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Architecture Optimization of
a 3-DOF Translational Parallel Mechanism for
Machining Applications, the Orthoglide

Damien Chablat, Philippe Wenger (corresponding author)

Abstract— This paper addresses the architecture optimization
of a 3-DOF translational parallel mechanism designed for ma
chining applications. The design optimization is conducteé on
the basis of a prescribed Cartesian workspace with prescried
kinetostatic performances. The resulting machine, the Ooglide,
features three fixed parallel linear joints which are mountel
orthogonally and a mobile platform which moves in the Cartegan
x-y-z space with fixed orientation. The interesting features of te
Orthoglide are a regular Cartesian workspace shape, unifam
performances in all directions and good compactness. A smial
scale prototype of the Orthoglide under development is presnted
at the end of this paper.

Index Terms— Parallel mechanism, Optimal design, Singular-
ity, Isotropic design, Workspace.

I. INTRODUCTION

and z directions. Thus, the motion of the tool in any of these
directions is linearly related to the motion of one of theethr
actuated axes. Also, the performances are constant thoatgh
the Cartesian workspace, which is a parallelepiped. Th& mai
drawback is inherent to the serial arrangement of the links,
namely, poor dynamic performances. The purpose of thisrpape
is to design a translation&taxis PKM with the advantages
of serial machine tools but without their drawbacks. Starti
from a Delta-type architecture with three fixed linear jeiahd
three articulated parallelograms, an optimization proceds
conducted in which two criteria are used successively, (i)
the conditioning of the Jacobian matrix of the PKIﬂ [8],
[@, [Lq), [L3] and (ii) the manipulability ellipsoid[[]2]The
first criterion leads to an isotropic architecture that tieas a
configuration where the tool forces and velocities are equal

ARALLEL kinematic machines (PKM) are commonlyin all directions. The second criterion makes it possible to
claimed to offer several advantages over their seridkfine the actuated joint limits and the link lengths with

counterparts, like high structural rigidity, high dynanda-

respect to a desired Cartesian workspace size and prescribe

pacities and high accuracﬂ [1[,] [2]. Thus, PKM are interggti limits on the transmission factors. The resulting PKM, the

alternative designs for high-speed machining application

Orthoglide, has a Cartesian workspace shape that is clase to

This is why parallel kinematic machine-tools attract the inrcube whose sides are parallel to the plangs yz and zz
terest of more and more researchers and companies. Sinceréispectively. A systematic design procedure is proposed to
first prototype presented in 1994 during the IMTS in Chicagdefine the geometric parameters as function of the size of a
by Gidding&Lewis (the VARIAX), many other prototypesprescribed cubic Cartesian workspace and bounded velocity
have appeared. and force transmission factors throughout.

However, the existing PKM suffer from two major draw- Next section presents the existing PKM. The design param-
backs, namely, a complex workspace and highly non lineaters and the kinematics of the mechanism to be optimized
input/output relations. For most PKM, the Jacobian matrixre reported in Section 3. Section 4 is devoted to the design
which relates the joint rates to the output velocities is n@rocedure of the Orthoglide and the presentation of the pro-
constant and not isotropic. Consequently, the perforngmndetype.
e.g. maximum speeds, forces, accuracy and rigidity) vary
considerably for different points in the Cartesian workspa
and for different directions at one given point. This is a
serious drawback for machining applicatior$ [1} [3] [4]. Most existing PKM can be classified into two main fam-
To be of interest for machining applications, a PKM shoulties. The PKM of the first family have fixed foot points
preserve good workspace properties, that is, regular shraghe and variable length struts. These PKM are generally called
acceptable kinetostatic performances throughout. Iningill “hexapods” when they have 6 degrees of freedom. Hexapods
applications, the machining conditions must remain caristehave a Stewart-Gough parallel kinematic architecture. yWan
along the whole tool patH][5]. In many research papers, thisototypes and commercial hexapod PKM already exist like
criterion is not taken into account in the algorithmic metbo the VARIAX (Gidding&Lewis), the CMW300 (Compagnie
used for the optimization of the workspace volurfle [§], [7]. Mécanique des Vosges), the TORNADO 2000 (Hexel), the

Most industrial 3-axis machine-tools have a serial kinematMIKROMAT 6X (Mikromat/IWU), the hexapod OKUMA
architecture with orthogonal linear joint axes along theyx, (Okuma), the hexapod G500 (GEODETIC). In this first family,
we find also hybrid architectures with a 2-axis wrist mounted
in series to a 3-DOF “tripod” positioning structure.g. the
TRICEPT from Neos-RoboticsmB]). Since many machining

Il. EXISTING PKM
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tasks require only 3 translational degrees of freedom,rakven a translational serial machine (ii) the Cartesian wosakcsp
3-axis translational PKM have been proposed. There aBape should be close to a cube of prescribed size with regula
several ways to design such mechanis@; [@, [, [ESI],. [1@erformances throughout, (iii) the design should be symimet
In the first family, we find the Tsai mechanism and its variantand use simple joints to lower the manufacturing costs tkig)
In these mechanisms, the mobile platform is connected to tREM should be intrinsically stiff and (v) the PKM should have
base by three extensible limbs with a special arrangementfiekd linear actuated joints to lower the moving masses. To
the universal joints that restrains completely the origoteof meet the last requirement, we start with a PKM architectfire o
the mobile platform[[Z8],[[Z9]. the second family.e. with fixed linear joints. The use of three
The PKM of the second family have fixed length struts withrticulated parallelograms assembled in an over-consimai
moveable foot points gliding on fixed linear joints. In thisvay is an interesting solution to comply with requirement
category we find the HEXAGLIDE (ETH Zurich) which fea-(iv). Requirements (i) and (ii) will be satisfied in Section 4
tures six parallel (also in the geometrical sense) and oaplaby the isotropic conditions and limited transmission fasto
linear joints. The HexaM (Toyoda) is another example withonstraints. It will be shown that requirement (i) impodestt
three pairs of adjacent linear joints lying on a vertical eorthe three actuated linear joint must be orthogonal, henee th
[@]. A hybrid parallel/kinematic PKM with three inclined name “orthoglide”. To fulfill requirement (iii), finally, #athree
linear joints and a two-axis wrist is the GEORGE V (IFWegs should use only revolute joints and be identical.
Uni Hanover). Many 3-axis translational PKM belong to this Figure[jr shows the basic kinematic architecture of a PKM
second family and use an architecture close to the lineaaDehat complies with requirements (iii), (iv) and (v) and that
robot originally designed by Reymond Clavel for pick-andwe will optimize with respect to requirements (i) and (iiprF
place operationg [22]. In this architecture, three palediams more simplicity, the figure shows the PKM with the optimized
are used to provide the moving platform with pure transtetio (i.e. orthogonal) linear joints arrangement.
The TRIGLIDE (Mikron) has three parallel linear joints in an
horizontal plane. The LINAPOD and the INDEX V100 have
three vertical (non coplanar) linear jointf J23]. The Urane
SX (Renault Automation) and the QUICKSTEP (Krause &
Mauser) have with three non coplanar horizontal lineartfin
[@]. The aforementioned five machines have parallel linear
joints. This feature provides these machines with higlfrstifs
in the direction of the linear joints and poor stiffness i th
orthogonal directions. Thus, these machines are more suit-
able for specialized operations like drilling, than for gead
machining tasks. The STAR mechanism has three horizontal
linear joints intersecting at one poi14]. Isotropic ddions
for the STAR mechanisms were studied [25] but a special
type of singularity was shown to occur at the isotropic con-
figuration if one prescribes unitary transmission fact@].[
At this singularity (a so-called “RPM-IO-11 singularity’hithe ] o )
classification of [27]), there is a loss of both input and amtp e linear joints can be actuated by means of linear motors
motions and, at the same time, a redundant passive motiorP6PY conventional rotary motors with ball screws. Like i th
each leg occurs. Recently, one 3-DOF translational meshaniP€lta-type PKM, the output body is connected to the linear
with gliding foot points was found in three separate works #9ints through a set of three parallelograms of equal length
be isotropic throughout the Cartesian Workspe@ [, ,[16@ = B,;C;, so that it can move only in translation. The three
[L7]. The mobile platform is connected to three orthogonk9s areP RPaR identical chains, wher®, 1 and Pa stands
linear drives through three identical planar 3-revolutietied for Prismatic, Revolute and Parallelogram joint, respedyi
serial chains. Full isotropy is clearly an outstanding gty Thu_s,_ the_mechamsm is ov_er-constralned. T_he arranger_f\ent 0
On the other hand, bulky legs are required to assure stiffndge joints in theP RPaR chains have been defined to eliminate
because these legs are subject to bending. any.speC|aI ;lngularltm6]. Each base paittis fixed on_the
PKM with fixed length struts and moveable foot points aré ' linear axis such thatl; A, = A;A; = A»A;. The points
interesting because the actuators are fixed and the movifgand C: are located on the’" parallelogram as shown in

masses are lower than in the hexapods and tripods. Fig.ld. o
The design parameters to be optimized are the parallelogram

length, the position and orientation of each linear actulipdint
axis and the range of the linear actuators.

Fig. 1
BASIC KINEMATIC ARCHITECTURE

IIl. PROBLEM FORMULATION
A. Design Parameters

The machine-tool we want to design is a spatial translatiorfa: Kinematic Equations and Singular configurations
PKM dedicated to general-axis machining tasks with the Let #; and 3; denote the joint angles of the parallelogram
following requirements, (i) a configuration should existas about the axe$; andj;, respectively (Fig[|2). Leb1, p2, p3
the transmission factors are equal to one in all directibks, denote the linear joint variablep; = A;B;.
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that cuts ther, y andz axes atB;, Bs and Bs, respectively,
wherez, y andz are parallel to the three linear actuated joints,
respectively (Fig[]3). The parallel singularities are dedirby

the surface generated By when this circle “glides” along the

x, y and z axes. A particular parallel singularity occurs when
the links B;C; are parallel. The surface generated is a sphere
of radius L and centered at the intersection of they and z

axes (Fig[}).

Fig. 2
LEG KINEMATICS

Let p be referred to as the vector of actuated joint rates and
p as the velocity vector of poinP:

p=1pp2psl’. p=1ligA"

p can be written in three different ways by traversing theghre
chainsA; B;C; P:

p =np; + (0ii; + Biji) x (ci — by) 1)

whereb; andc; are the position vectors, in a given reference
frame, of the pointsB; and C;, respectively, anch; is the
direction vector of the linear joints, for=1,2,3.

We want to eliminate the two passive joint ratgsand 3;
from Egs. 1), which we do upon dot-multiplying Eq§} (1) by
c; — b;:

Fig. 3

(ci —bi)"p = (ci — bi) myp; 2
Equations |Z|2) can now be cast in vector form, namely
Ap =Bp

whereA andB are the parallel and serial Jacobian matrices,
respectively:

[ (c1—b1)"
A= (Cg — b2) (3a)
cs—b
( 3 0 3)0 Fig. 4
771 PARALLEL SINGULAR CONFIGURATION WHEN B;C; ARE PARALLEL
B=| 0 7 0 (3b)
L 0 0 3
with n; = (¢; — b;)Tn; fori =1,2,3. Serial singularities arise when the serial Jacobian matrix
The parallel singularities occur when the determinant ef ttB is no longer invertiblei.e. when det(B) = 0. At a

matrix A vanishes,i.e. when det(A) = 0. In such config- serial singularity a direction exists along which any Csiga
urations, it is possible to move locally the mobile platfornvelocity cannot be produced. Eq] (3b) shows thet(B) = 0
whereas the actuated joints are locked. These singutaéte when for one leg, (b; —a;) L (c; — b;), wherea; is the
particularly undesirable because the structure cannist i@sy position vector of4;. Thus, the serial singularities form three
force. Equation[{3a) shows that the parallel singularitiesur planes orthogonal to the, y and z axis, respectively.

when the three vectors; — b, are linearly dependent, that It will be shown in Sectiofi IV-D that the optimization of the
is when the pairs of pointsH;, C;) lie in parallel planes Orthoglide puts the serial and parallel singularities famapa
(Fig. B). To interpret this singularity, it is more convemie from the Cartesian workspace. Also, even if the direct and
to regard the pointg’; as coincident (this does not changénverse kinematics may theoretically have several satstio
the analysis since each offsét P can be included irp;). only one solution exists in the Cartesian workspdcé [28].
Then, a parallel singularity occurs when the poiftg Bs,

Bs andC = C; = C, = C3 = P are coplanar. Since, at IV. OPTIMIZATION OF THE DESIGN PARAMETERS

a parallel singular configuratior? is always equally distant The aim of this section is to define the geometric parameters
from B, B and B3, P is at the center of a circle of radids of the Orthoglide as a function of the size of a prescribedaub
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Cartesian workspace with bounded transmission factors. Weear joints is not a consequence of the isotropy condition
first show that the orthogonal arrangement of the lineartgoinbut it stems from the condition on the transmission factars a
is imposed by the condition on the isotropy and manipulghili the isotropic configuration, as shown in the next section.

we want the Orthoglide to have an isotropic configuratiorwit

velocity and force transmission factors equal to one. Th&n, C. Transmission factors

impose that the transmission factors remain under pre=trib . sarial 3-axis machine tools, a motion of an actuated

bounds throughout the prescribed Cartesian workspace ﬂt yields the same motion of the tool (the transmission
we deduce the link dimensions and the joint limits. Limiting, /s are equal to one). For parallel machines, theseommti
the force and velocity transmission factors makes it pdssily o yanerally not equivalent. When the mechanism is close to
to guarantee a minimal kinematic stlff_ness_ throughgut t parallel singularity, a small joint rate can generate gdar
iarte;flfan Worfkslrl)ace. T_he struciural st|ffrk1]ese. Q”C'UQ"”g velocity of the tool. This means that the positioning accyra
the ,St' ness of a r_ods) IS guarqnteed by the over-coimith of the tool is lower in some directions for some configuragion
design and preliminary rods stiffness analysgs [2]. A mopg,qq 1 parallel singularities because the encoder résnlis
detailed study of the Othoglide structural stifiness iseatly 1 jified. In addition, a velocity amplification in one ditien
conducied at IRCCyN with finite element analyses. is equivalent to a loss of stiffness in this direction.

The manipulability ellipsoids of the Jacobian matrix of
A. Condition Number and Isotropic Configuration robotic manipulators was defined two decades eﬂ;o [9]. This

The Jacobian matrix is said to be isotropic when its cogoncept has then been applied as a performance index to
dition number attains its minimum value of ong][28]. Th@arallel manipulators[J3]. Note that, although the conaefpt
condition number of the Jacobian matrix is an interestif§anipulability is close to the concept of condition number,
performance index which characterises the distortion oft@ey do not provide the same information. The condition
unit ball under the transformation represented by the Janobnumber quantifies the proximity to an isotropic configunatio
matrix. The Jacobian matrix of a manipulator is used to eelake- where the manipulability ellipsoid is a sphere, or, in other
(i) the joint rates and the Cartesian velocities, and (&) static words, where the transmission factors are the same in all
load on the output link and the joint torques or forces. Thu§e directions, but it does not inform about the value of the
the condition number of the Jacobian matrix can be used fgnsmission factor.

measure the uniformity of the distribution of the tool vétis ~ The manipulability ellipsoid ofJ~" is used here for (i)
and forces in the Cartesian workspace. defining the orientation of the linear joints and (ii) defigin

the joint limits of the Orthoglide such that the transmissio

. ) . . factors are bounded in the prescribed Cartesian workspace.

B. Isotropic Configuration of the Orthoglide We want the transmission factors to be equal to one at the
For parallel manipulators, it is more convenient to studgotropic configuration like for a serial machine tool. This

the conditioning of the Jacobian matrix that is related ® tttondition implies that the three terms of Ecﬂ (5a) must be
inverse transformation] . WhenB is not singularJ ! is equal to one:

defined by: 1 1 1
—le1 —=bi]| = —|lca = ba|| = —|lcs —bs]| =1 (6
b=3'p with 31 =B A m||01 1] 772||C2 2| 773||03 sl (6)
Thus: which implies that(b; — a;) and(c; — b;) must be collinear
T for eachs.
1 (1/m1)(er — El)T Since, at this isotropic configuration, link C; are orthog-
I7 = | (/m2)(e2 — bQ)T 4 onal, Eq. [B) implies that the linkd,; B; are orthogonali.e.
(1/115)(es — bs) the linear joints are orthogonal. For joint rates belongim@
with 7; = (c¢; — b;)Tn; fori = 1,2, 3. unit ball, namely||p|| < 1, the Cartesian velocities belong to
The matrix J-! is isotropic whenJ—1J-7 = 5215,5, an ellipsoid such that:
wherelsys is the3 x 3 identity matrix. Thus, we must have, pT(JJT)p <1
i||c1 —by|| = i”CQ — by|| = l”C3 ~ by| (5a) The eigenvectors of matrigJJ”)~! define the direction of
1 Up 3 its principal axes of this ellipsoid and the square roHts

(c1 — bl)T(C2 —by) =0 (5b) & and &3 of the eigenvalues ofJJ7)~! are the lengths of
the aforementioned principal axes. The velocity transioss
(ca —b2)T(c3 —b3) =0 (5¢) factors in the directions of the principal axes are defined by
T _ 1 = 1/&1, ¥ = 1/& andyz = 1/&3. To limit the variations
(3 = bg)" (1 —b1) =0 D of this 4actor, we i/mpose /

Equation ﬂSa) states that the angle between the axis of the Yoim < 1 < 1) )
linear joint and the linkB;C; must be the same for each leg i = YL = rmar
Equations|§|5b—d) mean that the linBsC; must be orthogonal throughout the Cartesian workspace. This condition deter-
to each other. Figurf] 5 shows the isotropic configuration ofines the link lengths and the linear joint limits. To sinfipli
the Orthoglide. Note that the orthogonal arrangement of ttiee problem, we sep,.in = 1/¥Umax-
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D. Design of the Orthoglide for a Prescribed Cartesiartonfiguration and they tend towards zero or infinity in the
Workspace vicinity of the singularity surfaces. It turns out that the

For usual machine tools, the Cartesian workspace is gegp_intsQl and (- defined at the intersection of the Cartesian

erally given as a function of the size of a right-angleforkspace boundary with the axis=y = = (in a reference
parallelepiped. Due to the symmetrical architecture of t{E2me (O.z, . z) centered at the intersection of the three
Orthoglide, the Cartesian workspace has a fairly regulapsh lIn€ar joint axes, F'QDS)_ are the closest ones to the singyla

In fact, the workspace is defined by the intersection of thr&drfaces, as illustrated in Fif]. 6 which shows on the same top
orthogonal cylinders topped with spheres. As shown in ig. ¥€W the Orthoglide in the two parallel singular configuoats

it is easy to include a cube whose sides are parallel to e figures|_]3 and [J4. Thus, we may postulate the intuitive
planeszy, y> and x> respectively. The aim of this section isresult that if the prescribed bounds on the transmissioiofac

are satisfied at); and @),, then these bounds are satisfied
- throughout the prescribed cubic Cartesian workspace.dt) fa
E this result can be proved using interval analyfig [29].

TS
.(" > ,\Purallel sing

7P
: (% < , :
5 Ngdb o2 ;
VA Le
B ] Parallel
e ingularitiéiﬁ
L Workspace A <
E Workspace
- - Pv
Y

Fig. 6
POINTS Q1 AND Q2 AND THE SINGULAR CONFIGURATIONS(TOP VIEW)

Fig. 5
ISOTROPIC CONFIGURATION ANDCARTESIAN WORKSPACE OF THE
ORTHOGLIDE MECHANISM AND POINTS(Q1 AND Q2

Step 2: At the isotropic configuration, the anglésandg;
are equal to zero by definition. When the tool center péint
is atQ1, p1 = p2 = p3 = pmin (Fig. [f). WhenP is at Qs,

to define the position of the base poitf, the link lengthsL oL = po = p3 = pmas (Fig. )_

and the linear actuator rangep with respect to the limits on
the transmission factors defined in Eﬂ. (7) and as a function
of the size of the prescribed Cartesian Workspage,, kspace-

The proposed optimization scheme is divided into three

steps.

1) First, two points@; and Q). are determined in the
prescribed cubic Cartesian workspace (IEIg. 5) such that
if the transmission factor bounds are satisfied at these
points, they are satisfied in all the prescribed Cartesian
workspace.

2) The pointg); and@- are used to define the leg length
as function of the size of the prescribed cubic Cartesian
workspace.

3) Finally, the positions of the base points; and the
linear actuator rangeé\p are calculated such that the
prescribed cubic Cartesian workspace is fully included
in the Cartesian workspace of the Orthoglide.

Step 1: The transmission factors are equal to one at the

isotropic configuration. These factors increase or deereas
when the tool center point moves away from the isotropic

Fig. 7
()1 CONFIGURATION
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A2/

with
¢ = —sin(Bo,)L and ¢ = —sin(Bg,)L  (12b)

The size of the Cartesian workspace is,

Lw orkspace = g2 — q1]
Thus, L can be defined as a function éfy o, ispace-
I Lworkspace
| sin(Bq,) — sin(Bq, )|
Step 3:We want to determine the positions of the base points,

namely,a = OA; = OA, = OAs. When the tool center point
P is atQ] defined as the projection onto theaxis of Q,

p2 = 0 and, (Fig[P)
Fig. 8 OAy = 0Q) + Q1Co + CyAs

Q2 CONFIGURATION Sincepy =0, Co Ay = CoBs = L. With OAy = a, Q[ Cs =
PCy = —e and0Q = ¢1, we get,

a=q1 —e—L

We posep,,;, = 0 for more simplicity.

The position of P along thez axis can be written equiva-
lently asz = —sin(3;)L andz = sin(f2) cos(32) L by travers-
ing the two chainsd; B;C> P and A; BoC, P, respectively. On
the axis(Q1Q2), 01 = B2 = B3 andf; = 6, = 63. We note,

Bi=Po=p3=pF and 0 =0, =03=10 8)
Thus, the angleg can be written as a function &
B = — arctan(sin(6)) (9)

Finally, by substituting Eq.[]9) into Eq.[](4), the inverse
Jacobian matrixJ—! can be simplified as follows

1 —tan(d) — tan(0)
J7' = | —tan(0) 1 — tan(6)
—tan(f) —tan(d) 1

Thus, the square roots of the eigenvaluegXf”)~! are,
& =2tan(f) — 1| and & =& =|tan(d) + 1

Fig. 9
THE POINTQ’, USED FOR THE DETERMINATION OFa

And the three velocity transmission factors are,

1 1
1= -——F~—— and P2 =13= (10)
[2tan(0) — 1 | tan(0) + 1| Since ¢; is known from Egs. [(T2a) and [ (q7b), can be
The joint limits on ¢ are located on both sides of thecalculated as function of, L and ¢.mqz.

isotropic configuration. To calculate the joint limits, wehse Now, we have to calculate the linear joint ranfye = p,az

the following inequations, (we have poseg,,,=0).
1 1 When the tool center poirft is atQs2, p = pmaz- Projecting
Vimas < |2 tan(6) — 1] < Ymas (11a) Ao P = A3Bs + BoCy + Co P on they axis yields,
! L S djmaz (11b) Pmax = q2 — @ — COS(9Q2> COS(ﬂQz)L —¢€

Ve = Tran(@) 1 1]
where the value of,,., depends on the performance requireg. prototype
ments. Two sets of joint limits[fg, Bo,] and[fq, Bq,]) are
found in symbolic form. The detail of this calculation is giv
in the Appendix.

The position vectorsy; and qo of the points@; and Q-,
respectively, can be easily defined as a functionLc(Figs.D’

and[§),
Q=g aaq

Using the aforementioned two kinetostatic criteria, a $mal
scale prototype has been constructed in our laboratory (
Figure ). The three parts (1), (2) and (3) have been
designed to prevent each parallelogram from colliding wht
corresponding linear motion guide. Also, the shifted posit
of the tool center point? limits the collisions between the

1T and qo = (g2 @ @2]7 (12a) parallelograms and the workpiece. The actuated joints used
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cubic Cartesian workspace and bounded velocity and force
transmission factors.

The Orthoglide has been designed under isotropic condi-
tions and limited transmission factors. Low inertia andiirgic
stiffness have been set as additional design requireniemts,
three articulated parallelograms have been used, ratlaer th
legs subject to bending as in the fully isotropic mechanisms
proposed in[[15], [46],[[37]. At the isotropic configuratica
displacement of a linear joint yields the same displacement
of the tool in the corresponding Cartesian direction likeain
serial machine. The Cartesian workspace is simple, regualér
free of singularities and self-collisions. It is fairly nelgr and
Fig. 10 the performances are homogeneous throughout the Cartesian
workspace. Thus, the entire Cartesian workspace is really
available for tool paths. These features make the Ortheglid
a novel design as compared to the existing Delta-type PKM
structures. A small-scale prototype Orthoglide has bedhdiu

] . IRCCyN to demonstrate the feasibility of the design. Dyrami
for this prototype are rotary motors with ball screws. Thgodel based control laws will be implementd] [30] and first

prescri_bed perfprmances of the Orthoglid_e prototype areéngychining experiments with plastic parts will be conducted
Cartesian velocity of .2m /s and an acceleration afim/s? at

the isotropic point. The desired payloadifsg. The size of its
prescribed cubic Cartesian workspaceds x 200 x 200 mm.
We limit the variations of the velocity transmission fact@s, ~ 1his works is supported by Région Pays-de-Loire, Agence
Nationale pour la Valorisation de la Rechercligole des
1/2<¢; <2 (13) Mines de Nantes and C.N.R.S.
S. Bellavoir, G. Branchu, P. Lemoine and P. Molina are
Sqratefully acknowledged for their technical help.

i

CATIA MODEL OF THE ORTHOGLIDE (LEFT) AND PROTOTYPE(RIGHT)
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VI. APPENDIX
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