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Toxoplasma gondii is an obligate intracellular parasite for which the discharge of apical organelles named rhoptries is a
key event in host cell invasion. Among rhoptry proteins, ROP2, which is the prototype of a large protein family, is
translocated in the parasitophorous vacuole membrane during invasion. The ROP2 family members are related to
protein-kinases, but only some of them are predicted to be catalytically active, and none of the latter has been
characterized so far. We show here that ROP18, a member of the ROP2 family, is located in the rhoptries and re-
localises at the parasitophorous vacuole membrane during invasion. We demonstrate that a recombinant ROP18
catalytic domain (amino acids 243–539) possesses a protein-kinase activity and phosphorylate parasitic substrates,
especially a 70-kDa protein of tachyzoites. Furthermore, we show that overexpression of ROP18 in transgenic parasites
causes a dramatic increase in intra-vacuolar parasite multiplication rate, which is correlated with kinase activity.
Therefore, we demonstrate, to our knowledge for the first time, that rhoptries can discharge active protein-kinases
upon host cell invasion, which can exert a long-lasting effect on intracellular parasite development and virulence.
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Introduction

Toxoplasma gondii is an obligate intracellular parasite
belonging to the protozoan phylum Apicomplexa, which
includes a large number of human and animal parasites
responsible for diseases such as malaria, toxoplasmosis,
coccidiosis, and cryptosporidiosis. As for all other members
of the phylum, host cell invasion by T. gondii involves
specialized apical organelles of the invasive stage, namely
micronemes and rhoptries, which discharge their contents
successively [1,2]. The exocytosis of micronemal proteins is
associated with gliding and attachment to the host cell [3–6].
Then, a complex of microneme and rhoptry neck proteins
forms a moving junction with the host cell plasma membrane
that propels the parasite within the developing parasitopho-
rous vacuole [7,8]. Subsequently, proteins of the bulb of the
rhoptries (ROP proteins) become associated with the para-
sitophorous vacuole membrane (PVM) that forms from host
plasma membrane and rhoptry components during invasion
[9]. Among rhoptry proteins is a series of related proteins, the
ROP2 family [10–12], named after the ROP2 protein, which is
translocated into the PVM during invasion [13]. The N-
terminal (Nt) domain of ROP2 has been shown to interact
with the mitochondrial import machinery and to mediate the
association of host mitochondria to the PVM [14]. Targeted
depletion of ROP2 using a ribozyme-modified antisense RNA
strategy results in disruption of rhoptry biogenesis and
affects cytokinesis, association of host cell mitochondria with
the PVM, host cell invasion, and virulence in mice [15].
Several other members of the family have been characterized
more recently, and they are also targeted to the PVM upon
invasion [16–18].

The importance of ROP2 and the fact that the parasite is

synthesizing simultaneously several ROP2 homolog proteins
suggest that these proteins serve crucial functions; yet, the
apparent indispensability of ROP2 suggests that they may not
complement one another and may have distinct functions.
We have recently shown that the ROP2 family could be
expanded to at least 12 members, some of which show a full
set of features compatible with protein-kinase activity,
whereas ROP2 and its closest relatives have lost some of
these features [12]. This raises the question of the role played
by these proteins. Indeed, parasitic kinase(s) acting on host
cell inhibitor of nuclear factor jB (IjB) have been suggested
to be present at the PVM level [19]. Thus, T. gondii could be
capable of manipulating the host cell machinery using its own
kinases to favour its survival and development.
Recently, many investigations have focused on searching

protein-kinases in unicellular parasites, based on the fact that
the vast phylogenetic distance between the organisms and
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their vertebrate hosts may have generated divergences in the
properties of their protein-kinases that could be exploited
for specific inhibition of the parasite enzymes [20–23].

This has prompted us to study the new members of the
ROP2 family predicted to possess a fully functional protein-
kinase domain. We report here the cloning and character-
ization of ROP18, a novel ROP2-related rhoptry protein that
is translocated to the PVM during invasion. We show that
ROP18 is a protein-kinase that can phosphorylate a tachy-
zoite substrate of 70 kDa. We therefore demonstrate that
rhoptries can discharge active kinases at the parasite–host
cell interface upon cell invasion. In addition, overexpression
of ROP18 in tachyzoites led to a dramatic stimulating effect
on intracellular parasite multiplication, strongly suggesting
that this protein plays a role in the control of parasite
proliferation and may therefore be involved in T. gondii
virulence.

Results

Analysis of ROP18 Sequence
The open reading frame (ORF) included in the expressed

sequence tag (EST) Cluster 100121072 (APIDBest, http://www.
apidb.org/apidb) corresponding to the ROP18 protein has
been amplified from T. gondii genomic DNA and sequenced
[12]. The ROP18 protein–deduced primary sequence aligns
with the ROP2 sequence with 25% identity (Figure 1). ROP18
is more closely related to ROP5 (28%) than to the other ROP2
prototypes, such as ROP2, 4, 7, and 8.

As other ROP2 family proteins, ROP18 contains an Nt
peptide signal sequence, with a predicted cleavage site
between residues 28 and 29 (the second Met of the ORF has
been considered as the start codon by homology to ROP2,
and used as position 1) or between residues 32 and 33,
according to SignalP.

Almost all rhoptry proteins described so far in T. gondii,
including members of the ROP2 family proteins (ROP2, 4,
and 7), are synthesized as pro-proteins that are subjected to

proteolytic cleavage during trafficking to rhoptries removing
the Nt pro-region [10,17,24]. The exact site of cleavage for the
ROP2 family proteins is unknown, but the sequence (SWLE)
present at the end of the pro-domain of ROP2, ROP4, and
ROP8 has been suspected to be the cleavage site by the
maturase TgSUB2 (the proposed consensus being SUXE,
where U represents bulky hydrophobic residues and X is any
amino acid [25]). ROP5 lacks this sequence and is not
processed [18]. ROP18 contains at the same location the
sequence SLLE, and may therefore be cleaved after amino
acid 82.
Following the predicted cleavage site, several arginine-rich

stretches are observed in ROP2 family proteins, including
ROP2, 4, 5, 7, and 8 [12]. Two such arginine-rich segments are
clearly recognized in ROP18 sequence at positions 101–113
and 129–142, and a third one at 152–163 is more degenerate.
However, the precise role of these basic and amphipathic
segments remains unknown, although they may serve to
anchor proteins onto membrane surfaces. These stretches are
followed by a linker region (residues 173–233) whose function
and structure are unknown.
A putative serine/threonine protein-kinase domain in the

C-terminal (Ct) half of the ROP18 sequence was identified by
PSI-BLAST search [26] with significant e-value (below e�7).
However, this domain comprises a hydrophobic stretch
conserved in other ROP2 family proteins that has been
previously considered as a transmembrane segment. The
corresponding segment in ROP18 is weakly predicted by
TopPred as a putative transmembrane segment (443 and 463)
with a score of 0.614. Our recent sequence analysis of all
ROP2 family sequences has led us to rule out the trans-
membrane prediction for this conserved segment [12]. We
rather predicted that the Ct region (234–539 in ROP2) adopts
a protein-kinase fold. In order to confirm this hypothesis,
molecular modelling was performed on ROP18.

Structural Characterization of ROP18
Comparative modelling was initiated using fold-recogni-

tion through the meta-server @TOME [27]. Significant scores
of fold-compatibility were obtained with various serine/
threonine kinases (see results at http://www.infobiosud.cnrs.
fr/bioserver/ROP/suppl.html) despite a low overall sequence
identity (;20% over the whole Ct domain). Molecular
modelling of this domain (Figure 2) further demonstrated
the conservation of the protein-kinase fold, especially all the
residues critical for the domain stability and the protein-
kinase activity [28]. The hydrophobic segment appears to be
completely buried inside the helical domain of the protein
core and to bear residues essential for protein stability
(including D450, W452, and G455). Indeed, it corresponds to
the Hanks motif ‘‘DxxxxG’’ numbered as IX. Among the
other conserved motifs, those involved in catalysis, regu-
lation, and peptide recognition were further scrutinized
using the theoretical models. Motifs I, II, VIb, VII, and VIII as
defined by Hanks [28] were clearly detected. The catalytic
lysine (K266 in ROP18) and aspartate (D394) residues were
present. The region 427 to 435 perfectly matched the Hanks
motif VIII of serine/threonine kinases. ROP18 is unique
among ROP2-like proteins in having this peptide-binding
motif perfectly conserved. The sub-sequence GTP (427-GTP-
429 in ROP18) is expected to recognize serine or threonine
residues to be phosphorylated. This functional prediction
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Author Summary

Apicomplexa are unicellular eukaryotes that cause a number of
diseases, including malaria. Most of them are obligate intracellular
parasites, developing in a parasitophorous vacuole (PV) within their
host cell. PV formation during invasion is associated with the
exocytosis of parasite secretory organelles named rhoptries, whose
role is unknown. Toxoplasma gondii is a model Apicomplexa
responsible for toxoplasmosis, a fatal congenital or opportunistic
infection in humans and animals. We have studied a novel rhoptry
protein dubbed ROP18, which is translocated to the PV membrane
upon invasion. ROP18 belongs to a family of rhoptry proteins that
share homologies with serine-threonine kinases, but those de-
scribed so far lack residues critical for enzyme activity. We show that
ROP18 possesses all the features needed to be active, and we
experimentally demonstrate this activity, which phosphorylates at
least one parasite protein. We show that overexpression of ROP18
causes a dramatic increase in parasite multiplication rate that is
correlated with kinase activity, and likely dependent on a PV
membrane modification. We therefore demonstrate that rhoptries
can discharge active protein-kinases upon invasion, which can exert
a long-lasting effect on intracellular parasite development and
virulence.



was confirmed by the sequence of the motif VIb (392-
HTDIKPAN-399 in ROP18) [29]. This motif bears a consensus
sub-sequence, ‘‘KpeN,’’ that is specific to serine/threonine
kinases (versus aarN in tyrosine kinases). The absence of an
arginine at the second residue position of this motif in
ROP18 (bearing a threonine T393 instead) suggests that
ROP18 does not need phosphorylation of its activation loop
to become active.

These in silico predictions were further supported by
experimental data gained on another member of the ROP2
protein family sharing the same predicted structural features
[12]. Indeed, refolded recombinant ROP18 was rather
unstable and could not be obtained in sufficient amounts,
whereas previous work had shown that ROP2 could be
obtained directly as a stable soluble recombinant protein [30].
Dynamic light scattering (DLS) spectra of both recombinant
proteins confirmed their size similarity in solution (Figure
S5).

The existence of a soluble and compact domain was
evaluated by small angle X-ray scattering (SAXS) experiments
performed on a recombinant ROP2 (196–561) construct at
high protein concentration (up to 18 mg/ml). SAXS data on
ROP2 were recorded to a maximum resolution of s ¼ 4.63
nm�1 (Figure S2). Low resolution data showed only minor
signs of aggregations, and the Guinier plot followed a straight
line between s*Rg limits of 0.87 and 1.25 (Rg being the radius
of gyration). The Rg calculated from the Guinier plot (3.90
nm) was in very good agreement with the one obtained by
GNOM (3.89 nm). GNOM analysis also indicated the
maximum particle diameter to be 13.5 nm. By comparison
with the I0 value of a BSA standard, a molecular weight of 37

kDa was estimated for recombinant ROP2, in reasonable
agreement with a calculated molecular weight of 42 kDa for a
monomer. Ab initio shape calculations yielded two-lobed 40
3 40 3 65 Å ellipsoidal structures with an ;75 Å tail, a form
which is already apparent from the distance distribution
(Figure S3). The ellipsoidal structure compares very well in
shape and size with a typical protein-kinase domain (Figure
S4). SAXS and homology modelling data suggest that, going
from Ct to Nt, the 40 N-terminal residues additional to the
protein-kinase domain first run over one side of the C-
terminal lobe (up to residue 40–35), and then form an
unstructured and solvent-exposed extension. Trp39 might be
important for pinning the Nt to the C-terminal lobe. The
scattering curve calculated from a homology model of ROP2
fits the experimental SAXS data well, given the only modest
sequence homology (Figure S2). Altogether, SAXS data
corroborate that recombinant ROP2 consists of a protein-
kinase domain with an unstructured 40 residue–N-terminal
tail. The size observed for freshly refolded ROP18 by DLS (see
below) and the significant sequence similarity shared by
ROP18 and ROP2 suggests that these two proteins (as well as
other ROP2-like proteins) possess the same structural
organization containing a folded protein-kinase domain.
Similarly, ultraviolet circular dichroism (UV-CD) measure-
ment (wavelength 195–260 nm; unpublished data) suggested
that both ROP18 and ROP2 proteins are mainly composed of
alpha-helices in agreement with their predicted fold. In
conclusion, ROP18 is predicted to be composed of an N-
terminal domain of unknown structure, while the large C-
terminal domain would be folded as a soluble and functional
serine/threonine protein-kinase.

Figure 1. Alignment of the ROP2 and ROP18 Sequences

The identities are underlined by asterisks. The predicted signal sequences are in lower case. The three arginine-rich regions in the Nt of the proteins are
underlined. The SUXE motif, putative maturation site of the pro-region, is in bold italics and underlined; the kinase activity key amino acids are in
boldface and underlined (G stretch, catalytic lysine, and key aspartates); the hydrophobic stretch predicted as transmembrane is in bold letters; and the
two conserved cysteins in the C-terminal domain are underlined.
doi:10.1371/journal.ppat.0030014.g001
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The ROP18 Gene Encodes a Rhoptry Protein That Is

Proteolytically Processed in the Secretory Pathway
To investigate the expression and subcellular localization

of ROP18, we raised a polyclonal serum against a recombi-
nant ROP18 protein. On immunoblots of tachyzoites, anti-
ROP18 antibodies reacted with a single protein with an
apparent molecular mass of 55 kDa (Figure 3). The specificity
of the antibodies was assessed by Western blotting transgenic
parasites expressing a Ty-tagged version of ROP18. When
ROP18-Ty tachyzoites were analyzed, two bands at 56 and 60
kDa were found with anti-Ty monoclonal antibody (mAb)
(Figure 3). The same bands were detected when probing with
anti-ROP18, together with the 55-kDa band, confirming the
antibody specificity. The mobility shift observed for the 56-
kDa band is consistent with the addition of a Ty-1 epitope.
The 60-kDa band was interpreted as unprocessed ROP18-Ty
protein (see below).

When analyzed by immunofluorescence assay (IFA) on T.
gondii–infected human foreskin fibroblasts (HFFs), ROP18 was
found at the apical end of RHDhx (HX) tachyzoites, co-
localizing exactly with ROP1 (Figure 4, HX). In transgenic
parasites expressing ROP18-Ty, the anti-Ty antibodies
labelled the rhoptries (Figure 4, R18Ty), and, in some cases,
vesicles located between the rhoptries and the nucleus (not
shown).

To determine whether ROP18 is processed during traffick-
ing to rhoptries, we studied the biosynthesis of ROP18 by
pulse-chase metabolic labelling with [35S] methionine. For
this analysis, the transfected strain ROP18-Ty was used. After
a 20-min pulse, one major labelled protein of 60 kDa and a
minor of 56 kDa were immunoprecipitated by mAb anti-Ty
(Figure 5). The 56 kDa was strongly enriched when a 1-h chase
was performed, suggesting that ROP18 is processed in the
biosynthetic pathway. When compared with ROP2-ROP4
immunoprecipitated on mAb T3 4A7, the mature 56-kDa
form of ROP18-Ty appeared slightly earlier than mature
ROP2-ROP4. Whether this is due to the expression of ROP18-
Ty under a tubulin promoter rather than under its native
one, or to different kinetics of trafficking in the pathway,
remains to be established. The persistence of unprocessed
ROP18-Ty observed on Western blots (Figure 3) could also be
explained by some untimely synthesis due to the tubulin
promoter that may lead to accumulation in vesicles located
between the rhoptries and the nucleus, or trafficking to
compartments that do not contain the processing enzymes
when rhoptries are not being produced.
This demonstration of proteolytic processing, together

with the presence of the SLLE motif at the expected cleavage
site in the sequence, tends to reinforce the hypothesis of
TgSUB2 being the processing enzyme [25], as the only
unprocessed member of the family known so far is ROP5,
which lacks this motif.

ROP18 Is Secreted during Host Cell Invasion and
Associates with the PVM
We then investigated the fate of ROP18 during HFF

invasion. Rhoptries are discharged during the invasion
process [2,9,13], and their contents associate with the nascent

Figure 3. Western Blot Analysis of ROP 18 and ROP18-Ty

Western blot of HX (lane 1) and of ROP18-Ty–transfected tachyzoites
(lanes 2 and 3) were probed with rabbit anti-ROP18 affinity-purified
antibodies (lanes 1 and 2) or mAb anti-Ty (lane 3). Native ROP18 migrates
at 55 kDa (18), whereas ROP18-Ty is at about 56 (18-Ty) and its
unprocessed precursor at about 60 kDa (P18-Ty). No unprocessed form
of native ROP18 is detected.
doi:10.1371/journal.ppat.0030014.g003

Figure 2. Structural Conservation and Protein-Kinase Fold in ROP18 and

Related Proteins

The side chains of residues strictly conserved among PDB1PHK and
various ROP2s (ROP17, 18, 2L3, and 2L4) are shown in black and wire-
frame on the backbone of PDB1PHK. The hydrophobic segment
(corresponding here to residues 443 to 463 in ROP18) is in black colour
and appears buried into the all-alpha domain. The ATP molecule is
shown in black and thick wire-frame in order to localise the active site in
which conservation corresponds mainly to catalytic residues. Residue
numbering refers to the ROP18 sequence.
doi:10.1371/journal.ppat.0030014.g002
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vacuole membrane. When invasion is interrupted with
cytochalasin-D (Cyt-D), rhoptry-derived vesicles named evac-
uoles accumulate in the host cell cytoplasm [31]. When Cyt-
D–arrested parasites were labelled with anti-ROP18, we
found that ROP18 was associated with evacuoles (Figure 6,
evac). ROP18 was also associated with the PVM of invaders
and of recently invaded parasites, co-localizing with ROP1
(Figure 6, inv1 and inv2).
The tropism of ROP18 for the PVM was also confirmed

upon infection of BHK21 cells that transiently expressed
ROP18 (Figure 6, BHK). The nucleotide coding sequence
corresponding to mature ROP18 (ROP18DPro, amino acids
83–539, by deletion of the peptide signal and putative
propeptide) was cloned in frame with a sequence coding for
the V5 epitope, in the mammalian expression vector pTracer-
A, which allows co-expression of the sequence of interest and
of the green fluorescent protein (GFP). GFP is expressed in
the cytoplasm and its intrinsic fluorescence allows direct
visualization of transfected cells. In these cells expressing
ROP18DPro, anti-V5 antibodies produced a punctuate label-
ling homogeneously distributed in the cytosol (Figure 6, BHK,
upper row). When these cells were infected with tachyzoites 4
h after transfection and fixed 16 h after infection, the anti-V5
labelling was found prominently around the PVM, with some
extension in the parasitophorous vacuole that may corre-
spond to the PVM-derived intra-vacuolar network (Figure 6,
BHK, lower row; Figure S1). In contrast, the distribution of
GFP was unchanged. Control PVM in non-transfected cells
(GFP-negative cells) were not labelled (not shown). These
results indicate that ROP18 possesses a strong affinity for the
PVM.
Collectively, these results demonstrate that ROP18 is a

Figure 4. IFA Localisation of ROP18 in Intracellular Parasites

In the upper row, intracellular HX tachyzoites were reacted with pre-immune or immune rabbit anti-ROP18 antibodies combined with mAb anti–ROP2-
ROP4. In the lower rows, intracellular ROP18-Ty–transfected tachyzoites were reacted with mAb anti-Ty, combined with either rabbit anti-ROP2 serum or
rabbit anti-ROP18 antibodies.
doi:10.1371/journal.ppat.0030014.g004

Figure 5. Pulse-Chase Analysis of ROP18 Biosynthesis

HFFs were infected with the ROP18-Ty–transfected tachyzoites for 24 h,
then labelled for 20 min with [35S] methionine/cysteine and either
harvested (lanes 1 and 3) or chased for 1 h (lanes 2 and 4). Then, the
NP40 lysate was immunoprecipitated with mAb anti–ROP2–4 (T3 4A7,
lanes 1 and 2) or mAb anti-Ty (lanes 3 and 4). Lane 3 shows a major band
at 60 kDa (P18), whereas a 56-kDa major protein (18) is found in lane 4.
The control with mAb T3 4A7 that immunoprecipitates ROP2 (2) and
ROP4 (4) shows parallel processing of both proteins from higher
molecular mass precursors (P4 and P2).
doi:10.1371/journal.ppat.0030014.g005
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rhoptry protein secreted during the invasion process that
associates with the PVM-surrounding intracellular parasites.

ROP18 Is an Active Kinase
Since ROP18 showed a full set of features compatible with

protein-kinase activity, we investigated the predicted cata-
lytic properties of this protein. We therefore expressed the
catalytic domain with a Ct His-tag in Escherichia coli. The

recombinant protein was found in bacterial inclusion bodies
in the various conditions tested so far (unpublished data). We
therefore used a denaturation-refolding procedure to purify
the recombinant protein. Refolding was monitored by light
scattering (Figure 7A) and was confirmed by tryptophan
fluorescence (unpublished data). The refolded protein was
incubated with either heat-inactivated parasite or HFF lysate
and assayed for kinase activity (Figure 7B). A major

Figure 6. ROP18 Is Secreted during Host Cell Invasion and Associates with the PVM

The upper panel shows evacuoles of a Cyt-D–arrested ROP18Ty parasite (evac), of an invading tachyzoite (inv1), and of a newly invaded tachyzoite
(inv2) of the same clone, all reacted with mAb anti-Ty and rabbit anti-ROP1 antibodies.
In all cases, the ROP1 and Ty labels co-localise, demonstrating the translocation of ROP18Ty in the evacuoles or in the PVM.
The lower panel shows two BHK cells that have been transfected with Plasmid pTracer-ROP18DPro, one of which was infected later by T. gondii (arrow).
Both cells express GFP in the cytosol; in the non-infected cell, the V5 epitope is detected as dots scattered in all cytosol, whereas in the infected cell, it is
restricted to the PVM, showing a strong tropism of ROP18 for this membrane.
doi:10.1371/journal.ppat.0030014.g006
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phosphorylated band of 70 kDa and a minor one of 68 kDa
were detected in parasite (Figure 7B, lane 2), but not in HFF
lysate (Figure 7B, lane 4). Autophosphorylation by the
refolded kinase was not observed (unpublished data).

To confirm that the observed phosphorylation was due to
the catalytic activity of ROP18, we generated a recombinant
catalytic domain with a mutation of aspartic acid D394

(domain VIb, according to Hanks [28]), required for the
activity, to an alanine. We expressed and refolded the
mutated catalytic domain as done for the native catalytic
domain and compared the activity of equal amounts of both
proteins. The kinase assay with the mutated protein on
parasite extracts did not lead to any significant labelling
(Figure 7B, lanes 1 and 3), clearly demonstrating that
mutation of the ROP18 catalytic aspartic acid D394 to an
alanine leads to the loss of kinase activity.

Overexpression of ROP18 Leads to Increased Intracellular
Parasite Proliferation

Cultivation of the transfected ROP18-Ty strain routinely
showed an earlier release of parasites compared with that of

wild-type. We therefore investigated whether this was due to
higher invasion rate or faster intracellular multiplication. To
make sure that a position effect of the transformation was not
involved, we duplicated the experiments with parasite clones
isolated from two independent ROP18-Ty transfections.
Evaluating the invasion rate of the various parasites did not
show any significant difference between wild-type and trans-
fected clones (not shown). In contrast, when counting the
number of parasites per vacuole at 16 h after infection, we
observed a significant increase in parasite proliferation in the
ROP18-Ty–transfected parasites, compared with that of wild-
type tachyzoites. The results of five experiments led to a mean
reproduction rate of 2.47 6 0.39 parasites per vacuole at 16 h
after infection for wild-type, whereas the ROP18-Ty showed a
rate of 4.07 6 0.34 (Figure S6). A statistical analysis of these
data using Student’s t-test led to a p-value of 0.001.
In order to know whether this property was related to the

enzymatic activity of ROP18, we created transfectants
expressing a D394A-mutated ROP-18Ty. The ROP18-TyD394A
localization was verified by IFA. As expected, the protein was

Figure 7. ROP18 Is an Active Kinase

(A) DLS of recombinant kinase domain of ROP18. Refolding was performed on the recombinant ROP18 solubilized in Gdn-HCl and monitored by DLS.
Ten-fold dilution was directly performed into the cuvette and light scattering measured after 1 min. Trial-and-error led to an optimal solution in which
refolded ROP18 appeared as a monodisperse entity roughly 10 nm in size (without taking into account the viscosity of the refolding buffer).
(B) SDS-PAGE autoradiography of a kinase assay of the recombinant kinase domain of ROP18. In lanes 2 and 4, the recombinant His-tagged ROP18
produced in E. coli was refolded, purified, and incubated with tachyzoite lysate (lane 2) or HFF lysate (lane 4) in the presence of [c32P-ATP], whereas in
lanes 1 and 3, the recombinant His-tagged ROP18 mutated on aspartate 394 was used with tachyzoites (lane 1) or HFF lysate (lane 3).
doi:10.1371/journal.ppat.0030014.g007
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present in the rhoptries and secreted during the invasion
process. By counting the number of parasites per vacuoles in
three experiments, we showed that the multiplication rate of
ROP18-TyD394A–transfected parasites at 16 h (2.40 6 0.45)
was not significantly different from wild-type (Figure S6). A
graph of one typical experiment showing the relative
distribution of the number of parasites per vacuole at 16 h
post-infection is shown in Figure 8A. The level of expression
of ROP18-Ty and ROP18-TyD394A proteins was verified to be
equivalent by quantification on Western blots of equal
amounts of parasites (Figure 8B).

The Proliferation Effect Is Vacuole-Specific
In order to evaluate whether the presence of an over-

expressor in a cell could influence the reproduction rate of a
co-infecting wild-type parasite, we performed a co-infection
experiment with HX- and ROP18-Ty–transfected parasites.
The two types of vacuoles were differentiated by IFA on the
Ty-tag expression. This experiment showed that there was no
influence of co-infection, with both parasite types behaving as
in the single infections experiments, regardless of the
presence of the other type in the same cell (Figure 8C).
Therefore, we obtained evidence that overexpression of an

active ROP18 kinase leads to an increase in the rate of
parasite replication, but that this effect is restricted to the
vacuole containing these parasites.

Discussion

We have identified an active kinase stored in T. gondii
tachyzoites rhoptries, which is secreted in the host cell during
invasion and is involved in the intracellular proliferation of
the parasite. The simultaneous expression by the parasite of
such a family of closely related proteins is still poorly
understood. All of these proteins possess a region sharing
significant homologies with the canonical kinase domain as
described by Hanks [12,28]. Some of them, like ROP4, 5, 7,
and 8, lack the glycine loop and the catalytic aspartic acid
required for activity. Others, like ROP2, lack the glycine loop,
although having kept the catalytic loop, they may still interact
with a substrate without being able to phosphorylate.
Remarkably, several other members of the family possess
the complete set of features needed for kinase activity, which
led us to investigate them further. We focused our attention
on ROP18. The characteristic features of the family, such as
rhoptry location, ORF size, hydrophobic segment near Ct,
and arginine-rich stretches near the Nt [12], are well
conserved in ROP18. We could express and refold as an
active protein-kinase its complete Ct domain (243–539). We
showed that it was indeed capable of phosphorylating
parasite proteins. These findings demonstrate directly the
presence of an active kinase in T. gondii rhoptries.
In T. gondii lysate, a major 70-kDa protein and a minor one

of 68 kDa are phosphorylated; these sizes do not correspond
to any parasitic protein characterized so far. Moreover, we do
not know whether the negative result obtained with HFF
lysates corresponds to a total absence of activity on host cell
substrates, or to a defect in the experimental procedure
impairing the activity.
We and others have shown that several members of the

ROP2 family are translocated to the parasitophorous
membrane upon invasion [13,16–18]. ROP18 follows the same

Figure 8. Overexpression of ROP18 Leads to Increased Intracellular

Parasite Proliferation

(A) Intracellular proliferation rate at 16 h post-invasion by wild-type
tachyzoites (HX) and tachyzoites expressing an additional copy of ROP18-
Ty (ROP18Ty) or a D394A-mutated version thereof (ROP18Ty MUT).
This graph corresponds to one representative experiment and clearly
shows a drift towards higher number of parasites per vacuole for the
ROP18Ty parasites compared with that of either HX or ROP18Ty-MUT
parasites. Error bars correspond to standard deviation between the
triplicate coverslips.
(B) Western blot of equal number of HX, ROP18Ty, and ROP18Ty MUT
tachyzoites probed with anti-Ty or with anti-ROP18 showing similar
expression of the Ty-tagged copy of ROP18 in both transfectants.
(C) Proliferation rates of HX and ROP18Ty tachyzoites in a co-infection
experiment, at 16 h post-invasion, showing that co-infection of a single
cell does not modify the respective behaviour of either parasite type (HX
or ROP18 are parasites alone in one cell, co-infected corresponds to
vacuoles found in a cell containing also the other type, error bars
correspond to standard deviation between triplicate coverslips).
doi:10.1371/journal.ppat.0030014.g008

PLoS Pathogens | www.plospathogens.org February 2007 | Volume 3 | Issue 2 | e140207

T. gondii Rhoptry Kinase



route. In addition, we show that, when expressed in the
cytoplasm of the host cell, ROP18 also homes to the PVM,
suggesting a specific interaction with this membrane. In this
location, ROP18 could modify other PVM proteins (such as
another rhoptry protein or a dense granule protein) or signal
and/or control host cell functions. What phosphorylation(s)
occurs is yet to be identified, but two related events have
already been described, namely the phosphorylation of ROP4
on several serine/threonine residues after translocation in the
PVM [16], and the phosphorylation of host IjB that correlates
with the activation of NF-jB, which is required for the
inhibition of apoptosis [19]. As several other ROP proteins
are also putative rhoptry kinases [12,32], the parasite is likely
to modulate several host cell function or PVM properties
soon after entry. The harnessing of the host cell by T. gondii
was demonstrated by Blader et al. [33], who showed a wide
range of changes in host cell transcription pattern after
parasite invasion. Our observation that overexpression of
ROP18 increases parasite proliferation rate, with this
property being strictly linked to the protein-kinase catalytic
activity, fits perfectly with these data. Such a shortening of the
parasite cell cycle triggered by overexpression of a parasite
protein has not been described so far. It tends to suggest that
the mutants are metabolically more efficient either by
activating the cell metabolism for their benefit, or by getting
their supply from the host cell more efficiently. A modifica-
tion of the PVM would fit with the second possibility, which is
consistent with our observation that the effect of over-
expression does not extend to other vacuoles in the same cell.
In addition, as the length of the cell cycle differs between T.
gondii strains, and as more virulent strains have higher
multiplication rates, a direct connection could exist between
expression of ROP18 and virulence. Such a correlation has
actually been independently observed by genetic mapping of
T. gondii virulence [34,35].

In conclusion, we have shown here that ROP18 is a protein-
kinase belonging to the ROP2 family of rhoptry proteins. To
our knowledge, we have provided the first direct demon-
stration of the presence of an active kinase in T. gondii
rhoptries; in addition, we have shown a direct effect of the
expression of this protein on the proliferation rate of the
parasite, suggesting a possible role in virulence, which
expands the part played by the ROP2 family proteins in the
biology of T. gondii.

Materials and Methods

Host cell and parasite cultures. All parasites were maintained by
serial passage in HFFs grown in Dulbecco’s modified Eagle medium
(DMEM) (GibcoBRL, http://www.invitrogen.com) supplemented with
10% fetal calf serum (FCS) and 2 mM glutamine. Tachyzoites of the
RH strain of T. gondii [36] and of HX deleted for hypoxanthine
guanine phosphoribosyl transferase [37] were used throughout the
study. BHK-21 (baby hamster kidney) cells (ATCC CCL-10) were
grown in BHK-21 medium (GibcoBRL) supplemented with 5% FCS, 2
mM tryptose, 100 U/ml penicillin, and 100 lg/ml streptomycin.

Invasion and intracellular tachyzoite multiplication rates were
measured on HFFs plated on 12-mm coverslips in 24-well plates and
fixed 16 h after infection by equal numbers of freshly released
tachyzoites. In some experiments, uninvaded parasites were washed
30 min after contact with the cells to avoid possible bias due to
differences in kinetics of invasion. Coverslips were fixed and stained
with eosine-methylene blue (RAL 555) and then mounted perma-
nently (Pertex; Microm Microtech France, http://www.microm.fr).
Fields were randomly selected, and the number of vacuoles per field
and the number of parasites per vacuole were counted using a 403

objective in ten fields per coverslip, with three coverslips per assay.
Five independent experiments were performed. Data were analyzed
using Student’s t-test. A p-value less than 0.05 was regarded as
significant. In one experiment, coverslips were co-infected simulta-
neously by both wild-type and transfected parasites, and counts were
performed after anti-TY IFA (see below) to differentiate between
both types and compare their respective proliferation in single and
double infections.

Antibodies. Antibodies used in this study included mAb anti-Ty-1
tag [38], mAb T3 4A7 specific for ROP2, 3, and 4 [10], anti-
recombinant ROP1 and ROP2 rabbit sera (J. F. Dubremetz and O.
Mercereau-Puijalon, unpublished data), and a rabbit anti-ROP18
obtained by rabbit immunization (see below).

Cloning procedures and plasmids construct. Preliminary genomic
and/or cDNA sequence data was accessed via ToxoDB (http://www.
toxodb.org) and/or the Toxoplasma gondii Genome Project (http://www.
tigr.org/tdb/t_gondii).

The ROP18 cloning was based on the EST cluster (100121072)
found in ToxoDB APIDBest (http://www.apidb.org/apidb). The ROP18
gene was PCR-amplified from genomic DNA with primers HH32 (59-
GTGATGTTTTCGGTACAGCGGCCA-3 9) and HH33 (5 9-
CTTTTATTCTGTGTGGAGATGTTC-39), and subcloned into a PCR
blunt II Topo vector (Invitrogen, http://www.invitrogen.com), to
generate pROP18. The plasmid pROP18-Ty was designed to express
a Ct Ty-tagged ROP18 protein in RH tachyzoites. It was constructed
by inserting the coding sequence of ROP18 under the control of the
tubulin promoter (TUB). The ROP18 gene coding sequence was PCR-
amplified from pROP18 with forward primer HH51 (59-ATG
CAATTGATGTTT TCGGTACAGCGGCCA-39; MfeI site underlined)
and reverse primer HH50 (59-TGCATGCATGTTCTGTGTGGA-
GATGTTCCTG-39; NsiI site underlined), and subcloned as an MfeI/
NsiI fragment into pTUB8mycGFPPftailTY, which was generously
given by D. Soldati.

Plasmid pET-ROP18 was designed to express in E. coli a Ct His-
tagged recombinant protein corresponding to the predicted kinase
catalytic domain of ROP18. The DNA sequence coding for amino
acids 243–539 was amplified by PCR from the pROP18 plasmid using
forward primer HH40 (59-GGGTTTCATATGACTACCGGT-
GAAACCCGG-39; NdeI site underlined) and reverse primer HH41
(59-AAATATGCGGCCGCTTCTGTGTGGAGATGTTC-39; NotI site
underlined) and cloning into NdeI and NotI sites of pET-24a vector
(Novagen, http://www.emdbiosciences.com/html/NVG/home.html) to
generate pET-ROP18.

Plasmid pTracer-ROP18DPro was designed to express the mature
ROP18 protein spanning amino acids 83 to 539, such as the one
stored in T. gondii rhoptries. It was constructed by PCR amplification
of sequence from pROP18 plasmid using forward primer ML193 (59-
GCGGCCGCATGGAAAGGGCTCAACACCGGGTA-39; NotI site
underlined) and reverse primer ML194 (59-TCTAGATTCTGTGTG-
GAGATGTTCCTG-39; XbaI site underlined) and cloning into NotI
and XbaI sites of pTracer-A 5 (Invitrogen). All constructs were
verified by sequencing.

Bioinformatic procedures. PSI-BLAST program [26] was applied
with standard parameters to search for homologous proteins in the
Swiss-Prot Translated EMBL (SPTrEMBL) and National Center for
Biotechnology Information (NCBI) non-redundant sequence data-
bases. Fold-compatibility for the full-length and truncated sequences
of ROP18 was searched and evaluated as previously described for
other ROP2-like proteins [12]. Domain organisation was refined using
fold-recognition results (see http://www.infobiosud.cnrs.fr/bioserver/
ROP/suppl.html). Sequence–structure alignments, including ROP18
and its paralogs and distinct protein-kinases (see alignment in [12]),
were manually refined with the help of the program ViTO [39].
Improved three-dimensional models were built for using MODELLER
7.0 with the loop optimization procedure.

SAXS data were collected from beamline X33 at Deutsches
Elektronen-Synchrotron (DESY), European Molecular Biology Labo-
ratory (EMBL) Hamburg. Data were collected at 10 8C, using a
wavelength of k ¼ 1.5 Å. ROP2 was overexpressed and purified as
previously described [30]. ROP2 was used at a concentration of 12.3
mg/ml in 0.2 M KPO4 (pH 8). Prior to data recording, the samples
were extensively centrifuged to eliminate aggregates, and supple-
mented with 2 mM DTT. Diffusion spectra for buffer only were taken
before and after the protein sample, averaged, and subtracted from
the protein scattering curve. Data analysis and ab initio shape
calculations were performed using PRIMUS, GNOM, GASBOR, and
DAMMIN [40].

Production of a recombinant ROP18 catalytic domain and of a
specific antiserum. The His-ROP18 recombinant protein was ex-
pressed in Plys E. coli (Stratagene, http://www.stratagene.com) that had
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been induced at 37 8C for 2 h with 1 mM isopropyl-b-D-
thiogalactopyranoside. The bacterial pellets were resuspended in
lysis buffer (Tris-HCl 50 mM [pH 7.5], NaCl 50 mM, EDTA 0.1 mM,
and Complex mixture protease inhibitor tablet [Roche Applied
Science, http://www.roche-applied-science.com]) and cells were bro-
ken using a French press (Thermo Spectronic; Thermo Scientific,
http://www.thermo.com) operated at 20,000 p.s.i., then centrifuged at
12000g for 15 min; the pellet was washed with buffer (Tris-HCl 50 mM
[pH 7.5], NaCl 50 mM, 0.1% Triton, and EDTA 0.1 mM). The protein
was extracted from bacterial inclusion bodies by denaturation-
refolding. Denaturation was performed in 6 M guanidinium chloride
followed by ultracentrifugation of 100,000g for 30 min at 4 8C. The
protein solution was then brought to 4 M guanidinium chloride.
Refolding was obtained by a 10-fold dilution of the supernatant in the
refolding buffer (Tris-HCl 50 mM [pH 8.3] and CsCl 100 mM). Proper
refolding was assessed by DLS using a Zetasizer NanoZS (Malvern,
http://www.malvern.com). The refolded His-ROP18 fusion protein was
purified on Ni-NTA resin (Qiagen, http://www.qiagen.com) and eluted
at 100 mM imidazole. The His-ROP18 D394A recombinant protein
(see below) was expressed and refolded by the same procedure as the
His-ROP18 recombinant protein.

Specific antibodies were obtained by subcutaneous immunizations
of a rabbit with 1 mg of the recombinant protein separated on
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) and transferred to nitrocellulose, which was then crushed in
Freund’s complete adjuvant and injected. Two further injections were
performed at 3-wk intervals in Freund’s uncomplete adjuvant. The
rabbit was then bled and the specific antibodies were affinity purified
on the recombinant protein electrophoresed and Western blotted on
nitrocellulose.

Site-directed mutagenesis. QuickChange Site-Directed Mutagene-
sis system (Stratagene) was used to introduce point mutation in the
catalytic domain of ROP18 gene. The reaction was performed
according to the manufacturer’s instructions. Plasmid pET-ROP18
was used as template for construction of plasmid pET-ROP18-D394A
where the triplet encoding the catalytic aspartic acid D394 has been
changed to encode an alanine. The mutated catalytic domain
sequence was obtained using primers HH54 (59-ATTGTGCA-
TACGGCTATCAAACCGGCG-39) and HH59 (59-CGCCGGTTTGA-
TAGCCGTATGCACAAT-39). The same mutation was also introduced
in plasmid pROP18-Ty using the same primers to generate plasmid
pROP18-Ty D394A, further identified as pROP18-TyMUT. The
presence of the expected mutations was verified by sequencing.

Parasite transfection and selection. Transgenic parasites express-
ing ROP18-Ty or ROP18-TyMUT were obtained by electroporation
of either 30 lg of pROP18-Ty or pROP18-TyMUT into 107 HX
tachyzoites as described previously [41]. After overnight growth,
transfectants were selected with 25 lg/ml mycophenolic acid and 50
lg/ml xanthine, and cloned by limiting dilution under drug selection.
Two independent transformation experiments were performed.

BHK cells transient transfection experiments. Transfections were
carried out using Lipofectamine Reagent (GibcoBRL) as instructed by
the manufacturer with 3 3 105 BHK-21 cells grown on coverslips for
24 h in 6-well plates. After four h with Lipofectamine, cells were
washed and incubated for four additional hours with complete BHK-
21 medium. Then, the wells were infected with one million parasites
for 16 h prior to fixation and immunofluorescence analysis.

IFA. For IFAs on intracellular parasites, HFFs were seeded on
coverslips and infected with tachyzoites 24 h before fixation. Infected
cells were fixed with 4% paraformaldehyde in phosphate buffered
saline (PBS) for 30 min at room temperature, washed and
permeabilized with 0.1% Triton X-100 in PBS for 10 min, and
blocked with 10% FCS in PBS for 10 min. Coverslips were
subsequently washed in PBS, then incubated with primary antibodies
for 30 min at room temperature. Dilutions were 1:200 for mAb anti-
V5, 1:100 for mAb anti-Ty and mAb T3 4A7, 1:500 for rabbit anti-
ROP1, and 1:10 for rabbit anti-ROP18 affinity-purified antibodies.
Coverslips were washed in PBS and then incubated with affinity-
purified goat anti-mouse immunoglobulin G (IgG) conjugated to
FITC (Sigma, http://www.sigmaaldrich.com) and with goat anti-rabbit
IgG conjugated to RITC (Jackson ImmunoResearch, http://www.
jacksonimmuno.com) at 1:500 for 30 min. Finally, coverslips were
washed and mounted onto microscope slides using Immunomount
(Calbiochem, http://www.emdbiosciences.com/html/CBC/home.html).

IFA of invading parasites were done as described previously [8].
Briefly, after 2 min of invasion at 37 8C, coverslips were fixed with 4%
paraformaldehyde in PBS and infected cells were permeabilized with
0.05% saponin in PBS. IFA was performed as described above. Cyt-D
treatment was by incubating with 1 lM of the drug before and during
invasion as described previously [18].

All observations were performed on a Leica DMRA2 microscope
(Leica Microsystems, http://www.leica-microsystems.com) equipped
for epifluorescence; images were recorded with a CoolSNAP CCD
camera (Photometrics, http://www.photomet.com) driven by Meta-
view (Universal Imaging, http://www.moleculardevices.com) and
processed using Adobe Photoshop 7.0 (Adobe Systems, http://www.
adobe.com).

SDS-PAGE and Western blotting. Freshly released tachyzoites were
boiled in SDS-PAGE sample buffer and separated on 10% poly-
acrylamide gels according to Laemmli [42]. Mr markers (Bio-Rad,
http://www.bio-rad.com) were used for calibration. Proteins were
transferred to nitrocellulose membranes (Protran; Schleicher &
Schuell) at 0.8 mA/cm2 for 90 min by semi-dry transfer. The
nitrocellulose strips were saturated for 1 h in 5% non-fat dry milk
in 15 mM Tris-HCl (pH 8), 150 mM NaCl, and 0.05% Tween 20 (TNT).
They were then incubated with mAbs (mouse ascitic fluids) or with
polyclonal rabbit antibodies diluted 1:500 in TNT for 1 h. After
washing, the strips were incubated with alkaline phosphatase–
conjugated anti-mouse diluted 1:1000 in TNT and stained with
BCIP-NBT.

Immunosorption procedure. Infected monolayers were solubilized
in lysis buffer (Tris-HCl 50 mM [pH 8.3]/ NaCl 150 mM/ EDTA 4 mM/
PMSF 1 mM/1% Nonidet 40 -NP40-) for 1 h at 4 8C. The lysate was
centrifuged 1 h at 16,000g, and the supernatant was collected for
immunosorption. The immunosorbents were prepared by incubating
20 ll of ascitic fluid with 20 ll of Protein G-Sepharose for 1 h in 1 ml
of PBS; they were then incubated with radiolabelled lysate at 48 C for
2 h under gentle agitation, washed four times with a buffer
containing 1M NaCl and 0.5% NP40 in 50 mM Tris-HCl (pH 8.3)
and then in 5mM Tris-HCl (pH 6.8). Elution was then performed
during 5 min at 95 8C with electrophoresis sample buffer. After SDS-
PAGE, the gel was impregnated with Amplify (Amersham, http://
www.amershambiosciences.com), dried, and exposed to Biomax film
(Kodak, http://www.kodak.com) at �808C.

Metabolic labeling and pulse-chase analysis. Heavily infected HFF
monolayers were incubated in methionine and cysteine-free DMEM
(Invitrogen) containing 1% dialyzed FCS for 30 min at 37 8C in a 5%
CO2 incubator prior to the addition of 50 lCi/ml [35S] methionine/
cysteine (700 Ci/mM; MP Biomedicals, http://www.mpbio.com). The
infected monolayers were then labeled for 30 min, rinsed with
complete DMEM containing 10% FCS, and either arrested or
incubated in this medium for 2 h chase prior to immunoprecipitation
as described above.

Kinase assays. The assays were performed in a standard reaction
buffer (30 ll) containing 25 mM Tris-HCl (pH 7.5), 15 mM MgCl2, 2 mM
MnCl2, 15 lM ATP, and 20 lCi of [c-32P]ATP (4500 Ci/mM; MP
Biomedicals and Qbiogene, http://www.qbiogene.com) and the lysate of
107 parasites or of 105 HFFs that had been heated at 56 8C for 30 min to
inactivate endogenous kinases. The reactions were initiated by addition of
10 lg each of the recombinant protein-kinase or of the recombinant
mutated protein-kinase. The reaction proceeded for 30 min at 30 8C and
was stopped by adding gel loading buffer and heating immediately at 95 8C
for 5 min. Proteins were analyzed by electrophoresis on 12% SDS-
polyacrylamide gel. The gels were dried and submitted to autoradiog-
raphy.

Supporting Information

Figure S1. Confocal Z Series through a BHK Cell That Has Been
Transfected to Express a V5-Tagged ROP18Dpro and Infected Later
by T. gondii (Arrow)
GFP is expressed in the cytosol, whereas the V5 epitope is detected
essentially at the PVM, but also between the parasites, inside the
parasitophorous vacuole, at a location that may correspond to the
PVM-derived tubulo-vesicular network.

Found at doi:10.1371/journal.ppat.0030014.sg001 (343 KB PPT).

Figure S2. SAXS Scattering Curve Obtained on ROP2, after
Subtraction of the Buffer Contribution (Red Dots)

The scattering curve calculated from the homology model is
superimposed (blue line, v2¼15.6).
Found at doi:10.1371/journal.ppat.0030014.sg002 (41 KB PPT).

Figure S3. P(r) Distance Distribution of ROP2, Indicating a Maximum
Particle Diameter of 13.5 nm, and a Structure Reminiscent of an
Ellipsoid (White Arrow) with an Unstructured Extension (Black
Arrow)

Found at doi:10.1371/journal.ppat.0030014.sg003 (39 KB PPT).
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Figure S4. Fit of a Homology Model of ROP2 into the Ab Initio SAXS
Envelope

The cartoon presentation of the homology model (magenta) was
fitted into the best GASBOR pseudo-residue reconstruction (green
spheres) obtained from ten individual trails (v2 for best GASBOR
model to data was 6.2). Left and right panels are perpendicular views.

Found at doi:10.1371/journal.ppat.0030014.sg004 (533 KB PPT).

Figure S5. DLS Spectra of Recombinant ROP2 (Red) and Refolded
Recombinant ROP18 (Green)

Observed sizes are similar (;70 Å) and in agreement with those
deduced from SAXS experiment performed on ROP2.

Found at doi:10.1371/journal.ppat.0030014.sg005 (64 KB PPT).

Figure S6. Intracellular Proliferation Rate at 16 h Post-Invasion by
Wild-Type Tachyzoites (HX) and Tachyzoites Expressing an Addi-
tional Copy of ROP18-Ty (ROP18Ty) or a D394A-Mutated Version
Thereof (ROP18Ty MUT)

Graph representation of the mean number of parasites per vacuole
(HX versus ROP18Ty: 5 experiments; HX versus ROP18TyMUT: 3
experiments).

Found at doi:10.1371/journal.ppat.0030014.sg006 (41 KB PPT).

Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.gov/Genbank) accession num-
bers for the sequences discussed in this paper are ROP2 (CAA85377),

ROP4 (CAA96467), ROP5 (DQ116423), ROP7 (AM056071), ROP18
(AM075204), TgSUB2 (AF420596).
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