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Abstract. We prove that a 3-dimensional hyperbolic cusp with convex poly-
hedral boundary is uniquely determined by the metric induced on its boundary.
Furthemore, any hyperbolic metric on the torus with cone singularities of pos-
itive curvature can be realized as the induced metric on the boundary of a
convex polyhedral cusp.

The proof uses the total scalar curvature functional on the space of “cusps
with particles”, which are hyperbolic cone-manifolds with the singular locus a
union of half-lines. We prove, in addition, that convex polyhedral cusps with
particles are rigid with respect to the induced metric on the boundary and the
curvatures of the singular locus.

Our main theorem is equivalent to a part of a general statement about
isometric immersions of compact surfaces.

Keywords. Hyperbolic cusp; convex polyhedral boundary; discrete total scalar
curvature; infinitesimal rigidity.

1. Introduction

In Subsection 1.1 we state the results, Subsection 1.2 puts them in a more general
context, and Subsection 1.3 gives a sketch of the proof and a plan of the paper.
Precise definitions will be given in Section 2.
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2 HYPERBOLIC CUSPS WITH CONVEX POLYHEDRAL BOUNDARY

1.1. Statements. Let M ≈ T × [0, +∞) be a convex hyperbolic 3-manifold with
a cusp and with piecewise geodesic boundary. We often call it a convex polyhedral
cusp. The induced metric on ∂M is a hyperbolic metric on the torus T with conical
singularities of positive singular curvature. The main result of this paper is that
the metric on M is uniquely determined by the metric on ∂M :

Theorem A. Let g be a hyperbolic metric with conical singularities of positive
singular curvature on the 2-torus T. Then there exists a convex polyhedral cusp M
such that ∂M with the induced metric is isometric to (T, g). Furthermore, M is
unique up to isometry.

This theorem can be viewed as a statement about isometric immersions. A convex
parabolic polyhedron is a pair (P, G), where P is a convex polyhedron in H3, and G
is a discrete subgroup of Iso+(H3) that acts freely cocompactly on a horosphere and
leaves P invariant. Figure 1 shows an example of a convex parabolic polyhedron,
whose vertices form an orbit of the group G. For any convex parabolic polyhedron
(P, G), the quotient P/G is a convex polyhedral cusp. Conversely, the universal
cover of a convex polyhedral cusp is isometric to a convex parabolic polyhedron.
Thus Theorem A says that each hyperbolic metric on T with conical singularities
of positive singular curvature can be uniquely realized as the boundary of a convex
parabolic polyhedron:

Theorem A'. Let g be a hyperbolic metric with conical singularities of positive
singular curvature on the torus T. Then there exists a unique up to equivariant
isometry convex parabolic polyhedron (P, G) such that ∂P/G is isometric to (T, g).

This is a part of a general statement about polyhedral realization of metrics on
compact surfaces, see Subsection 1.2.

The uniqueness part of Theorem A is a rigidity statement: two convex polyhe-
dral cusps with isometric boundaries are isometric. Compare this with the Cauchy-
Alexandrov theorem on rigidity of convex polytopes, [Cau05], [Ale05]. We prove
also the corresponding infinitesimal rigidity result: any non-trivial first-order de-
formation of the metric on M in the class of complete hyperbolic metrics induces a
non-trivial first-order deformation of the metric on ∂M .

Theorem B. Convex polyhedral cusps are infinitesimally rigid.

Theorem B'. Convex parabolic polyhedra are parabolically infinitesimally rigid.

For definition of parabolic infinitesimal rigidity see Subsection 5.3.
Our method involves study of convex polyhedral cusps with particles. These are

cone-manifolds that are very much like convex polyhedral cusps but have cone
singularities along half-lines (the particles) that start at the cone singularities of
the boundary.

For cusps with particles we prove a global rigidity statement:

Theorem C. Two convex polyhedral cusps with particles with the same metric on
the boundary and the same singular curvatures are isometric.

1.2. Related work.

1.2.1. Towards a general realization statement. Theorem A' is similar to a famous
theorem of A.D. Alexandrov:
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Figure 1. A simplest convex parabolic polyhedron in the Klein
projective model.

Theorem 1.1 (A. D. Alexandrov, [Ale42, Ale05]). Let g be a metric of con-
stant curvature K with conical singularities of positive singular curvature on the
2-sphere S. Then (S, g) can be realized as a convex polyhedral surface in the 3-
dimensional Riemannian space-form of curvature K. The realization is unique up
to an ambient isometry.

Clearly, the positivity condition on the singular curvatures is necessary if one
wants to realize the given metric as a convex polyhedral surface in a Riemannian
space-form. In Lorentzian space-forms, convex space-like polyhedral surfaces have
most often singularities of negative singular curvature, [Sch01, Fil07a].

Theorem 1.2 (Rivin, Rivin–Hodgson, [Riv86, RH93]). Let g be a spherical metric
with negative cone singularities on S and lengths of closed geodesics greater than
2π. Then (S, g) can be uniquely realized as a convex polyhedral surface in de Sitter
space.

Actually, the uniqueness statement proved in [RH93] is slightly weaker, see
[Sch01].

Realization theorems are proved for compact surfaces of genus ≥ 2 in hyperbolic
space [Fil07b] and in Lorentzian space-forms [Sch04, Fil07a]. As a matter of fact,
only one case of constant curvature metric with conical singularities of constant
sign on compact surfaces has not been treated yet: that of metrics on the torus
which can be realized in de Sitter space. This is the subject of [FI07] that uses the
same method as the present paper. Putting all together would lead to a solution of
the following problem.
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Problem 1. Let g be a metric of constant curvature K with conical singularities
of a constant sign ε ∈ {−, +} on a compact surface S. In the case K = 1, ε = − we
require the lengths of contractible geodesics to be > 2π. Then the universal cover of
(S, g) can be uniquely realized in M ε

K as a convex polyhedral surface invariant under
the action of a representation of π1(S) in a 3-dimensional subgroup of Iso+(M ε

K).

Here M+
K is the Riemannian space-form of curvature K, and M−

K is the Lorentzian
space-form of curvature K.

A more traditional way to state Theorem 1.2 is in terms of the dual metric of a
convex hyperbolic polyhedron, which is obtained with the help of the Gauss map,
[RH93]. If the combinatorics of the polyhedron is known, then the dual metric
is defined by the values of the dihedral angles. This implies Andreev’s Theorem
[And70] about compact acute-angled hyperbolic polytopes. Similarly, realization
theorems for higher genus in de Sitter space [Sch04, Fil07a, FI07] imply existence
and uniqueness of circle patterns with acute (exterior) intersection angles between
the circles. A more thorough discussion will be given in [FI07].

1.2.2. Hyperbolic manifolds with convex polyhedral boundary. Here we restrict our
attention to the hyperbolic cases of theorems above. A reformulation of Theorem
1.1 is that each hyperbolic cone metric on the sphere with singularities of positive
curvature can be uniquely extended to a hyperbolic metric with a convex polyhedral
boundary on the ball.

In the same way, hyperbolic realization theorem for genus ≥ 2 [Fil07b] says
that the metric inside a “Fuchsian manifold” with convex polyhedral boundary is
uniquely determined by the metric on the boundary. Both are special cases of the
following statement.

Problem 2. Let M be a compact connected 3-manifold with boundary, and let M
admit a complete hyperbolic convex cocompact metric. Then each hyperbolic cone
metric on ∂M with singularities of positive curvature can be uniquely extended to
a hyperbolic metric on M with convex polyhedral boundary.

In the case of smooth strictly convex boundary the analog was proved in [Sch06]
(the case of the ball should follow from the works of Alexandrov and Pogorelov). In
both polyhedral and smooth cases the same problem can be posed for geometrically
finite manifolds. Theorem A provides the simplest polyhedral case of such gener-
alization. Similar questions can be posed about the dual metric on the boundary.
In the smooth compact case the dual metric is simply the third fundamental form,
and the problem is solved also in [Sch96, LS00, Sch06].

1.2.3. Manifolds with particles. The term“manifold with particles” comes from the
physics literature, where the manifolds are Lorentzian and the singularities are along
time-like geodesics. The definition can be naturally extended to certain hyperbolic
cone-manifolds with singularities along infinite lines, see e.g. [KS05, MS06, BS06].
By analogy, we have adopted the same terminology for our “cusps with particles”.

Theorem C states that a convex polyhedral cusp with particles is uniquely deter-
mined by the metric on its boundary and the singular curvatures along the particles.
One can ask what boundary metric and particles curvatures can be realized.

Problem 3. Let g be a hyperbolic cone metric on T with n singularities of pos-
itive curvature. What are the necessary and sufficient conditions on the numbers
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κ1, . . . , κn so that there exists a cusp with particles of curvatures κ1, . . . , κn and
with convex polyhedral boundary isometric to g?

One obvious condition on (κi) is
∑n

i=1 κi = 0, see Lemma 2.13.

1.2.4. Weakly convex star-shaped parabolic polyhedra. A star-shaped parabolic poly-
hedron is a pair (P, G), where P ⊂ H3 is the cone with the apex c ∈ ∂H3 over
a polyhedral surface that projects bijectively onto horospheres with center c, and
G is a discrete subgroup of Iso+(H3) that acts freely cocompactly on horospheres
with center c and leaves P invariant. Clearly, every convex parabolic polyhedron is
star-shaped, but the converse does not hold.

A star-shaped parabolic polyhedron is called weakly convex, if its vertices are
vertices of some convex polyhedron.

By using the argument from [Sch07], we prove the following theorem.

Theorem D. Weakly convex star-shaped parabolic polyhedra are parabolic infinites-
imally rigid.

1.3. Sketch of the proof and plan of the paper. We prove Theorem A by the
variational method. The variational method consists in identifying the object we
are looking for with a critical point of a functional. If a concave functional on a
convex domain attains its maximum in the interior, then the maximum point is the
unique critical point. This yields both the existence and uniqueness statement for
the desired object.

The domain that we consider is the space M(T, g) of convex polyhedral cusps
with particles and with boundary (T, g). A cusp with particles is glued from semi-
ideal pyramids with the common ideal apex so that the pyramids allow a consistent
truncation by horospheres. A truncation yields a collection (hi)i∈Σ of truncated
particle lengths, one for each singular point i ∈ Σ. Change of a truncation results
in adding a common constant to all of the hi. We call the corresponding equivalence
class [h] the particle lengths.

Section 3 contains two important results. First, we show that for a given metric
g on the boundary, a convex polyhedral cusp with particles is uniquely determined
by its particle lengths [h]. That is to say, there don’t exist two convex cusps with
particles with different face structures and same particle lengths. Second, we show
that M(T, g) is a compact convex subset of RΣ/〈1〉.

The functional on M(T, g) is given by the formula

S(M) = −2Vol(M) +
∑

hiκi +
∑

ℓe(π − θe).

Here the first sum ranges over all singularities of the metric g, and κi denotes the
singular curvature at the ith particle. The sum does not depend on the choice of a
truncation due to

∑
κi = 0. The second sum is of a similar nature: here ℓe is the

length of a boundary edge e, and θe is the dihedral angle at this edge. Functional
S is the discrete analog of the total scalar curvature, which is also known as the
Hilbert-Einstein functional.

Schläfli’s formula implies
∂S

∂hi

= κi.

Thus a critical point of S corresponds to a convex polyhedral cusp with vanishing
curvatures of particles. An explicit computation of derivatives shows that the Hes-
sian of S is negatively semidefinite. Although at some points the Hessian might
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be degenerate, it turns out that the functional S is strictly concave on M(T, g).
Functional S is investigated in Section 4.

Proofs of Theorems A — D are given is Section 5. All of them use either the
non-degeneracy of the Hessian or the strict concavity of S.

1.4. Remarks. In the physics literature, the functional
∑

hiκi for a manifold built
up from Euclidean simplices is known as the Regge functional. In mathematics, the
boundary term

∑
ℓe(π − θe) appeared in the works of Steiner and Minkowski.

Minkowski also showed that this is the correct discrete analog of the total mean
curvature of the boundary of a convex body. In the smooth case, Blaschke and
Herglotz [BH37] suggested to use the Hilbert-Einstein functional to approach Weyl’s
problem, which is a smooth analog of Alexandrov’s theorem in R3: show that any
convex Riemannian metric on the sphere is uniquely realized as the boundary of
a convex body. Recently, Michael Anderson [And02] proposed an approach to the
geometrization of 3-manifolds via scalar curvature type functionals.

The variational method used in the present paper was earlier applied in [Izm07]
to prove the existence and uniqueness of a Euclidean convex cap with given metric
on the boundary. Functional S was also used in [BI07] to give a new proof of
Alexandrov’s theorem in R3. In [BI07], the matter was complicated by the fact
that S was neither concave nor convex.

An alternative method of proving realization statements like Theorems 1.1, 1.2,
see also [Fil07b, Fil07a], is the deformation method, also known as Alexandrov’s
method. The idea is to consider the map between the space of convex polyhedral
surfaces and the space of cone metrics that associates to a surface its induced metric.
The key point is to prove the local rigidity: a deformation of a surface always
induces a deformation of a metric. In other words, the map “induced metric” is a
local homeomorphism. Then, by topological arguments, this map is shown to be
a global homeomorphism. Note a different role of the infinitesimal rigidity in the
two approaches. Being a key lemma in the deformation method, it is a byproduct
in the variational method (non-degeneracy of the Hessian at a critical point).

The variational method is constructive: a computer program can be written
that finds the critical point of a functional numerically. For Alexandrov’s theo-
rem in R3, such a program was created by Stefan Sechelmann and is available at
http://www.math.tu-berlin.de/geometrie/ps/software.shtml.

1.5. Acknowledgments. Both authors want to thank Cyril Lecuire and Jean-
Marc Schlenker for useful conversations, as well as Stefan Sechelmann who made
Figure 1.

2. Definitions and preliminaries

In Subsection 2.1 we convex polyhedral cusps. These are hyperbolic cusps whose
metric in the neighborhood of boundary points is modelled on convex polyhedral
cones. A convex polyhedral cone is the intersection of finitely many halfspaces
in H3 whose boundary planes pass through one point. Then we define convex
parabolic polyhedra and show that they are universal covers of convex polyhedral
cusps. In Subsection 2.2 we define hyperbolic cusps with particles as cone-manifolds
glued from semi-ideal pyramids. Finally, Subsection 2.3 contains some hyperbolic
geometry needed in the sequel.
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2.1. Cusps and parabolic polyhedra.

Definition 2.1. A hyperbolic cusp with boundary is a complete hyperbolic manifold
of finite volume homeomorphic to T× [0, +∞). We say that the cusp has a convex
polyhedral boundary if every point on the boundary has a neighborhood isometric
to a neighborhood of a point on the boundary of a convex polyhedral cone in H3.

We call hyperbolic cusps with convex polyhedral boundary briefly convex poly-
hedral cusps. Clearly, the induced metric on the boundary of a convex polyhedral
cusp is a hyperbolic metric with cone singularities of positive curvature. It is easy
to define vertices, edges and faces of a convex polyhedral cusp. Vertices are exactly
the cone singularities of the metric on the boundary. Every edge is a geodesic join-
ing the vertices. Edges cut the boundary ∂M of the cusp M into faces, which are
maximal connected open subsets of ∂M that bound M geodesically.

Definition 2.2. A convex parabolic polyhedron in H3 is a pair (P, G), where
P ⊂ H3 is the convex hull of a discrete set of points, and G is a discrete subgroup of
Iso+(H3) that acts freely cocompactly on a horosphere in H3 and leaves P invariant.

Clearly, the vertex set of P is G-invariant. Since it is discrete, it is the union of
finitely many orbits of the group G. The simplest example of a convex parabolic
polyhedron is the convex hull of one orbit, see Figure 1.

The group G has a unique fixed point c in ∂H3. Clearly, c lies in the closure of
P . We call c the center of the polyhedron P .

Lemma 2.3. Let (P, G) be a convex parabolic polyhedron. Then the quotient space
P/G is a convex polyhedral cusp.

Proof. It is immediate that G ∼= Z2 and B/G ≈ T × [0, +∞) for any horoball B
centered at c. Since the vertex set of P is the union of finitely many orbits, there
are horoballs B1 and B2 centered at c such that B1 ⊂ P ⊂ B2. It is easy to see
that any geodesic passing through c intersects the boundary of P at exactly one
point. It follows that P/G is homeomorphic to T× [0, +∞). From P ⊂ B2 it also
follows that P/G has finite volume. The manifold P/G is complete since it is a
closed subset of a complete manifold B2/G. Finally, P/G has convex polyhedral
boundary because P has. �

Let M be a convex polyhedral cusp. By definition it is locally convex, hence it is

convex, [CEG06, Corollary I.1.3.7.]. It follows that the developing map D : M̃ → H3

is an isometric embedding, [CEG06, Proposition I.1.4.2.]. The action of the fun-

damental group π1M ∼= Z2 on M̃ by deck transformations yields a representation
ρ : π1M → Iso+(H3).

Lemma 2.4. The pair (D(M̃), ρ(π1M)) is a convex parabolic polyhedron.

Proof. Clearly, D(M̃) is a convex polyhedron homeomorphic to the half-space. Its
vertices form a discrete set, because they correspond to vertices of M , whose number
is finite.

The thin part of M contains a totally umbilic torus C with Euclidean metric.
It follows that the developing map maps the universal cover of C to a horosphere.

The group ρ(π1M) acts on D(C̃) freely with a compact orbit space C. The lemma
follows. �
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Corollary 2.5. Every face of a convex polyhedral cusp is a convex hyperbolic poly-
gon.

Lemmas 2.3 and 2.4 imply that (P, G) 7→ P/G is a one-to-one correspondence be-
tween the equivariant isometry classes of convex parabolic polyhedra and isometry
classes of convex polyhedral cusps. Thus Theorem A is equivalent to Theorem A'.
2.2. Cusps with particles.

Definition 2.6. A semi-ideal pyramid in H3 is the convex hull of a convex polygon
A and a point a ∈ ∂H3 such that a is not coplanar to A. The point a is called the
apex of the pyramid, the polygon A its base.

A convex polyhedral cusp can be decomposed into semi-ideal pyramids with
a common apex. Indeed, let M be a cusp and let (P, G) be the corresponding

parabolic polyhedron. If c ∈ ∂H3 is the center of P , then P is composed from semi-
ideal pyramids with the apex c over the faces of P . Clearly, this decomposition
of P descends to a decomposition of M ∼= P/G. In the example on Figure 1, the
decomposition of M consists of a single isosceles quadrangular pyramid whose faces
are identified according to the standard gluing of a torus from a parallelogram.

Let us see when a gluing of pyramids defines a convex polyhedral cusp.

Definition 2.7. A cuspidal complex is a collection of semi-ideal pyramids glued
isometrically along some pairs of faces so that combinatorially the gluing is repre-
sented by the cone with an ideal apex over a polyhedral decomposition of the torus.

If the pyramids of a cuspidal complex fit well around their lateral edges, then the
result of the gluing is a hyperbolic manifold with polyhedral boundary. This mani-
fold can be non-complete as the following example shows. In the Poincaré half-space
model, take a semi-ideal pyramid with vertices (1, 0, 1), (0, 1, 1), (2, 0, 2), (0, 2, 2) and
the point at infinity as the apex. Clearly, the semi-ideal triangles in each pair of
opposite sides of the pyramid are isometric. When we identify them, we get a
non-complete manifold homeomorphic to T× [0, +∞).

For a semi-ideal pyramid ∆, choose a horoball B centered at the apex of the
pyramid and disjoint with its base. The body ∆\B is called a truncated semi-ideal
pyramid or a horoprism.

Definition 2.8. A cuspidal complex is called compatible if every pyramid of the
complex can be truncated so that the gluing isometries restrict to the faces of the
truncated pyramids.

Lemma 2.9. The manifold defined by a cuspidal complex is complete if and only
if the complex is compatible.

Proof. If the manifold is complete, then its thin part contains a cusp with totally
umbilic Euclidean boundary. Cutting this cusp off defines a compatible truncation
of the pyramids.

Conversely, assume that the complex is compatible. For every pyramid ∆i con-
sider the corresponding horoball sectors ∆i∩Bi. It is easy to see that the developing
map maps the union ∪i(∆i∩Bi) to a horoball in H3. Thus the manifold ∪i(∆i∩Bi)
is complete and so is the whole manifold defined by the complex. �

In general, a compatible cuspidal complex defines a cone-manifold whose singular
locus is contained in the union of half-lines that come from the lateral edges of the
semi-ideal pyramids. We call these half-lines particles.
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Definition 2.10. A polyhedral cusp with particles is a hyperbolic cone-manifold
defined by a compatible cuspidal complex. A polyhedral cusp with particles is called
convex iff the total dihedral angle at every boundary edge is ≤ π. For a boundary
singularity i, denote by ωi the total dihedral angle around the ith particle. The
curvature of the ith particle is defined as

κi = 2π − ωi.

A truncated polyhedral cusp with particles is defined in the same way as a
polyhedral cusp with particles, using horoprisms instead of semi-ideal pyramids.

We are interested in the cusps whose boundary is isometric to (T, g), where g is
a hyperbolic metric with conical singularities of positive singular curvatures on the
torus T.

Definition 2.11. We denote by M(T, g) the space of convex polyhedral cusps with
particles M with ∂M = (T, g). By Mtr(T, g) we denote the space of truncated
convex polyhedral cusps with particles with the boundary (T, g).

Formally speaking, an element of M(T, g) is a pair (M, f), where f : ∂M → (T, g)
is an isometry. It will be convenient to us to identify ∂M with the given metric
torus (T, g), so that we can omit mentioning f .

Theorem A is equivalent to say that in M(T, g) there is a unique cusp with
vanishing curvatures of particles. Note that we don’t fix an isometry between
∂M and (T, g) in Theorem A. In this case, it does not really matter because the
uniqueness is stated.

As in the case of a convex polyhedral cusp, the boundary of a convex polyhedral
cusp with particles consists of vertices, edges and faces. Unlike the case without
particles, faces of a cusp with particles can be non-simply connected, and there can
be isolated vertices, as the following example shows.

Example. In the upper half-space, take the point a = (0, 0, 1) and points b, c on
the unit sphere centered at 0 so that b and c lie at an equal distance from a and
the angle at the vertex a in the spherical triangle abc is < π

2 . In the Poincaré
half-space model, the semi-ideal pyramid with the base abc and the apex at the
point at infinity has dihedral angles π

2 at the edges ab and ac and an angle < π
2 at

bc. Take four copies of this pyramid and glue them cyclically around the edge a∞.
The result is a semi-ideal quadrangular pyramid with a particle. By identifying the
pairs of its opposite sides, we obtain a convex polyhedral cusp with particles. Its
boundary contains two vertices, two loop edges and a single face that looks as a
punctured square.

To deal with the space M(T, g), we need to introduce coordinates on it. A
compatible cuspidal complex over (T, g) is determined by a polyhedral subdivision
of the metric torus (T, g) and by the lengths of the lateral edges of the pyramids
over the faces of the subdivision. To measure the lengths of the (infinite) lateral
edges in a compatible complex, one chooses a truncation and measures the lengths
of the truncated edges. A different choice of truncation results in adding a constant
to all of the lengths. As for the polyhedral subdivision of the torus, it is convenient
to refine it to a triangulation. This motivates the following definition.

Definition 2.12. Let Mtr ∈ Mtr(T, g) be a truncated convex polyhedral cusp with
particles. Let T be a triangulation of (T, g) that refines the natural decomposition
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of the boundary ∂Mtr, and let hi be the length of the truncated particle with the
endpoint i ∈ Σ, where Σ is the set of singularities of g. We associate to Mtr the
pair (T, h), where h stands for (hi)i∈Σ.

Similarly, to every M ∈ M(T, g) we associate a pair (T, [h]), where (T, h)
represents a truncation of M , and [h] is the equivalence class under the relation
h ∼ h′ ⇔ h′

i = hi + c for all i and some constant c.
The equivalent class [h] is called the particle lengths of M . The cusp M is

isosceles if it is made of isosceles semi-ideal pyramids, i.e. if [h] = [0, . . . , 0].

By a triangulation we mean a decomposition of (T, g) into open hyperbolic tri-
angles by geodesic arcs (edges of the triangulation) with endpoints in Σ. We don’t
impose any restrictions on the combinatorics, so that there may be loops and mul-
tiple edges, and two triangles may have two edges in common, and two edges of
a triangle may be identified. An edge with endpoints i and j is denoted by ij, a
triangle with vertices i, j and k is denoted by ijk. Because of what we just said,
different edges or triangles may obtain the same notation, and some letters in the
notation may repeat. But this will not lead to confusion.

Lemma 2.13. The curvatures of a convex polyhedral cusp with particles satisfy
∑

i∈Σ

κi = 0.

Proof. Truncate the cusp. The induced metric on the surface of truncation is a
flat metric with conical singularities on the torus. Clearly, the curvatures of the
singularities are exactly the κi. The lemma follows from the Gauss–Bonnet formula.

�

2.3. Some hyperbolic trigonometry.

Lemma 2.14 (Cosine law for semi-ideal triangles). Let B be a horodisk in the
hyperbolic plane and let i, j be two points not in B. Let hi, hj, λ be the distances
dist (i, B), dist (j, B), dist (i, j), respectively, and let ρi be the angle between the
geodesic segment ij and the perpendicular from i to B. Then

(1) cos ρi =
coshλ − ehj−hi

sinhλ
.

Proof. Go to the limit in the cosine law for the triangle with vertices i, j and third
vertex approaching the center of the horodisk. �

Lemma 2.15. Let B be a horodisk in the hyperbolic plane, and L be a line disjoint
with B. Then for every x ∈ L we have

dist (x, B) = log cosh(dist (x, a)) + dist (a, B),

where a is the point on L nearest to B.

Proof. Consider the semi-ideal triangle with vertices a, x and the center c(B) of B.
Apply equation (1), taking a for i, x for j. We have cos ρi = 0 and λ = dist (x, a).
Hence

cosh(dist (x, a)) = ehj−hi = exp(dist (x, B) − dist (a, B)),

and the claim follows. �
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Lemma 2.16. Let i, j, k be three collinear points in H2 such that j lies between i
and k. For a horodisk B that contains none of the points i, j, k, denote by hi, hj , hk

the distances dist (i, B), dist (j, B), dist (k, B), respectively. Then

(2) ehj =
sinhµ

sinh(λ + µ)
ehi +

sinhλ

sinh(λ + µ)
ehk ,

where λ = dist (i, j), µ = dist (j, k).

Proof. Let c be the center of B, and let ρj , π−ρj be the angles between the geodesic
ik and the perpendicular from j to ∂B. Compute cos ρj by the equation (1) from
the semi-ideal triangles ijc and jkc and equate the two expressions. �

3. The space of convex polyhedral cusps with particles

In Subsection 3.1 we show that a convex polyhedral cusp with particles is uniquely
determined by the particle lengths [h] introduced in Definition 2.12. This identi-
fies the space of cusps M(T, g) with a subset of Rn−1, where n is the number of
singularities of g. Subsection 3.2 contains several lemmas that are later used in
Subsection 3.3 to prove Proposition 3.15. The proposition says that M(T, g) is a
compact convex subset of Rn−1.

Everywhere in this section we mean by a cusp a cusp with particles with poly-
hedral boundary.

3.1. Particle lengths define a cusp. Recall that a truncated convex cusp was
defined as a union of horoprisms. A horoprism is a semi-ideal pyramid with a neigh-
borhood of the ideal vertex cut off along a horosphere. A horoprism has a hyperbolic
base and a Euclidean base. The lateral edges of a horoprism are orthogonal to its
Euclidean base. The lengths of lateral edges are called heights of the horoprism.
Clearly, a horoprism is uniquely determined by the hyperbolic base and the heights.
In what follows, we consider only triangular horoprisms.

Cutting a truncated convex cusp into triangular horoprisms produces a pair
(T, h), where T is a geodesic triangulation of (T, g), and h = (hi)i∈Σ is the collection
of heights of the horoprisms, which at the same time are the truncated particle
lengths in the cusp. Occasionally, there is some freedom in the choice of T , since it
may be any refinement of the canonical face decomposition of the cusp boundary.

Our goal is to prove

Proposition 3.1. A truncated convex cusp is uniquely determined by its truncated
particle lengths.

In other words, if (T, h) and (T ′, h) are pairs associated with the truncated
convex cusps Mtr, M

′
tr, respectively, then Mtr = M ′

tr.
The following definition introduces a concept that will be used through the whole

Section.

Definition 3.2. The distance function of a truncated convex cusp Mtr ∈ Mtr(T, g)
is a map (T, g) → R that associates to every point on the hyperbolic boundary of
Mtr its distance from the Euclidean boundary.

Due to Lemma 2.15 we know that in the interior of every face F of Mtr the
distance function has the form

(3) x 7→ log cosh(dist (x, a)) + b,
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where b > 0 and a is a point in F or in the hyperbolic plane spanned by F .
We call a function of the form (3) on a subset of the hyperbolic plane a distance-

like function.

Definition 3.3. A function f : (T, g) → R is called piecewise distance-like function,
briefly PD function, if there exists a geodesic triangulation T of (T, g) such that f
is distance-like on every triangle of T .

A PD function f is called Q-concave if for every geodesic arc γ on (T, g) at
every kink point of the restriction f |γ the left derivative is greater than the right
derivative.

Figure 2 shows an example of a Q-concave PD function on the line.
Recall that a triangle ijk of T may have identifications on the boundary; so we

mean by a distance-like function on ijk a function induced from a distance-like
function on its development.

Figure 2. The graph of a Q-concave PD function.

The following lemma is straightforward.

Lemma 3.4. The distance function of a truncated convex cusp is a Q-concave PD
function. Conversely, every positive Q-concave PD function is the distance function
of a unique truncated convex cusp.

Thus we can identify the space Mtr(T, g) with the space of positive Q-concave
PD functions on (T, g).

Definition 3.5. Let T be a geodesic triangulation of (T, g), and let h : Σ → R
be a function on the singular set of (T, g). By h̃T : (T, g) → R we denote the PD
extension of the function h with respect to the triangulation T .

The function h̃T does not always exist, but it is easy to see that if it does, then
it is well-defined and unique.

Extending a function h : Σ → R to a positive Q-concave PD function is equiv-
alent to constructing a truncated convex cusp with truncated particle lengths h.
Therefore Proposition 3.1 will follow from

Lemma 3.6. Let h be a function on Σ and let T, T ′ be two geodesic triangulations

of (T, g). If both functions h̃T and h̃T ′ exist and are Q-concave, then they are equal.

Proof. Let x be an intersection point of an edge e of T and an edge e′ of T ′. Then

the function h̃T is distance-like on e, and the function h̃T ′ is PD Q-concave on

e. By Lemma 3.10, this implies h̃T ′(x) ≥ h̃T (x). Considering the edge e′ instead
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of e, we get an inverse inequality. Hence h̃T (x) = h̃T ′(x). The union of edges of

T and T ′ subdivides (T, g) into hyperbolic polygons such that both functions h̃T

and h̃T ′ are distance-like on every polygon of the subdivision. As we just proved,

h̃T (x) and h̃T ′(x) take equal values at the vertices of the polygons. It follows that

h̃T = h̃T ′ . �

Proposition 3.1 is proved. It implies that the map

Mtr(T, g) → RΣ

(T, h) 7→ h

is an embedding. Changing a truncation of a convex cusp results in adding a com-
mon constant to all of the truncated particle lengths. Thus we have an embedding

M(T, g) → RΣ/〈1〉
(T, [h]) 7→ [h],

where [h] is an equivalence class under (h1, . . . , hn) ∼ (h1 + c, . . . , hn + c).
For a geodesic triangulation T of (T, g), denote by MT

tr(T, g) the space of trun-
cated convex cusps that have a representative of the form (T, h). In other words,
Mtr ∈ MT

tr(T, g) iff Mtr can be cut into horoprisms over the triangulation T . We
have a decomposition

Mtr(T, g) =
⋃

T

MT
tr(T, g).

Clearly, we have a similar decomposition for M(T, g), where

MT (T, g) = MT
tr(T, g)/〈1〉.

Let us denote by h̃ the distance function of the truncated convex cusp with

truncated particle lengths h = (hi)i∈Σ. In other words, h̃ is the unique Q-concave
PD extension of the function h : i 7→ hi.

3.2. Lemmas. We put here lemmas used in the proof of Proposition 3.3.

Lemma 3.7. The distance function h̃ of a truncated convex cusp satisfies the in-
equality

|h̃(x) − h̃(y)| < dist (x, y)

for any x, y ∈ T, where dist denotes the shortest path distance for the metric g. In
particular,

maxT h̃ − minT h̃ < diam (T, g).

Proof. This follows from the fact that the gradient of the distance function is always
smaller than 1. �

Lemma 3.8. The space MT
tr(T, g) is non-empty only for finitely many geodesic

triangulations T of (T, g).

Proof. The proof proceeds in two steps. First, we show that there is a constant L
depending on the metric g, such that no triangulation associated with a cusp with
boundary (T, g) has an edge of length greater than L. Second, we note that there
are only finitely many geodesic arcs of length ≤ L between points of Σ. Then the
number of geodesic triangulations with edges of length ≤ L is also finite and we are
done.
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Let h̃ be the distance function of a truncated convex cusp, and let e be an edge

of an associated triangulation. The restriction of h̃ to e is a function of the form
log cosh(x−a)+b, where x is the arc length parameter on e. It can easily be shown
that for any C ∈ R there exists an L ∈ R such that

max
e

h̃ − min
e

h̃ > C,

as soon as the length of e is greater than L. Put C = diam(T, g). Then the length
of e cannot be greater than L due to Lemma 3.7.

The lengths of geodesic arcs between the points of Σ form a discrete subset of R
by the argument from [ILTC01, Proposition 1]. �

Remark. Lemmas 3.7 and 3.8 hold also for non-convex polyhedral cusps with
particles.

Definition 3.9. For two points i, j on the real line and two real numbers hi, hj, let

h̃ij : R→ R
denote the distance-like function that takes values hi, hj at i and j, respectively.

Note that the function h̃ij exists iff |hi − hj | < dist (i, j).

Lemma 3.10. For any Q-concave PD function h̃ on R such that h̃(i) = hi, h̃(j) = hj

the following holds:

h̃(x) ≥ h̃ij(x) for all x ∈ [i, j],

h̃(x) ≤ h̃ij(x) for all x /∈ [i, j].

Proof. Consider the function h̃ − h̃ij . There are numbers x1 < x2 < · · · < xn and
a0, b0, . . . , an, bn such that

h̃|[xm,xm+1] = log cosh(x − am) + bm

for all m from 0 to n, where we put x0 = −∞, xn+1 = +∞. Since log coshx is a

convex function, (h̃ − h̃ij)|[xm,xm+1] is a monotone function for every m. Besides,

since h̃ is Q-concave, h̃−h̃ij is Q-concave too. Thus, if h̃−h̃ij is monotone decreasing
(or constant) on [xm−1, xm], then it is also monotone decreasing (or constant) on
[xm, xm+1]. Together with

(h̃ − h̃ij)(i) = (h̃ − h̃ij)(j) = 0

this implies that the function h̃− h̃ij is non-negative on the interval [i, j] and non-
positive outside of it. The lemma follows. �

Definition 3.11. Let h̃(x) = log cosh(dist (x, a)) + b be a distance-like function on

a subset of H2. We call the distance dist (x, a) the slope of h̃ at x and denote it by

slopex(h̃).

For a PD function h̃ on the torus, slopex(h̃) is defined in an obvious way, provided

that h̃ is locally distance-like at x. Clearly, slopex(h̃) depends only on the gradient

norm of h̃ at x, and it tends to ∞ as the gradient norm tends to 1.
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Lemma 3.12. The slopes of the convex cusps with the boundary (T, g) are uniformly
bounded. That is, there exists a constant D ∈ R such that

slopex(h̃) ≤ D

for every Q-concave PD function h̃ on (T, g) at every point x ∈ T.

Proof. Let us show that the lemma holds for log coshD = diam (T, g). Assume the

converse, and let h̃ and x be such that slopex(h̃) > D. On the geodesic that starts

at x and runs in the direction of −gradx(h̃), take the point y at a distance D from
x. If we end up at a singular point before running the distance D, then perturb the

point x so that slopex(h̃) is still greater than D. On the geodesic arc xy, consider

functions h̃ and h̃x+, where h̃x+ is the distance-like function that coincides with h̃
in a neighborhood of x. By Lemma 3.10, we have

h̃(y) ≤ h̃x+(y).

Due to slopex(h̃) > |xy|, the function h̃x+ is monotone decreasing on xy. The
convexity of log coshx implies

h̃(x) − h̃x+(y) ≥ log cosh |xy| = log coshD = diam(T, g).

Therefore h̃(x)− h̃(y) ≥ diam(T, g) ≥ dist (x, y) which contradicts Lemma 3.7. �

Let us generalize Definition 3.9 to the situation when i, j ∈ Σ are singular points

of (T, g) joined by a geodesic arc γ. Then h̃ij is the distance-like function on γ that
takes values hi and hj at i and j, respectively. Note that there are many arcs that

join i and j, so we need to specify γ when we talk about h̃ij . If h ∈ Mtr(T, g) and

γ is an edge of a triangulation associated with h, then h̃ij = h̃|γ . Also we might

want to extend function h̃ij beyond the point i. For this we consider a geodesic
extension of γ beyond i. This is a geodesic ray from i that forms the angle π with
ij. We measure the angles around i modulo the cone angle αi at i, so the geodesic
extension is defined for αi < π as well. In general, there are two geodesic extensions
(“to the left” and “to the right”), and they coincide only if αi = 2π

n
for some n.

Lemma 3.13. Let i, j, k, l ∈ Σ. Choose geodesic arcs ik and jl and a geodesic
extension of ik beyond i. Suppose that the extension of ik intersects the arc jl at a
point m, see Figure 3. Then for every h ∈ Mtr(T, g) holds

(4) h̃ik(m) ≥ h̃jl(m).

In particular, let i, j ∈ Σ be such that there is a closed geodesic arc based at j that
bounds a disk in T such that i is the only singularity inside this disk. Then for
every h ∈ Mtr(T, g) holds

(5) hi ≥ hj − log cosh ℓij ,

where ℓij is the length of the geodesic arc ij that lies inside the disk. See Figure 3.

Proof. Consider the restriction of the Q-concave PD function h̃ to the piecewise
geodesic arc kim. This is a PD function, and since the arc kim can be approximated
by geodesic arcs, it is also Q-concave. Then by Lemma 3.10 we have

h̃(m) ≤ h̃ik(m).
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π

m

Figure 3. To Lemma 3.13.

By Lemma 3.10 applied to the arc jl, we have

h̃(m) ≥ h̃jl(m).

Inequality (4) follows.
Let us derive (5) from (4). Consider the function

f(x) = log cosh(dist (x, i)) + hi

on the singular disk bounded by the arc jj. We have hi = f(i). If also hj = f(j),
then we have

h̃ij(m) = f(m) = h̃jj(m),

where m is the first intersection point of the geodesic extension of ij beyond i with

the arc jj. It is easy to see that h̃ij(m) is a monotone decreasing, and h̃jj(m) is a

monotone increasing function of hj. Thus, since we have h̃ij(m) ≥ h̃jj(m) due to
(4), we must have hj ≤ f(j), and this is exactly the inequality (5). �

Lemma 3.14. Let i, j, k be three points on the real line such that j lies between i

and k. Then the function h̃ij(k) is a concave function of hi, hj, and the function

h̃ik(j) is a convex function of hi, hk.

Proof. By Lemma 2.16,

h̃ik(j) = log(aehi + behk)

with positive a and b. The Hessian can easily be computed and shown to be

positive semidefinite. For h̃ij(k) one has a similar expression with one positive and
one negative coefficient. �

3.3. Description of M(T, g). Here we prove the main result of this section. Re-
call that the space Mtr(T, g) is identified with a subset of RΣ by associating to a
truncated cusp the truncated particle lengths h = (hi)i∈Σ. The space M(T, g) is
thus identified with a subset of RΣ/〈1〉.
Proposition 3.15. The space M(T, g) of convex polyhedral cusps with particles
with boundary (T, g) has the following properties:

(1) It is a non-empty compact convex subset of RΣ/〈1〉 with non-empty interior.
(2) If all faces of a convex cusp M ∈ M(T, g) are strictly convex hyperbolic

polygons (after developing on H2), then M is an interior point of M(T, g).
(3) For a geodesic triangulation T of (T, g), let MT (T, g) ⊂ M(T, g) be the

space of cusps whose faces are unions of triangles from T . Then the de-
composition

(6) M(T, g) =
⋃

T

MT (T, g)
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is finite, and every MT (T, g) is a compact set with piecewise analytic bound-
ary.

Proof. M(T, g) 6= ∅ : We claim that [0, . . . , 0] ∈ M(T, g), that is there exists an
isosceles cusp with particles with boundary (T, g). Furthermore, faces of this cusp
are the faces of the Delaunay tesselation of (T, g), where the Delaunay tesselation
of a surface with a cone metric is defined as the dual of the Voronoi tesselation, see
[Thu98, Proposition 3.1]. To show this, let TD be a Delaunay triangulation, that is
a refinement of the Delaunay tesselation of (T, g). Inscribe a triangle ijk of TD in
a horosphere with center c. This gives an isosceles semi-ideal pyramid cijk. Let ijl
be a triangle of TD adjacent to ijk. Develop ijl into the hyperbolic plane spanned
by ijk. By the main property of Delaunay tesselations, the point l lies outside or
on the circumcircle of ijk. Hence, l lies outside or on the horosphere through i, j
and k. It follows that the truncated length of cl is larger than the truncated length
of ci, cj and ck. In order to make the pyramid cijl isosceles, one has to rotate the
triangle ijl around the edge ij towards c. As a result, the total dihedral angle of
the pyramids cijk and cijl at the edge ij becomes ≤ π.

Property (3): The finiteness of the decomposition (6) is proved in Lemma 3.8. A

point [h] ∈ RΣ/〈1〉 lies on the boundary of MT (T, g) iff the function h̃ is distance-
like across some of the edges of T . Clearly, for every edge this condition is analytic.
It remains to show that MT (T, g) is compact. Embed a triangle ijk ∈ T intoH3. The hyperbolic plane spanned by ijk divides the sphere at infinity in two
open hemispheres. The space of semi-ideal pyramids with the base ijk is naturally
homeomorphic to any one of these hemispheres. For a point c ∈ ∂H3 not coplanar
with ijk, call the slope ot the pyramid cijk the maximum distance between the
projection of c on the plane spanned by ijk and a point of the triangle ijk. Clearly,
the slope of cijk is the maximum slope of the corresponding distance function on
ijk, see Definition 3.11. For any D ∈ R, the space of semi-ideal pyramids with slope
≤ D is compact. By Lemma 3.12, there exists D such that all pyramids in convex
cusps with boundary (T, g) have slopes ≤ D. The conditions θij ≤ π for all ij ∈ T
are closed ones. Thus MT (T, g) is compact as a closed subset of a compact space.

Property (2): Let (T, h) be a pair associated with a truncation of M . There are
two types of edges of T : true edges that are edges of the cusp M and flat edges that
were added to refine the face decomposition to a triangulation. We want to show
that there exists an ε > 0 such that h′ ∈ Mtr(T, g) for all h′ in RΣ at a distance
< ε from h. That is, for every such h′ we want to find a triangulation T ′ such that

the function h̃′
T ′ exists and is Q-concave.

We obtain a triangulation T ′ from the triangulation T by the flip algorithm.

Let ij be an edge of T such that h̃′
T is not Q-concave across ij. We call such

an edge a bad edge of T . If ij belongs to two different triangles ijk and ijl of
T and the quadrilateral ikjl is strictly convex, then the edge ij can be flipped,
that is replaced by the diagonal kl. The flip algorithm produces a sequence of
triangulations T 0 = T, T 1, T 2, . . ., where T n+1 is obtained from T n by flipping a
bad edge of T n. If the algorithm terminates at a triangulation T ′ that has no bad
edges, then we are done. But some things might go wrong. First, the PD function

h̃′
T n might not exist for some n. Second, it might be impossible to flip a bad edge,

see Figure 4. And third, the algorithm might run infinitely. Let us show that none
of these occurs in our particular case.



18 HYPERBOLIC CUSPS WITH CONVEX POLYHEDRAL BOUNDARY

k

i

j

i

j

l

Figure 4. The two situations where the edge ij cannot be flipped.

Clearly, the function h̃′
T exists, if ε is sufficiently small. It is also easy to see

that, for small ε, a true edge of T can never become bad and thus will never be
flipped. Thus the flip algorithm is performed independently inside every face. This
implies that every triangle of T n is contained in a face of M , and thus the function

h̃′
T n exists, for small ε. Since every face is a convex polygon, situations on Figure 4

cannot occur, and a bad edge can always be flipped. The algorithm is finite since

the function h̃′
T n+1 is pointwise greater or equal than h̃′

T n and since every face has
finitely many triangulations.

Property (1): The space M(T, g) is compact since it is the union of finitely
many compact spaces, by Property (3). The Delaunay cusp constructed at the
beginning of the proof has convex faces and thus is an interior point of M(T, g) due
to Property (2). It remains to prove the convexity of M(T, g). We will show that
Mtr(T, g) is convex, that is for every h0, h1 ∈ Mtr(T, g) and every 0 < λ < 1 the
point

hλ := (1 − λ)h0 + λh1

also belongs to Mtr(T, g). Then M(T, g) is convex as a projection of Mtr(T, g).
Since M(T, g) is closed, it suffices to prove hλ ∈ Mtr(T, g) for all sufficiently

small λ. Our proof of it uses the flip algorithm described in the proof of Property (2).
Let T be a triangulation associated with h0. If λ is sufficiently small, then

the function h̃λ
T exists. The true edges of T will never be flipped, thus the flip

algorithm is performed independently inside every face of h̃0. It follows that for

every triangulation T n that appears during the algorithm, the function h̃λ
T n exists.

Every face can be triangulated in only finitely many ways, since otherwise infinitely
many triangulations would be associated with h0, which contradicts Lemma 3.8.
Hence the algorithm cannot run infinitely. It remains to show that a bad edge can
always be flipped.

Assume that ij is a bad edge in the situation on the left of Figure 4. Badness
means

(7) h̃λ
ik(m) < h̃λ

jl(m),

where m is the intersection point of the lines ik and jl. On the other hand, by
Lemma 3.13 for both h0 and h1 the opposite inequality (4) holds. By Lemma 3.14,

h̃ik(m) is a concave and h̃jl(m) is a convex function on hi and hk. This implies
that the inequality (7) is false and ij is not bad. If ij cannot be flipped because
of the situation on the right of Figure 4, then the same argument applies since the
inequality (5) is a convex condition on hi and hj . �
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Remarks. A similar analysis of the space of “generalized” convex polytopes and
“generalized” convex caps was made in [BI07] and [Izm07]. In the former case the
distance function was the (square of) the distance from a point to a plane in R3,
in the latter case — the distance from a variable point in a plane to another plane
in R3. Thus, instead of log cosh, the distance-like functions in [BI07] and [Izm07]
were modelled on x2 and on ax with a real parameter a ∈ [−1, 1], respectively. In
both cases one succeeded to describe the space of “generalized” objects explicitely
by linear and quadratic inequalities on coordinates. The arguments from [BI07]

and [Izm07] cannot be carried out in the present paper because the function h̃ij

from Definition 3.9 does not always exist.
It is now easy to prove Theorem A in the special case when the metric g has only

one singularity. Indeed, the isosceles cusp over the Delaunay tesselation of (T, g) is
convex, see the first paragraph of the proof of Proposition 3.15. The curvature κ
of its only particle vanishes due to

∑
i κi = 0. Thus it is a convex polyhedral cusp.

This cusp is unique, since the space M(T, g) consists of a single point. In the case
of one singularity the results of the subsequent sections have no real meaning. If
there are two singularities, then the space M(T, g) is a segment in R, there can be
different triangulations T such that MT (T, g) is non-empty, and the things become
more interesting.

4. The total scalar curvature

In this section we define the total scalar curvature function S on the space
M(T, g), compute its derivatives and show that S is strictly concave.

4.1. Derivatives of the total scalar curvature.

Definition 4.1. Let M ∈ M(T, g) be a convex polyhedral cusp with particles. The
total scalar curvature of M is defined as

S(M) = −2Vol(M) +
∑

i∈Σ

hiκi +
∑

e∈E(M)

ℓe(π − θe).

Here (hi)i∈Σ are the truncated particle lengths for an arbitrary truncation of M , ℓe

is the length of the edge e, and θe is the dihedral angle of M at e. The second sum
ranges over the set E(M) of edges of M .

Choosing a different truncation of M does not change the values of κi, ℓe and θe.
The truncated particle lengths hi are all changed by the same amount. Thus, by
Lemma 2.13, the value S(M) is well-defined.

Lemma 4.2. The function S is twice continuously differentiable on M(T, g). Its
first partial derivatives are:

(8)
∂S

∂hi

= κi.

The second partial derivatives of S have the properties:

∂2S

∂hi∂hj

{
> 0 if ij ∈ E(M),
= 0 otherwise,

(9)

∂2S

∂h2
i

= −
∑

j 6=i

∂2S

∂hi∂hj

.(10)
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Recall that M(T, g) ⊂ RΣ/〈1〉. So, by ∂
∂hi

we mean the directional derivative in

the direction of [ei] = ei + 〈1〉, where ei is the ith basis vector of RΣ.

Proof. Let T be a triangulation of (T, g) such that M ∈ MT (T, g). Cut M into
semi-ideal triangular pyramids according to the triangulation T . If M is an interior
point of MT (T, g), then the triangulation T is associated to all cusps near M . By
a generalization of the Schläfli formula, [Mil94, page 294], [Riv94, Theorem 14.5],
we have

dVol(M) =
1

2

∑

i

hidκi −
1

2

∑

e

ℓedθe.

This implies (8) in the case when M is an interior point of some MT (T, g). In the
general case, let ξ ∈ RΣ be such that [h + tξ] ∈ M(T, g) for all sufficiently small
t. Due to the piecewise analyticity of the boundaries of MT (T, g), there exists a
triangulation T such that [h + tξ] ∈ MT (T, g) for all sufficiently small t. Therefore
the previous argument shows that

∂S

∂ξ
=

∑

i∈Σ

ξiκi.

The same argument can be applied to show that S ∈ C2(M(T, g)). Thus we

can concentrate on computing the derivatives ∂κi

∂hj
for M in the interior of some

MT (T, g). This is reduced to computing the derivatives in a single semi-ideal
pyramid. Introduce notations for the angles as on Figure 5.

ℓjk

θij

i

j

hk

ωi

k i

αji

j

ωijk

αij

ρki

k

Figure 5. Angles and lengths in two adjacent horoprisms (trun-
cated semi-ideal pyramids). The curved triangles are the Euclidean
bases of the horoprisms.

The angle ωijk can be viewed as a function of the angles ρij and ρik. Thus we
have

(11)
∂ωijk

∂hj

=
∂ωijk

∂ρij

∂ρij

∂hj

.

From (1) we compute
∂ρij

∂hj

=
ehj−hi

sinh ℓij sinρij

.
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From the link of the vertex i in the pyramid over ijk with the help of spherical sine
and cosine laws we compute

∂ωijk

∂ρij

= −
cotαij

sin ρij

.

Substituting in (11), we obtain

∂ωijk

∂hj

= −
ehj−hi cotαij

sinh ℓij sin2 ρij

and

(12)
∂κi

∂hj

= −
∂ωi

∂hj

=
ehj−hi(cotαij + cotαji)

sinh ℓij sin2 ρij

.

Note that cotαij +cotαji > 0 if αij +αji < π, and vanishes if αij +αji = π. Since
αij + αji = θij , this implies (9).

The equation (10) is equivalent to

∑

j

∂κj

∂hi

= 0,

which is true due to
∑

j κj = 0. �

Remarks. Note that the equation (12) holds only if there is a unique edge between
the vertices i and j. In the case of multiple edges, one has to sum up the right hand
side of (12) over all edges between i and j.

In general, S is not of class C3. For example, if θij = π and θik 6= π on Figure 5,
then

∂

∂hk

∂κi

∂hj

= 0, but
∂

∂hj

∂κi

∂hk

6= 0.

4.2. Concavity of the total scalar curvature. Let Γ(M) be an embedded graph
in (T, g) with vertex set Σ and edge set E(M) that consists of the edges of the convex
polyhedral cusp with particles M .

Lemma 4.3. The Hessian of the function S is negatively semidefinite. The nullspace

of ( ∂2S
∂hi∂hj

) is spanned by the vectors vK = [hK
i ]i∈Σ defined as

hK
i =

{
1, for i ∈ K;
0, for i /∈ K,

where K ⊂ Σ is a connected component of Γ(M).

Proof. Denote aij = ∂2S
∂hi∂hj

. Due to (10), we have
∑

i,j

aijxixj = −
∑

i<j

aij(xi − xj)
2.

Since aij ≥ 0 by (9), the Hessian is negatively semidefinite. By (9) again, the
Hessian vanishes on the vector x if and only if xi is constant over every connected
component of Γ(M). �

As a consequence, S is a concave function on M(T, g). Points where the Hessian
is degenerate can exist indeed, as the example in Subsection 2.2 shows. However,
in an important special case we can show that the Hessian is non-degenerate.
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Lemma 4.4. If M ∈ M(T, g) is a convex polyhedral cusp, then the Hessian of S
is not degenerate at M .

Proof. The developing map maps M to a convex parabolic polyhedron, see Lemma
2.4. Since the 1-skeleton of a convex polyhedron is connected, the graph Γ(M)
is also connected. By Lemma 4.3, the nullspace of the Hessian is spanned by the
vector vΣ which projects to zero in RΣ/〈1〉. �

Note that convex polyhedral cusps correspond to critical points of S due to (8).

Corollary 4.5. If M ∈ M(T, g) is such that κi(M) = 0 for all i ∈ Σ, then

S(M) > S(M ′)

for every M ′ ∈ M(T, g) different from M .

Although the Hessian of S can degenerate at some points in M(T, g), the fol-
lowing lemma holds.

Lemma 4.6. The function S is strictly concave on M(T, g), that is

S[th + (1 − t)h′] > tS[h] + (1 − t)S[h′]

for all [h] 6= [h′] and all t ∈ (0, 1).

Proof. Assume this is not the case. Then there exist [h] 6= [h′] such that S is linear
on the segment joining [h] and [h′]. By choosing a subsegment, if necessary, we can
assume [h], [h′] ∈ MT (T, g) for some triangulation T . This implies that the graph
Γ = Γ[h] ∪ Γ[h′] is embedded in (T, g).

Due to the linearity of S between [h] and [h′], the vector [h′ − h] belongs to the
nullspace of the Hessian at both [h] and [h′]. Lemma 4.3 implies that the coordinate
difference h′

i −hi is constant over every connected component of the graph Γ. Thus
if Γ is connected, then we have [h] = [h′], which is a contradiction.

Let Γ be disconnected. Then its complement contains a non-simply connected

component F ⊂ (T, g). Both functions h̃ and h̃′ are distance-like functions on F
(see Subsection 3.1). By developing F on a hyperbolic plane in H3, one easily sees
that any two distance-like functions of F differ by a constant. This implies that
the coordinate difference h′

i −hi is constant over all vertices of F . Since this is true
for every non-simply connected face of Γ, the difference h′

i − hi is constant over the
whole Σ, and we have [h] = [h′], which is a contradiction. �

5. Proofs of main theorems

5.1. Proof of Theorem A. Existence. Let M be a convex polyhedral cusp with
particles and with boundary (T, g). We will show that if some of its singular cur-
vatures is not zero, then there exists a cusp with a larger total scalar curvature:

(13) ∃i ∈ Σ : κi(M) 6= 0 =⇒ ∃M ′ ∈ M(T, g) : S(M ′) > S(M).

Since the space M(T, g) is non-empty and compact by Proposition 3.15, the function
S attains its maximum at some point M ∈ M(T, g). All of the curvatures of the
cusp M must vanish due to (13). Thus (13) implies the existence part of Theorem A.

The proof of (13) is based on
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Lemma 5.1 (Volkov). Let M be a convex polyhedral cusp with particles, and let
κi(M) < 0 for an i ∈ Σ. Then every face containing the vertex i has angle < π
at i.

Proof. Consider the link of the vertex i in M . This is a convex spherical polygon of
perimeter < 2π with a cone singularity of negative curvature. The lemma says that
its boundary cannot contain a geodesic of length ≥ π. This is proved by Volkov in
[Vol55], see also [Izm07, Lemma 9]. �

Let us prove (13). Since
∑

i κi = 0, we may assume κi < 0. Due to (8), it
suffices to show that the particle length hi can be decreased; in other words, that
there exists a cusp M ′ ∈ M(T, g) with truncated particle lengths

h′
i = hi − ε,

h′
j = hj for every j 6= i,

for a sufficiently small ε. To prove the existence of M ′, we have to find a polyhedral
decomposition F ′ of (T, g) such that the horoprisms over the faces of F ′ with heights
h′ exist and their total dihedral angles at the edges of F ′ are ≤ π.

Consider the face decomposition of ∂M . When we decrease hi, nothing happens
to the horoprisms over the faces that don’t contain i. Let F be a face of M that
contains i. By Lemma 5.1, the angle of F at i is < π. Let j, k ∈ Σ be the vertices
of F adjacent to i. Draw in F the shortest path γ joining j with k and homotopic
to the path jik, see Figure 6. Together γ and jik bound a polygon P that has only
three angles < π, namely those at i, j and k. It is not hard to see that subdividing
the polygon P by diagonals from i yields a desired decomposition of (T, g), Figure 6.

j j

i

k

i

k
γ

Figure 6. Subdivision of the face F when the height hi decreases.

Uniqueness. By Corollary 4.5, if M and M ′ are two convex polyhedral cusps with
boundary (T, g), then S(M) > S(M ′) and S(M ′) > S(M), which is a contradiction.

5.2. Proof of Theorem C. Theorem C follows from Lemma 4.6 and the following
proposition, see [Luo06, Lemma 6.1], [Izm07, Proposition 5].

Lemma 5.2. Let f ∈ C1(X) be a strictly convex or strictly concave function on a
compact convex subset X of a vector space V . Then the map grad f : X → V ∗ is a
homeomorphism onto the image.

Consider the function S on M(T, g). Since S is strictly concave and gradS = κ,
Theorem C follows.

Note that cusps with particles are in general not infinitesimally rigid.
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5.3. Proofs of Theorems B, B' and D. The proofs are based on the fact that
the Hessian of S is equal to the Jacobian of the map [h] 7→ κ:

∂2S

∂hi∂hj

=
∂κi

∂hj

,

see (8). Lemma 4.4 implies that for a cusp with zero curvatures the Jacobian has full
rank, that is any non-trivial first-order variation of the particle lengths [h] induces
a non-trivial first-order variation of the curvatures κ.

Recall that a Killing field of hyperbolic space is a vector field of H3 such that the
elements of its local 1-parameter group are isometries. An infinitesimal isometric
deformation of a polyhedral surface S is a Killing field on each face of a triangu-
lation of S such that two Killing fields on two adjacent triangles are equal on the
common edge. The triangulation is required to have the same set of vertices as S.
An infinitesimal isometric deformation is determined by its values at the vertices
of S. It is called trivial if it is the restriction to S of a global Killing field. If
all the infinitesimal isometric deformations of S are trivial, then S is said to be
infinitesimally rigid.

Let (P, G) be a convex parabolic polyhedron. An infinitesimal isometric defor-
mation Z of ∂P is called a parabolic deformation if

(14) Z(g(i)) = dg.Z(i) + ~g(i),

where i is a vertex of P and g ∈ G. The vector ~g is a parabolic Killing field.
It is obtained as follows. Let gt be a path of hyperbolic isometries, leaving in-
variant the horospheres of same center c as (P, G) and such that g0 = g. Then
~g := dg−1 ∂

∂t
gt|t=0. In particular a parabolic Killing field is a Killing field of H3 tan-

gent to all the horospheres of center c, and its restriction to each horosphere gives an
Euclidean Killing field. A convex parabolic polyhedron is parabolic infinitesimally
rigid if all its parabolic deformations are trivial.

Equation (14) arises naturally under the point of view of isometric immersions of
surfaces in the hyperbolic space. Due to Lemma 2.4 each convex parabolic polyhe-
dral surface (∂P, G) is given by a pair (ϕ, ρ), where ρ is a cocompact representation
of π1(T) in a group of parabolic isometries of H3 and ϕ is a convex polyhedral iso-
metric immersion of the universal cover of (T, g) in the hyperbolic space, equivariant
under the action of ρ: for x ∈ R2 and γ ∈ π1(T),

ϕ(γx) = ρ(γ)(ϕ(x)).

If we derivate a path (ϕt, ρt) of such pairs with respect to t, the property of
equivariance above leads to Equation (14), where Z arises from the derivative of
ϕt, and ~g from the derivative of ρt(γ) (here g = ρ0(γ)). See [Fil07a] for analogous
considerations.

At each vertex i of a convex parabolic polyhedron (P, G) with center c we can
decompose TiH3 into a vertical direction that is the direction given by the deriva-
tive at i of the ray ci, and a horizontal plane, which is orthogonal to the vertical
direction. For a vector field V we denote by Vv its vertical component and by Vh

its horizontal component. If Z is a parabolic deformation we have by definition:

(15) Zv(g(i)) = dg.Zv(i).

Roughly speaking, the proof of Theorem B' goes as follows. The radii of a convex
parabolic polyhedron are the particle lenghts of the corresponding cusp. It follows
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that each convex parabolic polyhedron is defined by its radii. Hence each parabolic
deformation corresponds to a first-order deformation ṙ = (ṙ1, . . . , ṙn) of the radii of
the polyhedron such that the corresponding first-order deformation of the singular
curvatures κ̇ = (κ̇1, . . . , κ̇n) is zero: ṙ belongs to the nullspace of the Hessian of
the total scalar curvature of the cusp. But we know that in this case the nullspace
is reduced to a trivial deformation. Such proofs have already been used in cases
where no group acts on the deformation [CS06, Izm07].

We denote by ∆(M) the Hessian of the total scalar curvature S at the point M .

Lemma 5.3. Let Z be a parabolic deformation of (∂P, G). Then Zv induces a
first-order deformation ṙ of the radii of (P, G) such that ṙ belongs to the nullspace
of ∆(P/G).

Proof. By definition Zv gives a first-order deformation ṙ of the radii of the vertices
of P . Moreover by Equation (15) this deformation is well-defined on P/G. As Zv

is an infinitesimal deformation of a polyhedral surface of the hyperbolic space, the
angles around the particles of P/G must remain equal to 2π under the deformation,
that means that κ̇ = 0, hence ṙ belongs to ∆(P/G) by (8). �

The converse holds:

Lemma 5.4. Let ṙ ∈ ∆(P/G). Then there exists a unique parabolic deformation
Z of (∂P, G) such that ṙ(i) = |Zv(i)|.

Proof. In a fundamental domain on ∂P for the action of G, for each vertex i, we
define a vector Zv(i) as the unique vertical vector at i which has norm and direction
given by ṙi. We define this vector for the other vertices of P using the action of G,
that defines a vector field Zv on ∂P .

The deformation ṙ also acts on the projection of the vertices onto a horosphere
H of same center c than (P, G). We consider horoprisms given by H together with
a triangulation of the faces of ∂P . Into each horoprism the deformation ṙ gives a
horizontal deformation that we call Zh. We can extend Zh to ∂P by gluing the
horoprisms. The vector field Zh is well-defined because ṙ ∈ ∆(P/G). Actually we
make a little abuse of notation, as the vector Zh at a vertex i should be defined
as the image under the differential of the orthogonal projection from H to the
horosphere concentric to H and passing by i of the vector defined on H that we
also denote by Zh.

We define the vector field Z := Zv + Zh on ∂P . It is an infinitesimal isometric
deformation as it corresponds to a first-order deformations of the particle lengths
for a non-varying boundary metric.

It remains to prove that Zh verifies (14). It will follow that Z verifies (14) because
of (15). Consider a fundamental domain on ∂P for the action of G. Its projection
onto H defines a lattice on H (and hence on R2). Applying Zh on this fundamental
domain leads to a first-order deformation of the lattice on H . Consider a generator
g of G given by an edge of the lattice. Let i be a vertex of the lattice (up to
project onto H). Up to compose by a global Killing field suppose that we have
Zh(i) = 0. At the vertex g(i), there will be a horizontal first-order displacement,
which is given by the deformation of the lattice. Then Zh(g(i)) is the restriction to
g(i) of a Euclidean Killing field. �

Proof of Theorem B'. Let Z be a parabolic deformation of a convex parabolic poly-
hedron (P, G). By the lemmas above Z corresponds to a vector ṙ of the nullspace
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of ∆(P/G), and by Lemma 4.4 we know that this nullspace is reduced to the trivial
deformation 1. �

A hyperbolic metric m of a convex polyhedral cusp M can be defined as a section
of the bundle of scalar products over M . A first-order deformation ṁ of m can be
defined as a section of the bundle of symmetric bilinear forms over M . Such a
deformation is trivial if it is given by the Lie derivative of g under the action of
a vector field of M . We will only consider deformations ṁ such that the metric
remains hyperbolic, i.e. the first-order variation of the sectional curvature of m
induced by ṁ vanishes. The deformation ṁ is trivial on ∂M if its restriction to
∂M is zero.

Definition 5.5. A convex polyhedral cusp M is called infinitesimally rigid if every
deformation ṁ of M which is trivial on ∂M is trivial on the whole M .

Proof of Theorem B. It is known that a first-order deformation of a hyperbolic
manifold with convex boundary which is trivial on the boundary is equivalent to
an equivariant infinitesimal isometric deformation of the image of the boundary by
the developing map. Moreover one is trivial when the other is, see e.g. [Sch06]. It
follows that Theorem B is equivalent to Theorem B'. �

Proof of Theorem D. We sketch the proof as it is word by word the same as in the
Section 4 of [Sch07], even if this reference concerns Euclidean polytopes. The idea
of the proof is the same as for convex parabolic polyhedra above: it is sufficient to
prove that the matrix ∆ associated to each weakly convex star-shaped parabolic
polyhedra is negatively definite (the definition of the total scalar curvature doesn’t
use the convexity). And this follows directly from the case of convex parabolic
polyhedra as:

(1) a weakly convex star-shaped parabolic polyhedron P is obtained from a
convex parabolic polyhedra P ′ by removing a finite number of simplices (in
a fundamental domain) [Sch07, Lemma 4.1];

(2) each time we remove a simplex, the matrix ∆′ associated to P ′ changes
by the addition of a negatively semidefinite matrix [Sch07, Lemma 4.3 and
4.4];

(3) at the end ∆ is negatively definite as ∆′ is [Sch07, Lemma 4.5].

�
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lorentziens à courbure constante. Math. Ann., 316(3):465–483, 2000.

[Luo06] F. Luo. Rigidity of polyhedral surfaces. 2006. arXiv.org:math.GT/0612714.
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