axis, respectively.

It will be shown in Section IV-D that the optimization of the
Orthoglide puts the serial and parallel singularities far away
from the Cartesian workspace. Also, even if the direct and
inverse kinematics may theoretically have several solutions,
only one solution exists in the Cartesian workspace [28].

IV. OPTIMIZATION OF THE DESIGN PARAMETERS

The aim of this section is to define the geometric parameters
of the Orthoglide as a function of the size of a prescribed cubic
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Cartesian workspace with bounded transmission factors. We
first show that the orthogonal arrangement of the linear joints
is imposed by the condition on the isotropy and manipulability:
we want the Orthoglide to have an isotropic configuration with
velocity and force transmission factors equal to one. Then,we
impose that the transmission factors remain under prescribed
bounds throughout the prescribed Cartesian workspace and
we deduce the link dimensions and the joint limits. Limiting
the force and velocity transmission factors makes it possible
to guarantee a minimal kinematic stiffness throughout the
Cartesian workspace. The structural stiffness (i.e. including
the stiffness of all rods) is guaranteed by the over-constrained
design and preliminary rods stiffness analyses [2]. A more
detailed study of the Othoglide structural stiffness is currently
conducted at IRCCyN with finite element analyses.

A. Condition Number and Isotropic Configuration

The Jacobian matrix is said to be isotropic when its con-
dition number attains its minimum value of one [28]. The
condition number of the Jacobian matrix is an interesting
performance index which characterises the distortion of a
unit ball under the transformation represented by the Jacobian
matrix. The Jacobian matrix of a manipulator is used to relate
(i) the joint rates and the Cartesian velocities, and (ii) the static
load on the output link and the joint torques or forces. Thus,
the condition number of the Jacobian matrix can be used to
measure the uniformity of the distribution of the tool velocities
and forces in the Cartesian workspace.

B. Isotropic Configuration of the Orthoglide

For parallel manipulators, it is more convenient to study
the conditioning of the Jacobian matrix that is related to the
inverse transformation,J−1. When B is not singular,J−1 is
defined by:

ρ̇ = J−1ṗ with J−1 = B−1A

Thus:

J−1 =





(1/η1)(c1 − b1)
T

(1/η2)(c2 − b2)
T

(1/η3)(c3 − b3)
T



 (4)

with ηi = (ci − bi)
Tni for i = 1, 2, 3.

The matrix J−1 is isotropic whenJ−1J−T = σ213×3,
where13×3 is the3× 3 identity matrix. Thus, we must have,

1

η1
||c1 − b1|| =

1

η2
||c2 − b2|| =

1

η3
||c3 − b3|| (5a)

(c1 − b1)
T (c2 − b2) = 0 (5b)

(c2 − b2)
T (c3 − b3) = 0 (5c)

(c3 − b3)
T (c1 − b1) = 0 (5d)

Equation (5a) states that the angle between the axis of the
linear joint and the linkBiCi must be the same for each legi.
Equations (5b–d) mean that the linksBiCi must be orthogonal
to each other. Figure 5 shows the isotropic configuration of
the Orthoglide. Note that the orthogonal arrangement of the

linear joints is not a consequence of the isotropy condition,
but it stems from the condition on the transmission factors at
the isotropic configuration, as shown in the next section.

C. Transmission factors

For serial 3-axis machine tools, a motion of an actuated
joint yields the same motion of the tool (the transmission
factors are equal to one). For parallel machines, these motions
are generally not equivalent. When the mechanism is close to
a parallel singularity, a small joint rate can generate a large
velocity of the tool. This means that the positioning accuracy
of the tool is lower in some directions for some configurations
close to parallel singularities because the encoder resolution is
amplified. In addition, a velocity amplification in one direction
is equivalent to a loss of stiffness in this direction.

The manipulability ellipsoids of the Jacobian matrix of
robotic manipulators was defined two decades ago [9]. This
concept has then been applied as a performance index to
parallel manipulators [3]. Note that, although the conceptof
manipulability is close to the concept of condition number,
they do not provide the same information. The condition
number quantifies the proximity to an isotropic configuration,
i.e. where the manipulability ellipsoid is a sphere, or, in other
words, where the transmission factors are the same in all
the directions, but it does not inform about the value of the
transmission factor.

The manipulability ellipsoid ofJ−1 is used here for (i)
defining the orientation of the linear joints and (ii) defining
the joint limits of the Orthoglide such that the transmission
factors are bounded in the prescribed Cartesian workspace.

We want the transmission factors to be equal to one at the
isotropic configuration like for a serial machine tool. This
condition implies that the three terms of Eq. (5a) must be
equal to one:

1

η1
||c1 − b1|| =

1

η2
||c2 − b2|| =

1

η3
||c3 − b3|| = 1 (6)

which implies that(bi − ai) and (ci − bi) must be collinear
for eachi.

Since, at this isotropic configuration, linksBiCi are orthog-
onal, Eq. (6) implies that the linksAiBi are orthogonal,i.e.
the linear joints are orthogonal. For joint rates belongingto a
unit ball, namely,||ρ̇|| ≤ 1, the Cartesian velocities belong to
an ellipsoid such that:

ṗ
T (JJT )ṗ ≤ 1

The eigenvectors of matrix(JJT )−1 define the direction of
its principal axes of this ellipsoid and the square rootsξ1,
ξ2 and ξ3 of the eigenvalues of(JJT )−1 are the lengths of
the aforementioned principal axes. The velocity transmission
factors in the directions of the principal axes are defined by
ψ1 = 1/ξ1, ψ2 = 1/ξ2 andψ3 = 1/ξ3. To limit the variations
of this factor, we impose

ψmin ≤ ψi ≤ ψmax (7)

throughout the Cartesian workspace. This condition deter-
mines the link lengths and the linear joint limits. To simplify
the problem, we setψmin = 1/ψmax.
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D. Design of the Orthoglide for a Prescribed Cartesian
Workspace

For usual machine tools, the Cartesian workspace is gen-
erally given as a function of the size of a right-angled
parallelepiped. Due to the symmetrical architecture of the
Orthoglide, the Cartesian workspace has a fairly regular shape.
In fact, the workspace is defined by the intersection of three
orthogonal cylinders topped with spheres. As shown in Fig. 5,
it is easy to include a cube whose sides are parallel to the
planesxy, yz andxz respectively. The aim of this section is

x

z

y LWorkspace

Q2

Q1

Fig. 5

ISOTROPIC CONFIGURATION ANDCARTESIAN WORKSPACE OF THE

ORTHOGLIDE MECHANISM AND POINTSQ1 AND Q2

to define the position of the base pointAi, the link lengthsL
and the linear actuator range∆ρ with respect to the limits on
the transmission factors defined in Eq. (7) and as a function
of the size of the prescribed Cartesian workspaceLWorkspace.

The proposed optimization scheme is divided into three
steps.

1) First, two pointsQ1 and Q2 are determined in the
prescribed cubic Cartesian workspace (Fig. 5) such that
if the transmission factor bounds are satisfied at these
points, they are satisfied in all the prescribed Cartesian
workspace.

2) The pointsQ1 andQ2 are used to define the leg lengthL
as function of the size of the prescribed cubic Cartesian
workspace.

3) Finally, the positions of the base pointsAi and the
linear actuator range∆ρ are calculated such that the
prescribed cubic Cartesian workspace is fully included
in the Cartesian workspace of the Orthoglide.

Step 1: The transmission factors are equal to one at the
isotropic configuration. These factors increase or decrease
when the tool center point moves away from the isotropic

configuration and they tend towards zero or infinity in the
vicinity of the singularity surfaces. It turns out that the
pointsQ1 andQ2 defined at the intersection of the Cartesian
workspace boundary with the axisx = y = z (in a reference
frame (O,x, y, z) centered at the intersection of the three
linear joint axes, Fig. 5) are the closest ones to the singularity
surfaces, as illustrated in Fig. 6 which shows on the same top
view the Orthoglide in the two parallel singular configurations
of figures 3 and 4. Thus, we may postulate the intuitive
result that if the prescribed bounds on the transmission factors
are satisfied atQ1 and Q2, then these bounds are satisfied
throughout the prescribed cubic Cartesian workspace. In fact,
this result can be proved using interval analysis [29].

x

y
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B2
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A2
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C2

C’1

C’2

B’1

B’2

P

P’

Parallel singularities

Parallel
singularities

Workspace

Q1

Q2

Serial  singularities

Fig. 6

POINTS Q1 AND Q2 AND THE SINGULAR CONFIGURATIONS(TOP VIEW)

Step 2: At the isotropic configuration, the anglesθi andβi

are equal to zero by definition. When the tool center pointP
is atQ1, ρ1 = ρ2 = ρ3 = ρmin (Fig. 7). WhenP is atQ2,
ρ1 = ρ2 = ρ3 = ρmax (Fig. 8).

C1

C2

x

y Q2

B1

B2

A1

A2

Q1

Fig. 7

Q1 CONFIGURATION
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Q2 CONFIGURATION

We poseρmin = 0 for more simplicity.
The position ofP along thez axis can be written equiva-

lently asz = − sin(β1)L andz = sin(θ2) cos(β2)L by travers-
ing the two chainsA1B1C2P andA2B2C2P , respectively. On
the axis(Q1Q2), β1 = β2 = β3 andθ1 = θ2 = θ3. We note,

β1 = β2 = β3 = β and θ1 = θ2 = θ3 = θ (8)

Thus, the angleβ can be written as a function ofθ,

β = − arctan(sin(θ)) (9)

Finally, by substituting Eq. (9) into Eq. (4), the inverse
Jacobian matrixJ−1 can be simplified as follows

J−1 =





1 − tan(θ) − tan(θ)
− tan(θ) 1 − tan(θ)
− tan(θ) − tan(θ) 1





Thus, the square roots of the eigenvalues of(JJT )−1 are,

ξ1 = |2 tan(θ) − 1| and ξ2 = ξ3 = | tan(θ) + 1|
And the three velocity transmission factors are,

ψ1 =
1

|2 tan(θ) − 1| and ψ2 = ψ3 =
1

| tan(θ) + 1| (10)

The joint limits on θ are located on both sides of the
isotropic configuration. To calculate the joint limits, we solve
the following inequations,

1

ψmax

≤ 1

|2 tan(θ) − 1| ≤ ψmax (11a)

1

ψmax

≤ 1

| tan(θ) + 1| ≤ ψmax (11b)

where the value ofψmax depends on the performance require-
ments. Two sets of joint limits ([θQ1

βQ1
] and [θQ2

βQ2
]) are

found in symbolic form. The detail of this calculation is given
in the Appendix.

The position vectorsq1 and q2 of the pointsQ1 andQ2,
respectively, can be easily defined as a function ofL (Figs. 7
and 8),

q1 = [q1 q1 q1]
T and q2 = [q2 q2 q2]

T (12a)

with

q1 = − sin(βQ1
)L and q2 = − sin(βQ2

)L (12b)

The size of the Cartesian workspace is,

LWorkspace = |q2 − q1|
Thus,L can be defined as a function ofLWorkspace.

L =
LWorkspace

| sin(βQ2
) − sin(βQ1

)|
Step 3:We want to determine the positions of the base points,
namely,a = OA1 = OA2 = OA3. When the tool center point
P is atQ′

1
defined as the projection onto they axis of Q1,

ρ2 = 0 and, (Fig. 9)

OA2 = OQ′

1
+Q′

1
C2 + C2A2

Sinceρ2 = 0, C2A2 = C2B2 = L. With OA2 = a, Q′

1
C2 =

PC2 = −e andOQ′

1
= q1, we get,

a = q1 − e− L

C1

x

y
Q2

B1

B2

A1

A2

Q’1

a

C2

Q1

e

L

Fig. 9

THE POINTQ′

1
USED FOR THE DETERMINATION OFa

Since q1 is known from Eqs. (12a) and (17b),a can be
calculated as function ofe, L andψmax.

Now, we have to calculate the linear joint range∆ρ = ρmax

(we have posedρmin=0).
When the tool center pointP is atQ2, ρ = ρmax. Projecting

A2P = A2B2 +B2C2 + C2P on they axis yields,

ρmax = q2 − a− cos(θQ2
) cos(βQ2

)L − e

E. Prototype

Using the aforementioned two kinetostatic criteria, a small-
scale prototype has been constructed in our laboratory (
Figure 10 ). The three parts (1), (2) and (3) have been
designed to prevent each parallelogram from colliding withthe
corresponding linear motion guide. Also, the shifted position
of the tool center pointP limits the collisions between the
parallelograms and the workpiece. The actuated joints used
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1

2

3

P

Fig. 10

CATIA MODEL OF THE ORTHOGLIDE (LEFT) AND PROTOTYPE(RIGHT)

for this prototype are rotary motors with ball screws. The
prescribed performances of the Orthoglide prototype are a
Cartesian velocity of1.2m/s and an acceleration of14m/s2 at
the isotropic point. The desired payload is4kg. The size of its
prescribed cubic Cartesian workspace is200×200×200 mm.
We limit the variations of the velocity transmission factors as,

1/2 ≤ ψi ≤ 2 (13)

The resulting length of the three parallelograms isL =
310 mm and the resulting range of the linear joints is
∆ ρ = 257 mm. Thus, the ratio of the range of the actuated
joints to the size of the prescribed Cartesian workspace is
r = 200/257 = 0.78. This ratio is high compared to other
PKM. The three velocity transmission factors are depicted in
Fig. 11. These factors are given in az-cross section of the
Cartesian workspace passing throughQ1.
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THE THREE VELOCITY TRANSMISSION FACTORS IN Az-CROSS SECTION

OF THE CARTESIAN WORKSPACE PASSING THROUGHQ1

V. CONCLUSIONS

The Orthoglide is a new Delta-type PKM dedicated to 3-axis
rapid machining applications that was designed to meet the
advantages of both serial 3-axis machines (regular workspace
and homogeneous performances) and parallel kinematic archi-
tectures (good dynamic performances). A systematic proce-
dure has been provided to define the geometric parameters
of the Orthoglide as functions of the size of a prescribed

cubic Cartesian workspace and bounded velocity and force
transmission factors.

The Orthoglide has been designed under isotropic condi-
tions and limited transmission factors. Low inertia and intrinsic
stiffness have been set as additional design requirements.Thus,
three articulated parallelograms have been used, rather than
legs subject to bending as in the fully isotropic mechanisms
proposed in [15], [16], [17]. At the isotropic configuration, a
displacement of a linear joint yields the same displacement
of the tool in the corresponding Cartesian direction like ina
serial machine. The Cartesian workspace is simple, regularand
free of singularities and self-collisions. It is fairly regular and
the performances are homogeneous throughout the Cartesian
workspace. Thus, the entire Cartesian workspace is really
available for tool paths. These features make the Orthoglide
a novel design as compared to the existing Delta-type PKM
structures. A small-scale prototype Orthoglide has been built at
IRCCyN to demonstrate the feasibility of the design. Dynamic
model based control laws will be implemented [30] and first
machining experiments with plastic parts will be conducted.
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VI. A PPENDIX

To calculate the joint limits onθ and β, we solve the
followings inequations, from the Eqs. 11,

|2 tan(θ) − 1| ≤ ψmax

1

|2 tan(θ) − 1| ≤ ψmax (14)

Thus, we note,

f1 = |2 tan(θ) − 1| f2 = 1/|2 tan(θ) − 1| (15)

Fig. (12) showsf1 and f2 as function ofθ along (Q1Q2).
The four roots off1 = f2 in [−π π] are,

s1 = − arctan
(

(1 +
√

17)/4
)

(16a)

s2 = − arctan (1/2) (16b)

s3 = 0 (16c)

s4 = arctan
(

(−1 +
√

17)/4
)

(16d)
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Fig. 12

f1 AND f2 AS FUNCTION OFθ ALONG (Q1Q2)

with

f1(s1) = (−3 +
√

17)/4 f1(s2) = 2 (16e)

f1(s3) = 1 f1(s4) = (3 +
√

17)/4 (16f)

The isotropic configuration is located at the configuration
whereθ = β = 0. The limits onθ andβ are in the vicinity
of this configuration. Along the axis(Q1Q2), the angleθ is
lower than0 when it is close toQ2, and greater than0 when
it is close toQ1.

To find θQ1
, we study the functionsf1 and f2 which are

both decreasing on[0 arctan(1/2)]. Thus, we have,

θQ1
= arctan

(

ψmax − 1

2ψmax

)

(17a)

βQ1
= − arctan

(

ψmax − 1
√

5ψ2
max − 2ψmax + 1

)

(17b)

In the same way, to findθQ2
, we study the functionsf1 andf2

on [s1 0]. The three rootss1, s2 ands3 define two intervals.
If ψmax ∈ [f1(s1) f1(s2)], we have,

θQ2
= − arctan

(

ψmax − 1

ψmax

)

(18a)

βQ2
= arctan

(

ψmax − 1
√

2ψ2
max − 2ψmax + 1

)

(18b)

otherwise, ifψmax ∈ [f1(s2) f1(s3)],

θQ2
= − arctan

(

ψmax − 1

2

)

(18c)

βQ2
= arctan

(

ψmax − 1
√

ψmax
2 − 2ψmax + 5

)

(18d)


