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Continuous–time model identification from noisy input/output

measurements using fourth–order cumulants

Stéphane Thil*, Hugues Garnier*, Marion Gilson*, Kaushik Mahata**

Abstract— In this paper, the problem of identifying stochas-
tic linear continuous-time systems from noisy input/output
data is addressed. The input of the system is assumed to
be non-Gaussian, whereas the noises contaminating the data
are assumed to be Gaussian. The fourth-order cumulants of
the input/output data are then (asymptotically) insensitive to
the noises, that can be colored and/or mutually correlated.
Two estimators based on this noise-cancellation property are
proposed. The performance of the proposed algorithms are
assessed through a numerical simulation.

I. INTRODUCTION

Errors-in-variables (EIV) system identification – where the

input and the output of the system are contamined by

noises – has received considerable interest in the last few

years. Many methods have been proposed to solve the

EIV problem for discrete-time models, see [19], [17] for

an overview. Nonetheless, in many areas of science and

engineering, the identified dynamic models should be phys-

ically meaningful. As a result, there is a need for modeling

approaches that are able to yield directly from the sampled

data parsimonious continuous-time (CT) models that have

clear physical interpretations. Although the last few years

have witnessed considerable development in CT approaches

to system identification from sampled data (see e.g. [9], [11],

[16], [8]), CT model identification in an EIV framework

is a relatively unexplored area. The first attempts have

been very recently proposed [13], [18], assuming the noises

contaminating the data to be white. This assumption allows

not only to simplify the algorithms, but to rule out some

identifiability problems as well. Indeed, without any further

assumptions on the signal and noise models, it is well-

known that the general EIV model is not uniquely identifiable

from second order statistics [2], [1]. EIV systems suffer

from this lack of identifiability, and it is thus of interest to

study alternative approaches based on higher-order statistics.

Several identification methods using higher-order statistics

have been proposed for discrete-time EIV models (see e.g.

[7], [24], [6], [25]).

A CT EIV system identification method using third-order

cumulants has been recently proposed [23]. The use of

third-order cumulants, which are insensitive to symmetrically

distributed noises, allows to achieve improved performance

in low signal-to-noise conditions. Furthermore, the method
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can be applied as long as the noises are symmetrically

distributed: the noises on both input and output signals can

thus be colored, and even mutually correlated. However,

a restriction is that the noise-free input signal must have

a skewed probability density function. To circumvent this

restriction, fourth-order cumulants can be used.

This paper presents a fourth-order cumulant-based method

for CT system identification in an EIV framework. The

paper is organized in the following way. The identification

problem is formulated in Section II. The main definitions

and properties of higher-order statistics used in the proposed

approach are then recalled in Section III. The fourth-order

statistics-based algorithms for continuous-time EIV models

are presented in Section IV. A numerical study is presented

in Section V before concluding in Section VI.

II. PROBLEM STATEMENT

CT system
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Fig. 1. CT system with noisy input/output data

Consider a CT linear time-invariant system represented in

Figure 1. The noise-free input and output signals are related

by

y0(t) = G0(p)u0(t) =
B0(p)

A0(p)
u0(t) (1)

where p is the differential operator and G0(p) is the transfer

function of the true system. We assume that u0(t) and y0(t)
are sampled at time-instants {tk}

N
k=1. The sampled signals

are both contaminated by discrete-time noise sequences,

denoted as ũ(tk) and ỹ(tk) respectively. The measured input

and output signals are therefore given by

u(tk) = u0(tk) + ũ(tk) (2)

y(tk) = y0(tk) + ỹ(tk) (3)



The data-generating CT system is thus characterized by

S :






y0(t) = G0(p)u0(t) = B0(p)
A0(p)u0(t)

u(tk) = u0(tk) + ũ(tk)

y(tk) = y0(tk) + ỹ(tk)

(4)

It is then parameterized as follows

G :






G(p, θ) = B(p, θ)/A(p, θ)

A(p, θ) = a0+a1p + ... + ana−1p
na−1+pna

B(p, θ) = b0+b1p + ... + bnb
pnb

(5)

with θT = [a0 . . . ana−1 b0 . . . bnb
] and na > nb.

In addition to the aforesaid conditions, we assume that

A1. A0(s) 6= 0 for ℜ(s) ≥ 0 and A0(s), B0(s) are coprime

(s is the Laplace variable);

A2. the polynomial degrees na and nb are a priori known;

A3. the noise-free signal u0(tk) is a zero-mean stationary

stochastic process such that its fourth-order cumulants

are non-zero. Therefore, its probability density function

cannot be Gaussian;

A4. ũ(tk) and ỹ(tk) are stationary, zero-mean Gaussian

random variables, independent of u0(tk) and y0(tk).

REMARK 1

Assumption A1 aggregates the traditional assumptions of

stability and observability of the system. We also suppose that

the system (1) has been in operation for a time long enough

so that the output y0 is fourth-order wide-sense stationary,

i.e. its moments of order up to four are invariant to any time

shift.

Assumption A2 means that only the system belongs to the

model class, a situation denoted as G0 ∈ G [12].

Assumptions A3 and A4 are linked to properties of higher-

order statistics, and will be justified in the sequel.

Note that, except A4, there is no other assumption on the

noises. They can thus be white or colored, and mutually

correlated or not.

The identification problem can then be formulated as

follows: given N samples of noisy input/output data

{u(tk), y(tk)}
N
k=1, directly estimate the continuous-time pa-

rameter vector θ.

III. PROPERTIES OF FOURTH-ORDER CUMULANTS

The identification technique developed in this paper is based

on higher-order statistics (HOS) [5], [14], [10], [22]. The

main definitions and properties used in the proposed ap-

proach are recalled in this section.

The fourth-order cumulant of a real-valued, zero-mean sta-

tionary random process x(tk) is defined as

Cxxxx(τ1,τ2,τ3) = Cum[x(t)x(t+τ1)x(t+τ2)x(t+τ3)]

= E[x(t)x(t+τ1)x(t+τ2)x(t+τ3)]

− E[x(t)x(t+τ1)]E[x(t+τ2)x(t+τ3)]

− E[x(t)x(t+τ2)]E[x(t+τ1)x(t+τ3)]

− E[x(t)x(t+τ3)]E[x(t+τ1)x(t+τ2)] (6)

The cumulants of order higher than two have many properties

amongst which we only recall those used in the proposed

estimation scheme.

Let x = [x(t1), . . . , x(tk)]
T

and y = [y(t1), . . . , y(tk)]
T

be

two random vectors.

P1. Multilinearity: if x and y are linearly linked up by y =
Mx, where M is any matrix of appropriate size, then

the cumulants of y are linear functions of each of the

components Mij . For instance

Cum[y(ti), y(tj), y(tk), y(tl)]

=
∑

a,b,c,d

MiaMjbMkcMldCum[x(ta), x(tb), x(tc), x(td)]

P2. Additivity: if x and y are independent, the cumulant of

their sum equals the sum of their cumulants

Cum[x(t1)+ y(t1), . . . , x(tn)+ y(tn)]

= Cum[x(t1), . . . , x(tn)] + Cum[y(t1), . . . , y(tn)]

P3. The fourth-order cumulant of a random variable with a

Gaussian distribution is equal to zero.

Now the relevance of assumptions A3 and A4 is pointed out:

if the fourth-order cumulant of the measured input signal (2)

is considered, using properties P2 and P3 yields1

Cuuuu(τ ) = Cu0u0u0u0
(τ ) + Cũũũũ(τ ) (7)

= Cu0u0u0u0
(τ ) (8)

In the same manner this result is obviously true for the

fourth-order cumulant of any combination of input/output

signals. The use of fourth-order cumulants therefore allows

to get naturally rid of the (possibly colored) measurement

noise contaminating the input/output data, under assumptions

A3-A4.

IV. HOS-BASED METHODS FOR CT EIV MODELS

PROPOSITION 1

The fourth-order cross-cumulant between the measured in-

put/output signals satisfies

Cuyuu(τ ) =
B(p, θ)

A(p, θ)
Cuuuu(τ ) (9)

where the differential operator p stands for ∂
∂τ1

.

This result is the starting point of the identification methods:

the differential equation of the system is also satisfied by

the fourth-order cumulants. If the input/ouput signals are

contaminated by Gaussian noises, then (9) only involves

noise-free terms. Thus theoretically (i.e. with an infinite data

set) any consistent parametric identification method applied

to (9) will give the exact parameter vector. In the sequel two

such possibilities are presented.

Several problems arise though, mostly due to the fact that

the cumulants have to be estimated from a finite number of

the data.

1For ease of notation τ = [τ1 τ2 τ3]T is used in the sequel.



A. Estimation of the fourth-order cumulants

Given N samples of input/output data {u(tk), y(tk)}
N
k=1

the fourth-order cumulants have to be estimated. A natural

estimator from N samples is obtained by using sample

averages instead of mathematical expectations:

Ĉxxxx(τ ) =
1

N

N∑

k=1

x(tk)x(tk+τ1)x(tk+τ2)x(tk+τ3)

−
1

N2

N∑

k=1

x(tk)x(tk+τ1)
N∑

k=1

x(tk+τ2)x(tk+τ3)

−
1

N2

N∑

k=1

x(tk)x(tk+τ2)
N∑

k=1

x(tk+τ1)x(tk+τ3)

−
1

N2

N∑

k=1

x(tk)x(tk+τ3)

N∑

k=1

x(tk+τ1)x(tk+τ2) (10)

Some simple calculations show that this estimator is asymp-

totically unbiased, but biased for finite N . Thus with a

large number of samples (10) is an approximatively unbiased

estimator. However, when only a small data set is available,

the bias cannot be neglected anymore. For such situations,

it becomes crucial to use an unbiased estimator, as the k-

statistic given by [10], [5], [22]:

Ĉxxxx(τ ) =
1

(N − 1)(N − 2)(N − 3)

{

N(N + 1)
N∑

k=1

x(tk)x(tk+τ1)x(tk+τ2)x(tk+τ3)

−3(N−1)
N∑

k=1

x(tk)x(tk+τ1)
N∑

k=1

x(tk+τ2)x(tk+τ3)

−3(N−1)
N∑

k=1

x(tk)x(tk+τ2)
N∑

k=1

x(tk+τ1)x(tk+τ3)

−3(N−1)
N∑

k=1

x(tk)x(tk+τ3)
N∑

k=1

x(tk+τ1)x(tk+τ2)

}

(11)

From a finite number of data, by using (11), estimates of

the fourth-order cumulants are calculated. Then (9) can be

rewritten as:

Ĉuyuu(τ ) =
B(p, θ)

A(p, θ)
Ĉuuuu(τ ) + ε(τ ,θ) (12)

ε(τ ,θ) =
B(p, θ)

A(p, θ)
C̃uuuu(τ ) − C̃uyuu(τ ) (13)

where C̃xxxx = Ĉxxxx + C̃xxxx denotes the estimation error

of Cxxxx, that is:

Cxxxx = Ĉxxxx + C̃xxxx (14)

Since the cumulant estimates (11) are unbiased and consis-

tent, it holds that:

lim
N→∞

ε(τ ,θ) = 0 w.p. 1 (15)

B. Cumulant-based LS approach

Equation (12) can be rewritten under a linear regression form

Ĉ(na)
uyuu(τ ) = Φ̂

T
(τ )θ + A(p, θ)ε(τ ,θ) (16)

where

Ĉ(j)
uyuu(τ ) ,

∂j

∂τ j
1

Ĉuyuu(τ ) (17)

and the regression vector is given by

Φ̂
T
(τ ) =

[
−Ĉ(0)

uyuu(τ ) . . . − Ĉ(na−1)
uyuu (τ )

Ĉ(0)
uuuu(τ ) . . . Ĉ(nb)

uuuu(τ )
]

(18)

Define then the error function

e(τ ,θ) = Ĉ(na)
uyuu(τ ) − Φ̂

T
(τ )θ (19)

= B(p, θ)C̃uuuu(τ ) − A(p, θ)C̃uyuu(τ ) (20)

Minimizing the following cost function with respect to θ

V (τ2, τ3,θ,M) =
1

M

M−1∑

τ1=0

1

2
e2(τ ,θ) (21)

leads to the focls estimator (Fourth-Order Cumulants based

Least Squares algorithm), given by

θ̂focls(τ2, τ3,M) =

[
1

M

M−1∑

τ1=0

Φ̂(τ )Φ̂
T
(τ )

]−1

[
1

M

M−1∑

τ1=0

Φ̂(τ )Ĉ(na)
uyuu(τ )

]
(22)

REMARK 2

• The role of the user parameter M is to prevent the use

of cumulants with large time-lags: since the cumulants

are estimated using sample averages, when the time-

lags increase the estimates will be calculated with less

data, thus becoming less reliable. This phenomenon is

underlined in Section V-B.

• By definition the fourth-order cumulants of a stationary

signal are three-dimensional, in the sense that they

depend on three variables (here τ1, τ2 and τ3). From

the available data we can thus derive a cube of length

N constituted of the third-order cumulants calculated

at different points. It has been mentioned above that it

is better to consider a cube of length M containing only

reliable estimates of the cumulants. But it is yet unclear

if all that cube should be used, or only a part of it

(called ‘slice’). Estimation of numerous cumulants and

then calculation of the parameter estimate can indeed

be time-consuming. These questions are strongly linked

to the estimation of the cumulants, and a thorough

analysis is beyond the scope of this paper. To the

authors’ knowledge, there is no definitive rule telling

what slices to use. In this paper a very simple slice has

been considered: the vector obtained with the setting

τ2 = τ3 = 0 and 0 6 τ1 6 M .



C. Cumulant-based iterative LS approach

Equations (12)-(13) define an output error given by

ε(τ ,θ) = Ĉuyuu(τ ) −
B(p, θ)

A(p, θ)
Ĉuuuu(τ ) (23)

=
B(p, θ)

A(p, θ)
C̃uuuu(τ ) − C̃uyuu(τ ) (24)

This error is nonlinear in the parameters. To avoid the

recourse to nonlinear optimization methods, the proposed

second approach is based on an iterative LS procedure, as

initially suggested for discrete-time model identification [4],

[3].

The output error (23) can be rewritten as

ε(τ ,θ)=
1

A(p, θ)

(
A(p, θ)Ĉuyuu(τ )−B(p, θ)Ĉuuuu(τ )

)

= A(p, θ)Ĉuyuu,f (τ ) − B(p, θ)Ĉuuuu,f (τ ) (25)

where Ĉuuuu,f and Ĉuyuu,f denote the cumulants filtered

by 1/A(p, θ). An equation error is thus obtained, linear in

the parameters, which can be estimated by the least squares

method.

Since A(p, θ) is unknown, the idea is to proceed in an

iterative fashion to transform the equation error (25) into

the output error (23). Let bθ
i

be the estimate of θ at the

ith iteration. At each iteration, bθ
i+1

is given by a least

squares estimate, using the cumulants filtered by 1/A(p, bθ
i

).

Insomuch as the parameters converge to a constant value, we

have

A(p, θ̂
i+1

)

A(p, θ̂
i
)

−→ 1 and
B(p, θ̂

i+1
)

A(p, θ̂
i
)

−→
B(p, θ̂

i+1
)

A(p, θ̂
i+1

)

Hence, the equation error (25) tends toward the output error

(23). The convergence of this type of iterative algorithm is

very fast: typically a few iterations are enough [26].

The equation error (25) can be rewritten as a linear regression

ε(τ ,θ) = Ĉ
(na)
uyuu,f (τ ) − Φ̂

T

f (τ )θ (26)

where the regression vector is

Φ̂
T

f (τ ) =
[
−Ĉ

(0)
uyuu,f (τ ) . . . −Ĉ

(na−1)
uyuu,f (τ )

Ĉ
(0)
uuuu,f (τ ) . . . Ĉ

(nb)
uuuu,f (τ )

]
(27)

The focils estimator (Fourth-Order Cumulants based Iterative

Least Squares algorithm) is given by

θ̂focils(τ2, τ3,M) =

[
1

M

M−1∑

τ1=0

Φ̂f (τ )Φ̂
T

f (τ )

]−1

[
1

M

M−1∑

τ1=0

Φ̂f (τ )Ĉ
(na)
uyuu,f (τ )

]
(28)

REMARK 3

This iterative method is greatly inspired by the algorithm

of [20]. There is however a major difference: the Steiglitz-

McBride algorithm uses the iterative LS estimator on mea-

sured I/O data rather than on the cumulants, being therefore

applicable under quite restrictive assumptions (white mea-

surement noise on the output) as it is pointed out in [21].

The proposed method uses that procedure on the fourth-

order cumulants, and since they are insensitive to (white or

colored) Gaussian mesurement noises, the same restrictions

do not apply.

D. Handling of the cumulant time-derivatives: the SVF ap-

proach

The time-derivatives of the cumulants are needed to build

up the regression vectors (18), (27). These can be obtained

e.g. by using the traditional state variable filtering (SVF)

approach, whose basics are quickly recalled in the sequel

(see [27], [28], [9] for further details).

Let nmax be the maximum of na and nb. The SVF approach

allows to reconstruct the time-derivatives (up to an order

nmax) of a signal by passing it into the following filter bank

Fn(p) = pn

(
λ

p + λ

)nmax

, 0 6 n 6 nmax (29)

where λ is a user parameter accounting for the filter cut-off

frequency. Intuitively, it can be chosen in order to emphasize

the frequency band of interest and generally, it should be

chosen close to, or larger than the bandwidth of the system

to be identified.

The filter bank outputs provide the time-derivatives of the

signal in the bandwidth of interest

x
(n)
f (t) = Fn(p)x(t) (30)

= [fn ⋆ x] (t) (31)

where ⋆ stands for the convolution operator and fn(t)
denotes the impulse response of the linear time-invariant

filter Fn(s)

fn(t) = L−1 [Fn(s)] (32)

with L symbolizing the Laplace transform.

The time-derivatives of the cumulants are now computed

using this SVF approach. As a result of their multilinearity

property, a formula for cumulant filtering can be derived [10],

[15]

C
(n)
xxxx,f (τ ) = Fn(p)Cxxxx(τ ) (33)

=

∫

R

fn(τ)Cxxxx(τ1−τ, τ2, τ3)dτ

=

∫

R

fn(τ)E[x(t)x(t+τ1−τ)x(t+τ2)x(t+τ3)] dτ

= E

[
x(t)

(∫

R

fn(τ)x(t+τ1−τ)dτ

)
x(t+τ2)x(t+τ3)

]

= E
[
x(t)x

(n)
f (t+τ1)x(t+τ2)x(t+τ3)

]
(34)



We thus obtain

C
(n)
xxxx,f (τ ) = C

xx
(n)
f

xx
(τ ) (35)

Consequently, the use of the SVF approach, that is the

application on both sides of equation (9) of the filters

{Fn(p)}nmax

n=0 , allows to transfer the cumulant time-derivative

estimation problem to an input/output signal time-derivative

estimation problem, which constitutes a well-known task in

continuous-time model identification [9].

In the focls algorithm, the basic filter bank (29) is applied

to the input/output signals. Their time-derivatives in the

bandwidth of interest are therefore obtained, from which

the cumulants time-derivatives are computed. In the focils

algorithm however, the basic filter bank (29) is applied

to the input/output signals only at the initialization stage

(or equivalently: the focils algorithm is initialized with the

focls estimate). In the subsequent iterations, as an estimate
bθ

i

focils(τ2, τ3, M) is available, the following filter bank is used

Fn(p) =
pn

A
(
p, θ̂

i

focils(τ2, τ3,M)
) , 0 6 n 6 nmax (36)

Note that this filter bank allows to realize both the filtering

by 1/A(p, bθ
i

focils(τ2, τ3, M)) and the differentiation in one step

only.

V. NUMERICAL EXAMPLE

The following second-order system is considered throughout

the example (coming from [13])

G0(p) =
p − 1

p2 + 2p + 1
(37)

The noise-free input signal u0 is chosen as a multi-sine

signal:

u0(t) = sin(t) + sin(1.9t) + sin(2.1t) + sin(2.3t) (38)

The input/ouput signals are sampled uniformly with a sam-

pling interval of 0.05s. The performance of the algorithms

are assessed with the help of Monte Carlo simulations of

nmc = 50 runs. The noise-free and noisy signals are plotted

on Figure 2.

A. Performance analysis

We first focus on the performance of the proposed algorithms

and compare them with the performance of the method of

[13], referenced to as eivsvf.

1) White noises on I/O: In this part the noises contaminating

the input/output signals are defined as Gaussian white noises,

whose variances are adjusted so that the signal-to-noise ratio

(SNR) is equal to 5 dB on both input and output, with

SNR = 10 log10

(
Px0

Px̃

)
(39)

where Px̃ represents the average power of the zero-mean

additive noise while Px0
denotes the average power of the

noise-free signal fluctuations.
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Fig. 2. Part of the noise-free and noisy input/output signals.

Table I and Table II contain the mean and standard deviation

of the estimates for N = 1000 and N = 5000 respectively

as well as the normalized root mean square error, defined as

NRMSE ,

√√√√ 1

nmc

nmc∑

j=1

||θ̂j − θ||2

||θ||2
(40)

where ||.|| is the Euclidian norm and θ̂j is the parameter

vector estimate obtained at the jth run of the Monte Carlo

simulation. The other entries of Table 1 are λ, M and

#it, respectively the cut-off frequency of the SVF, the user

parameter of the proposed methods and the mean of the

iteration number needed to achieve convergence.

The Bode diagrams of the true and estimated models are

plotted in Figure 3.

2) Colored noise on output: The noises contaminating the

input/output signals are defined as

ũ(tk) = e1(tk) ỹ(tk) =
1 + 0.7q−1

1 − 0.7q−1
e2(tk) (41)

where q−1 is the backward shift operator, i.e. q−1x(tk) =
x(tk−1) and e1(tk), e2(tk) are zero-mean Gaussian white

noises. The variances of ei(tk) are then adjusted so that the

SNR is equal to 5 dB on both input and output.



λ M a1 = 2 a0 = 1 b1 = 1 b0 =−1 NRMSE #it

eivsvf − −
2.135
±0.186

0.998
±0.127

1.012
±0.088

−1.091
±0.098

10.8% −

focls 3
110 2.005

±0.171
1.030
±0.157

0.990
±0.082

−0.978
±0.100

9.5% −

160 1.983
±0.175

1.026
±0.142

0.983
±0.080

−0.981
±0.096

9.2% −

focils
−

110 2.025
±0.168

1.039
±0.131

0.997
±0.079

−0.967
±0.088

8.9% 3

160 2.012
±0.168

1.031
±0.133

0.997
±0.080

−0.975
±0.095

8.9% 2.9

TABLE I

MEAN AND STANDARD DEVIATION OF THE PARAMETER ESTIMATES

(WHITE GAUSSIAN NOISES ON I/O, N = 1000).

λ M a1 = 2 a0 = 1 b1 = 1 b0 =−1 NRMSE #it

eivsvf − −
2.131
±0.077

0.978
±0.071

1.021
±0.041

−1.098
±0.046

7.3% −

focls 3
110 1.997

±0.072
1.035
±0.082

0.985
±0.036

−0.968
±0.049

4.7% −

160 1.987
±0.071

1.018
±0.071

0.985
±0.034

−0.977
±0.045

4.2% −

focils −

110 2.015
±0.072

1.037
±0.075

0.995
±0.035

−0.971
±0.046

4.6% 2.6

160 2.011
±0.070

1.019
±0.072

0.997
±0.035

−0.974
±0.047

4.2% 2.3

TABLE II

MEAN AND STANDARD DEVIATION OF THE PARAMETER ESTIMATES

(WHITE GAUSSIAN NOISES ON I/O, N = 5000).

λ M a1 = 2 a0 = 1 b1 = 1 b0 =−1 NRMSE #it

eivsvf − −
2.129
±0.135

1.014
±0.129

1.342
±0.088

−1.062
±0.088

15.3% −

focls 3
110 1.970

±0.138
1.043
±0.129

0.972
±0.070

−0.961
±0.089

8.2% −

160 1.955
±0.134

1.029
±0.111

0.971
±0.067

−0.971
±0.084

7.6% −

focils
−

110 1.987
±0.137

1.047
±0.117

0.980
±0.067

−0.953
±0.083

7.8% 2.7

160 1.980
±0.134

1.028
±0.115

0.983
±0.067

−0.971
±0.085

7.5% 2.6

TABLE III

MEAN AND STANDARD DEVIATION OF THE PARAMETER ESTIMATES

(WHITE/COLORED GAUSSIAN NOISES ON I/O, N = 5000).

3) Discussion: In the case where the noises are both white,

the three algorithms lead to good results. The proposed

algorithms have a smaller bias than those stemming from the

eivsvf method, whereas the variances are comparable. The

NRMSE is thus slightly better for focls and focils. When the

number of sample is large (N = 5000) the difference become

more noticeable: the estimates of the fourth-order cumulants

become more accurate, leading to improved performance of

the proposed algorithms.

When the output measurement noise is colored, the eivsvf

performance logically deteriorates, since it has not been

developed to handle this case. The proposed algorithms

still give good results, showing their robustness to Gaussian

noises, whether they are colored or white.

B. Influence of the user parameter M

To study the influence of the user parameter M on the quality

of the estimates, the proposed algorithms have been applied

for different values of M . The normalized root mean square
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(a) eivsvf algorithm
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(b) focls algorithm
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(c) focils algorithm

Fig. 3. Bode diagrams of the true (‘x’) and estimated models (white
Gaussian noises N = 5000, M = 160, SNR = 5 dB).

error is plotted as a function of M for N = 1000 and for

N = 5000 in Figure 4.

It can be seen that the proposed approaches are not too



sensitive to their user parameter, as long as it is not chosen

too small, or too close to the data length. Indeed, the increase

of the NRMSE in Figure 4-(a) is explained by the value of M
relatively to N : the cumulants estimates are calculated using

not enough data to be accurate, resulting in large errors in

the parameter vector estimate.
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(a) White Gaussian noises, N = 1000
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(b) White Gaussian noises, N = 5000

Fig. 4. NRMSE as a function of the user parameter M .

VI. CONCLUSION

In this paper, two new methods to consistently identify a

continuous-time model in an EIV framework have been

presented. The proposed methods are based on the use of

fourth-order cumulants. The system is assumed to be excited

by a non-Gaussian input and contaminated by Gaussian

noises. As no other assumption is made on the measurement

noises, they can be colored (and even mutually correlated), a

case that cannot be handled by the few existing continuous-

time EIV methods. Numerical simulations have illustrated

the robustness of the proposed method to white and colored

Gaussian noises.
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