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AN ASYMPTOTICALLY STABLE SCHEME FOR DIFFUSIVE

COAGULATION-FRAGMENTATION MODELS

FRANCIS FILBET

Abstract. This paper is devoted to the analysis of a numerical scheme for the coagulation and
fragmentation equation with diffusion in space. A finite volume scheme is developed, based on
a conservative formulation of the space nonhomogeneous coagulation-fragmentation model, it is
shown that the scheme preserves positivity, total volume and global steady states. Finally, several
numerical simulations are performed to investigate the long time behavior of the solution.
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1. Introduction

Coagulation and fragmentation processes occur in the dynamics of cluster growth and describe
the mechanisms by which clusters can coalesce to form larger clusters or fragment into smaller
ones. Models of this type have found important applications in areas ranging over polymer kinetics
[29], aerosols [16], cluster formation in astrophysics [26] to the animal grouping in biology [27].

This paper is devoted to the numerical simulation of the dynamics of the density function
f = f(t, x, y) ≥ 0 of particles (polymers, clusters) with position x ∈ Ω ⊂ R

N (N ≥ 1), volume
y ∈ R

+ := (0,∞), and time t ≥ 0. The distribution function f is subject to coagulation and
fragmentation phenomena with respect to the volume variable y and diffusion in space x ∈ Ω and
is governed by the following equation

(1)
∂f

∂t
− d(y)∆xf = Q(f),

where Q(f) is the coagulation-fragmentation operator acting on the volume variable y ∈ R
+ and

these particles diffuse in the environment Ω, which is assumed to be a smooth bounded domain
with normalized volume |Ω| = 1. Moreover, the model (1) is supplemented with an initial datum

(2) f(0, x, y) := f in(x, y),

and in the following analysis we will consider homogeneous Neumann boundary conditions on ∂Ω

(3) ∇xf(t, x, y) · ν(x) = 0, (t, x, y) ∈ R
+ × ∂Ω × R

+,

with ν the outward unit normal to Ω. We also assume the diffusion coefficient d(y) to be non
degenerate in the sense that there exists d∗, d∗ ∈ R

+ such that

(4) d∗ ≥ d(y) ≥ d∗ > 0, y ∈ R
+.

Let us first describe precisely the coagulation and fragmentation process. In the simplest coagulation-
fragmentation models the clusters are usually assumed to be fully identified by their size (or vol-
ume, or number of particles). The coagulation-fragmentation models we consider in this paper
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describe the time evolution of the cluster size distribution as the system of clusters undergoes
binary coagulation and binary fragmentation events. More precisely, denoting by Cy the clusters
of size y with y ∈ R

+, the basic reactions taken into account herein are

(5) Cy + Cy′
a(y, y′)

−→ Cy+y′ , (binary coagulation)

and

(6) Cy
b(y − y′, y′)

−→ Cy−y′ + Cy′ , (binary fragmentation),

where a and b denote the coagulation and fragmentation rates respectively, and are assumed to
depend only on the size of the clusters involved in these reactions.

Thus, the coagulation-fragmentation operator is defined by

(7) Q(f) = Qc(f) −Qf(f),

where the coagulation operator is

(8) Qc(f)(x, y) =
1

2

∫ y

0
a(y′, y − y′) f(x, y′) f(x, y − y′) dy′ −

∫ ∞

0
a(y, y′) f(x, y) f(x, y′) dy′

whereas fragmentation mechanism by which a single particle splits into two pieces is given by

(9) Qf(f)(x, y) =
1

2

∫ y

0
b(y′, y − y′) dy′ f(x, y) −

∫ ∞

0
b(y, y′) f(x, y + y′) dy′.

The coagulation coefficient, a = a(y, y′), characterizes the rate at which the coalescence of two
particles with respective volumes y and y′ produces a particle of volume y + y′, whereas the
fragmentation coefficient, b = b(y, y′), represents the rate at which the fragmentation of one
particle with volume y + y′ produces two particles of volume y and y′. Both coefficients a and b
are nonnegative functions and

(10)







a(y, y′) = a(y′, y), b(y, y′) = b(y′, y),

a, b ∈ L∞
loc

(

R
+ × R

+
)

.

For symmetric kernels, we observe that during the microscopic coagulation and fragmentation
processes, as depicted in equations (5)-(6), the number of particles varies with time while the
total volume of particles is conserved.

In terms of f , the total number of particles and the total volume of particles at time t ≥ 0 are
respectively given by

M0(t, x) :=

∫

R+

f(t, x, y) dy, M1(t, x) :=

∫

R+

y f(t, x, y) dy.

Besides existence and uniqueness results, few is known on the qualitative behavior of solutions
of coagulation-fragmentation equations except when coagulation and fragmentation coefficients
are linked by the so called “detailed balanced condition” : there exists a nonnegative function
M ∈ L1(Ω × R

+, (1 + y)dxdy) such that

(11) a(y, y′)M(y)M(y′) = b(y, y′)M(y + y′), (x, y, y′) ∈ Ω × R
+ × R

+.

This condition implies that M is a stationary solution to the coagulation-fragmentation equation

d(y)∆xf + Q(f) = 0.
2



We further assume that, for each R ∈ R
+, the equilibrium M satisfies the positivity condition

(12) inf
y∈[0,R]

M(y) > 0.

An additional and interesting feature of the detailed balanced condition is that there exists an
entropy H given by

H(f |M) =

∫

Ω×R+

[

f(x, y)

(

ln

(

f(x, y)

M(y)

)

− 1

)

+ M(y)

]

dy dx,

which satisfies the following H theorem

dH

dt
= −1

2
D(f) −

∫

Ω×R+

(∇xf)2

f
(t, x, y) dy dx ≤ 0,

where the entropy dissipation of the coagulation-fragmentation operator is defined by

D(f) =

∫

Ω

∫

R+×R+

(

a f f ′ − b f ′′
) (

ln(a f f ′) − ln(b f ′′)
)

dy dy′ dx,

with the shorthand notation f := f(t, x, y), f ′ := f(t, x, y′) and f ′′ := f(t, x, y + y′). Since D(f)
only vanishes when f is an equilibrium, it naturally means that

f(t) −→ M, when t → ∞.

The main purpose of this work is to present a numerical scheme to solve (1) built upon a finite
volume discretization with respect to the space variable x ∈ Ω and volume variable y ∈ R

+. The
analysis of the so-obtained scheme would allow to prove the convergence of the discretized particle
density towards a solution to the continuous problem on a fixed time interval [0, T ] (T > 0), see for
instance [4], but here our aim is different. It will consist in the study of the long time behavior of
the numerical solution on a fixed mesh in space and volume variables. Indeed, often in applications
we are interested in steady states or in the long time behavior of the solution, it is then important
to design a numerical scheme, which has good stability properties uniformly in time and remains
consistent with respect to the exact solution for long time. Thus, the scheme proposed in this
paper is designed such that it preserves qualitative properties of the exact solution as steady
states of the coagulation-fragmentation operators (8)-(9). Moreover, an estimate of the entropy
dissipation due to an appropriate finite volume approximation with respect to space and volume
variables is given and the scheme is shown to give a consistent approximation of the continuous
problem in the long time asymptotic limit t → ∞.

Before describing more precisely our results, let us recall that the coagulation and fragmentation
equations (1) with (8)-(9) have been the object of several studies recently.

On the one hand, among the various approaches for the approximation of coagulation and
fragmentation models, we may distinguish between deterministic and Monte Carlo methods. We
refer for instance to [9, 12, 23] for deterministic methods, [2, 17] for stochastic methods, and the
references therein. Concerning the convergence analysis of numerical methods for coagulation
and fragmentation models, we refer to [22] for a rigorous study of quasi Monte-Carlo methods.
For deterministic approximations, the situation is different since the relationship between discrete
and continuous models has been considered by some authors, see the survey paper [8] and [1].
A rigorous setting for the formal analysis performed in [1] under general assumptions on the
coagulation and fragmentation coefficients has been given in [21]. Then, similar techniques are
used to prove convergence of discrete schemes to the exact solution in [4].
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However, few is known concerning the stability and the analysis of the numerical solution in
the long time asymptotic limit. For the continuous model, in reference [20], the authors are able
to apply the techniques of weak compactness, as in the paper by R.J. DiPerna and P.-L. Lions [7]
about the Boltzmann equation, to prove the weak stability of weak solutions. In the case when
an H-theorem holds, they can obtain some partial information about the large-time behavior of
solutions. More recently, J. A. Carrillo et al. prove exponential decay of the solution towards
equilibrium for the inhomogeneous Aizenman-Bak model [5] using entropy dissipation methods
[6]. Our analysis for discrete models will be inspired by these works.

We now briefly outline the contents of the paper. In the next section, we introduce the numerical
approximation of (1) and state the stability result which we prove in Section 3. In the final section
(Section 5), some numerical simulations are performed with the numerical scheme presented in
Section 2 and the long time behavior of the solution is investigated.

2. Numerical scheme and main results

In order to compute an approximation of this model using a finite volume method in space
variable x ∈ Ω and volume variable y ∈ R

+, we observe that the coagulation-fragmentation
operator can be written in a conservative form. Indeed, writing equation (1) in a “conservative”
form, as proposed in [26, 28], enables to describe precisely the time evolution of the total volume.
Also, this formulation is particularly well adapted to a finite volume discretization which, in
turn, is expected to give a precise account of volume conservation. Precisely, the coagulation and
fragmentation terms can be written in divergence form:



















yQc(f)(x, y) = −∂C(f)

∂y
(x, y),

yQf(f)(x, y) = −∂F(f)

∂y
(x, y),

where the operator C(f) is given by

C(f)(x, y) :=

∫ y

0

∫ ∞

y−u
u a(u, v) f(x, u) f(x, v) dvdu , (x, y) ∈ Ω × R

+,(13)

and F(f) is

F(f)(x, y) :=

∫ y

0

∫ ∞

y−u
u b(u, v) f(x, u + v) dvdu , (x, y) ∈ Ω × R

+.(14)

Finally, the coagulation-fragmentation equation reads














y
∂f

∂t
− d(y) y ∆xf = −∂ C(f)

∂y
+

∂ F(f)

∂y
,

f(0, x, y) = fin(x, y), (x, y) ∈ Ω,×R
+

(15)

and we assume that the initial datum fin is a nonnegative function which satisfies:

(16) fin ∈ L1(Ω × R
+) ∩ L1(Ω × R

+, ydxdy).

Here and below, the notation L1(Ω×R
+, ydxdy) stands for the space of the Lebesgue measurable

real-valued functions on Ω × R
+ which are integrable with respect to the measure ydxdy.
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When designing the volume discretization of the coagulation and fragmentation terms, it is
necessary to truncate the infinite integrals in formulae (13)-(14). But this means restricting the
domain of action of kernels a and b to a bounded set of volumes y, that is, preventing coagulation
to occur among particles with volume exceeding a fixed value. The discretization we propose is
based on the conservative truncation method for the coagulation and fragmentation terms. Given
a positive real R, let (x, y) ∈ Ω × (0, R)

CR(f)(x, y) :=

∫ y

0

∫ R−u

x−u
u a(u, v) f(x, u) f(x, v) dvdu ,

=

∫ y

0

∫ R

y
u a(u,w − u) f(x, u) f(x,w − u) dw du .(17)

In that case, CR(f)(x, 0) = CR(f)(x,R) = 0 foreach x ∈ Ω so that the total volume of the
solution is now nonincreasing with respect to time.

As regards the fragmentation term, the truncation is also a conservative truncation on the
fragmentation term. Using the same idea, we introduce for (x, y) ∈ Ω × (0, R)

FR(f)(x, y) :=

∫ y

0

∫ R−u

y−u
u b(u, v) f(x, u + v) dv du.

=

∫ y

0

∫ R

y
u b(u,w − u) f(x,w) dv du.(18)

Then, the conservative coagulation-fragmentation operator satisfies exactly the conservation of
total volume, so that the following equation is indeed a truncated conservative coagulation and
fragmentation equation:















y
∂fR

∂t
− d(y) y ∆xfR = − ∂CR(fR)

∂y
(x, y) +

∂FR(fR)

∂y
(x, y)

f(0, x, y) = fin(x, y), (x, y) ∈ Ω × (0, R),

(19)

since
d

dt

∫ R

0

∫

Ω
y fR(t, x, y) dx dy = 0.

Under the detailed balance condition (11), model (19) has also a steady state MR, only depending
on y and such that

MR(y) = M(y), y ∈ [0, R].

and
1

|Ω|

∫ R

0

∫

Ω
fin(x, y) dx dy =

∫ R

0
MR(y) dy.

Convergence for large values of R has been thoroughly studied in the recent past. We briefly
mention some results for the coagulation equation (that is, with b = 0). These results adapt easily
to the coagulation-fragmentation equation but under different assumptions on the kernels. Let us
mention that when a(y, y′)/(y y′) → 0 as y + y′ → +∞, convergence as R → +∞ of the solutions
to (19) toward a solution of (13)-(15) can be proven by using the approach developed in [21].
Thus, since the convergence of solutions to (19) towards solutions of (13)-(15) is well established
in rather general situations, this paper will only focus on the convergence of a sequence built on
a numerical scheme towards a solution to the equation (19) when the truncature R is fixed. In
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the remainder of the paper, for the sake of clarity, we drop the subscript R and write f instead
of fR for a solution of equation (19). Parameter R being fixed, this should raise no confusion.

Now, we turn to the discretization of equation (19). Having reduced the computation to a
bounded interval, the second step is to introduce the space and volume discretizations. To this
end, we set ∆y ∈ (0, 1) and Ny a large integer, and denote by (yi−1/2)i∈{0,...,Ny} a mesh of (0, R),
where yi−1/2 = i∆y, and Λi = [yi−1/2, yi+1/2) for i ≥ 0.

Concerning the space variable, we choose an admissible mesh of Ω given by a family T of control
volumes (open and convex polygons in 2-D), a family E of edges and a family of points (xK)K∈T

which satisfy Definition 5.1 in [11]. It implies that the straight line between two neighboring
centers of cells (xK , xL) is orthogonal to the edge σ = K|L. In the set of edges E , we distinguish
the interior edges σ ∈ Eint and the boundary edges σ ∈ Eext. For a control volume K ∈ T , we
denote by EK the set of its edges, Eint,K the set of its interior edges, Eext,K the set of edges of K
included in Γ = ∂Ω.

In the sequel, we denote by d the distance in R
N , m the measure in R

N . We assume that the
family of mesh considered satisfies the following regularity constraint : there exists ξ > 0 such
that

(20) d(xK , σ) ≥ ξ d(xK , xL), for K ∈ T , for σ ∈ Eint,K , σ = K|L.

The size of the mesh is defined by

(21) δ = max
K∈T

(diam(K)) .

For all σ ∈ E , we define the transmissibility coefficient:

τσ =



















m(σ)

d(xK , xL)
, for σ ∈ Eint, σ = K|L,

m(σ)

d(xK , σ)
, for σ ∈ Eext,K .

Next, X(T ) will be the set of functions from Ω to R which are constant over each control volume
K ∈ T .

We define the approximation fh(0) of the initial datum f in as usual by

(22) fh(0) =

Ny
∑

i=0

∑

K∈T

f in
K,i 1K×Λi

,

with

f in
K,i =

1

m(K)∆y

∫

Λi

∫

K
f in(x, y) dx dy ,

where 1E denotes the characteristic function of the subset E of Ω and converges strongly to f0

in L1(Ω × (0, R)) as h = (∆y, δ) goes to 0.
Let us now introduce the numerical scheme itself. For each integer i ∈ {0, · · · , Ny} and each

K ∈ T , we define the approximation of f(t, x, y) for t ∈ R
+ and (x, y) ∈ K × Λi as fK,i(t).

The sequence (fK,i)K,i is defined by the following discretization of the coagulation-fragmentation
6



equation : for K ∈ T , i ∈ {0, . . . , Ny}, we solve the ordinary differential system

(23)



















m(K)
dfK,i

dt
− d(yi−1/2)

∑

σ∈EK

τσ DK,σfK,i = m(K)QK,i,

fK,i(0) := f in
K,i.

We have set

(24) QK,i = −
CK,i+1/2 − CK,i−1/2

yi−1/2 ∆y
+

FK,i+1/2 −FK,i−1/2

yi−1/2 ∆y

where the flux CK,i+1/2 in (24) represents an approximation of the coagulation operator (17),
FK,i+1/2 is the approximation of the fragmentation part (18) and both are defined by

CK,i+1/2 =

i
∑

j=0

Ny−1
∑

l=i+1

∆y2 yj−1/2 aj,l−j fK,j fK,l−j,(25)

where ai,j := a(yi, yj) with yi = (i + 1/2)∆y and

FK,i+1/2 =

i
∑

j=0

Ny−1
∑

l=i+1

∆y2 yj−1/2 bj,l−j fK,l,(26)

where bi,j := b(yi, yj) whereas the fluxes at the boundary are

CK,−1/2 = FK,−1/2 = CK,Ny+1/2 = FK,Ny+1/2 = 0, K ∈ T .(27)

Concerning the approximation of the diffusion in space, we set νK,σ the unit normal to σ outward
from K and define an approximation of ∇xf · νKσ on σ by

(28) DK,σfK,i =

{

fL,i − fK,i, if σ = K|L ∈ Eint,K ,
0, if σ ∈ Eext,K ,

for all K ∈ T . This discretization obviously relies on a simple finite volume approach for the
space and volume variables (see, e.g. [4]).

The following function fh defined on R
+ × Ω × [0, R] will be useful in the sequel.

(29) fh(t, x, y) =
∑

K∈T

Ny
∑

i=0

fK,i(t)1K×Λi
.

We may now state our main result.

Theorem 2.1. Assume that the coagulation and fragmentation kernels satisfy (4), (10) and (12)
and fin satisfies (16). We consider a uniform volume mesh in y and require the mesh T in space
to satisfy condition (20), (21).

Then, there exists a unique solution fh to the finite volume scheme (23)-(28), which satisfies

(i) nonnegativity

fK,i(t) ≥ 0, (K, i) ∈ T × {0, . . . , Ny}, t ∈ R
+,
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(ii) conservation of total volume

d

dt





∑

K,i

m(K)∆y yi−1/2 fK,i(t)



 = 0, ∀ t ∈ R
+,

(iii) entropy dissipation

dH(fh|M)

dt
+ ∆y

∑

K,i

∑

σ∈EK

d(yi−1/2)τσ DK,σfK,i ln

(

fK,i

Mi

)

= −D(fh),

where

H(fh|M) =
∑

K,i

m(K)∆y

[

fK,i

(

ln

(

fK,i

Mi

)

− 1

)

+ Mi

]

and

D(fh) =
1

2

∑

K,i

i
∑

l=0

∆y2 m(K) (al,i−l fK,l fK,i−l − bl,i−l fK,i)

[

ln

(

al,i−l fK,l fK,i−l

bl,i−l fK,i

)]

.

(iv) Moreover, the finite volume scheme is asymptotic preserving i.e.

fh(t) −→ Mh, as t −→ ∞.

where

Mh(x, y) = Mi := exp(−αyi), ∀(x, y) ∈ K × [yi−1/2, yi+1/2)

and α ∈ R
+ is such that

∑

K∈T

Ny
∑

i=0

m(K)yi−1/2Mi =
∑

K∈T

Ny
∑

i=0

m(K)yi−1/2f
in

K,i.

3. A priori estimates

As we mentioned in the introduction, our goal is not to prove that the sequence of functions
(fh)h converges in some sense to a function f as h = (∆y, δ) goes to 0, but to study the long
time behavior of the numerical solution and to prove its uniform stability with respect to time.
First, we prove that the solution fh to the scheme (23)-(27) enjoys properties similar to those of
function f given by (19) which we gather in Proposition 3.2 below.

On the one hand, we first re-write the discrete coagulation-fragmentation obtained form the
conservative form (19) in a new form which is consistent with the classical formulation (7)-(9).
On the other hand, we find a discrete version of the weak formulation from which we prove a
priori estimates.

Proposition 3.1. Assume the approximation of the coagulation-fragmentation model (17)-(19)
is given by the finite volume scheme (23)-(28). Then, the discrete operator satisfies

QK,i = −
CK,i+1/2 − CK,i−1/2

yi−1/2 ∆y
+

FK,i+1/2 −FK,i−1/2

yi−1/2 ∆y
8



with

QK,i =
1

2

i
∑

j=0

∆y (aj,i−j fK,j fK,i−j − bj,i−j fK,i)(30)

−
Ny−1
∑

j=i

∆y (ai,j−i fK,i fK,j−i − bi,j−i fK,j)

Proof: Starting from the definition of the fluxes (25) and (26), we set

QK,i = −
CK,i+1/2 − CK,i−1/2

yi−1/2 ∆y
+

FK,i+1/2 −FK,i−1/2

yi−1/2 ∆y

and by construction

yi−1/2 QK,i = −
i
∑

j=0

Ny−1
∑

l=i+1

∆y yj−1/2 (aj,l−j fK,j fK,l−j − bj,l−j fK,l)

+

i−1
∑

j=0

Ny−1
∑

l=i

∆y yj−1/2 (aj,l−j fK,j fK,l−j − bj,l−j fK,l) ,

which can be easily simplified into

yi−1/2 QK,i = −
Ny−1
∑

l=i+1

∆y yi−1/2 (ai,l−i fK,i fK,l−i − bi,l−i fK,l)

+

i−1
∑

l=0

∆y yl−1/2 (al,i−l fK,l fK,i−l − bl,i−l fK,i) .

Then, adding and subtracting the term yi−1/2 (ai,0 fK,0 fK,0 − bi,0 fK,i), we get

yi−1/2 QK,i =
i
∑

l=0

∆y yl−1/2 (al,i−l fK,l fK,i−l − bl,i−l fK,i)

−
Ny−1
∑

l=i

∆y yi−1/2 (ai,l−i fK,i fK,l−i − bi,l−i fK,l) .

Hence, it only remains to treat the first term of the right hand side: we compute for a symmetric
sequence gi,j such that gi,j = gj,i for each (i, j) ∈ {0, · · · , Ny}2

i
∑

l=0

l gl,i−l =

i
∑

l=0

i gl,i−l −
i
∑

l=0

(i − l) gl,i−l

=

i
∑

l=0

i gl,i−l −
i
∑

l=0

l gi−l,l.

Thus, using the symmetry gi−l,l = gl,i−l we finally get

1

2

i
∑

l=0

i gl,i−l =

i
∑

l=0

l gl,i−l.

9



Therefore, with yi−1/2 = i∆y and taking successively gi,j = ai,j fK,i fK,j and gi,j = bi,j, it yields
the result

QK,i =
1

2

i
∑

l=0

∆y (al,i−l fK,l fK,i−l − bl,i−l fK,i)

−
Ny−1
∑

l=i

∆y (ai,l−i fK,i fK,l−i − bi,l−i fK,l) .

�

Next, we prove the following estimates

Proposition 3.2. Assume the approximation of the coagulation-fragmentation operator (17)-
(18) is given by the finite volume scheme (25)-(26). Then, for each K ∈ T the discrete operator
(QK,i)0≤i≤Ny satisfies a discrete weak formulation : for any sequence (ϕi)0≤i≤Ny and for each
K ∈ T

(31)

Ny−1
∑

i=0

∆yQK,i ϕi = −1

2

Ny−1
∑

i=0

i
∑

l=0

∆y2 (al,i−l fK,l fK,i−l − bl,i−l fK,i) (ϕl + ϕi−l − ϕi)

Proof: We multiply (30) by ∆y ϕi and sum over i ∈ {0, · · · , Ny − 1} to get

Ny−1
∑

i=0

∆yQK,i ϕi = ∆y2 (I1 − I2) ,(32)

with

I1 =
1

2

Ny−1
∑

i=0

i
∑

j=0

(aj,i−j fK,j fK,i−j − bj,i−j fK,i) ϕi

I2 =

Ny−1
∑

i=0

Ny−1
∑

j=i

(ai,j−i fK,i fK,j−i − bi,j−i fK,j) ϕi.

We keep the first term I1 as it is and only treat the term I2. First, we commute indexes (i, j) and
then perform a change of index on I2 which yields

I2 =

Ny−1
∑

j=0

j
∑

i=0

(ai,j−i fK,i fK,j−i − bi,j−i fK,j) ϕi

=

Ny−1
∑

i=0

i
∑

l=0

(ai−l,l fK,i−l fK,l − bi−l,l fK,i) ϕi−l.(33)

Using the symmetry ai,j = aj,i and bi,j = bj,i for each (i, j) ∈ {0, · · · , Ny − 1}, we also have that

(34) I2 =

Ny−1
∑

i=0

i
∑

l=0

(al,i−l fK,l fK,i−l − bl,i−l fK,i) ϕl.

10



Finally, gathering (32)-(34), we get the result

Ny−1
∑

i=0

∆yQK,i ϕi = −1

2

Ny−1
∑

i=0

i
∑

l=0

∆y2 (al,i−l fK,l fK,i−l − bl,i−l fK,i) (ϕl + ϕi−l − ϕi) .

�

Now we are ready to prove Theorem 2.1.

4. Proof of Theorem 2.1

We assume that the kinetic and diffusion coefficients fulfil (4), (10) and (12), respectively, and
that a and b are positive a.e. in R

+ × R
+. We are also given an initial datum fin satisfying (16)

and denote by fh the solution to (23) constructed in (24)-(26).
On the one hand, existence and uniqueness of a solution to

(35)
dfK,i

dt
− d(yi−1/2)

∑

σ∈EK

τσ DK,σfK,i = m(K)QK,i,

directly follows by applying the classical Cauchy-Lipschitz theorem for a finite set of ordinary
differential equations. Existence of a global solution will be a consequence of the following uniform
estimates with respect to time.

On the other hand, since the discrete distribution function is solution to (35), the nonnega-
tivity of fh(t) follows from the monotonicity of the discrete operator

∑

σ∈EK
τσ DK,σfK,i and the

structure of the discrete coagulation-fragmentation operator (30) written as the sum of a gain
operator and a local loss term.

Next, we prove the total volume conservation

(36)
d

dt

Ny−1
∑

i=0

∑

K∈T

m(K)∆y yi−1/2 fK,i(t) = 0.

Indeed; we multiply (35) by ∆y yi−1/2 and sum over (K, i) ∈ T × {0, . . . , Ny − 1}
d

dt

∑

K,i

m(K)∆y yi−1/2 fK,i(t) = −1

2

∑

K,i

∆y d(yi−1/2)
∑

σ∈EK

τσ DK,σfK,iDK,σ(yi−1/2)

+
∑

K,i

m(K)∆yQK,iyi−1/2.

Thus using a discrete integration by part, we prove that the first term of the right hand side is
zero, whereas applying Proposition 3.2 with ϕi = yi−1/2, it also gives that

∑

K,i

m(K)∆yQK,iyi−1/2 = 0,

which concludes the proof of (ii).
Now, let us prove the stabilization towards an equilibrium in the long time when the kinetic

coefficients a and b satisfy the detailed balance condition (11). As mentioned in the introduction
the detailed balance condition (11) ensures an analogue of the Boltzmann H-theorem for the

11



coagulation-fragmentation equations which we derive now for the discrete solution to (23). We
set

H(fh|M) =
∑

K,i

m(K)∆y

(

fK,i

(

ln

(

fK,i

Mi

)

− 1

)

+ Mi

)

and take in the discrete weak formulation (31), the test function ϕ such as ϕi = ln(fK,i/Mi) with
Mi = M(yi−1/2) and noticing that

dH

dt
(fh) =

∑

K,i

m(K)∆y
dfK,i

dt
ln

(

fK,i

Mi

)

,

and recalling (31) with ϕi = ln(fK,i/Mi), we obtain

dH

dt
(fh) + ∆y

∑

K,i

∑

σ∈EK

d(yi−1/2)τσ DK,σfK,i ln

(

fK,i

Mi

)

= −∆y
∑

K,i

m(K)QK,i ln

(

fK,i

Mi

)

,

which yields

(37)
dH

dt
(fh) + ∆y

∑

K,i

∑

σ∈EK

d(yi−1/2) τσ
(DK,σfK,i)

2

fK|L,i
= −D(fh),

with fK|L,i = (fK,i − fL,i)/(ln(fK,i/fL,i)) > 0. Then, we treat the right hand side using the
detailed balance condition (11) and get

D(fh) =
1

2

∑

K,i

i
∑

l=0

∆y2 (al,i−l fK,l fK,i−l − bl,i−l fK,i)

[

ln

(

al,i−l fK,l fK,i−l

bl,i−l fK,i

)]

,

which proves (iii).
Now, we study the long time asymptotic behavior of the numerical solution fh. To this aim

we establish the following estimates

Lemma 4.1. The numerical solution fh satisfies the following uniform estimates with respect to
time t ∈ R

+ : there exists κ0 > 0 such that
∑

K,i

m(K)∆y (1 + yi−1/2) fK,i(t) + H(fh(t)|M) ≤ κ0.

Moreover, for all t ∈ R
+, we have

(38) ∆y

∫ t

0





Ny
∑

i=0

∑

σ∈Eint

d(yi−1/2)
1/2 m(σ) |DfK,i,σ(s)|





2

ds ≤ κ0.

and

(39) ∆y2

∫ t

0

∑

K,i

i
∑

l=0

(al,i−l fK,l fK,i−l − bl,i−l fK,i)

[

ln

(

al,i−l fK,l fK,i−l

bl,i−l fK,i

)]

ds ≤ κ0,
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Proof: Using the total volume conservation and the entropy dissipation, we have already proven
that

∑

K,i

m(K)∆y yi−1/2 fK,i(t) + H(fh(t)|M) ≤ C0.

It remains to show that there exists a constant C0 > 0, only depending on the initial datum f in

and M , such that

(40)
∑

K,i

m(K)∆y fK,i(t) ≤ C0.

Indeed, on the one hand we notice that

∑

K,i

m(K)∆y fK,i(t) ≤ e2
∑

K,i

m(K)∆y 1{fK,i(t)≤e2 Mi} Mi

+
1

2

∑

K,i

m(K)∆y 1{fK,i(t)>e2 Mi} fK,i

∣

∣

∣

∣

ln

(

fK,i(t)

Mi

)∣

∣

∣

∣

,

≤ e2
∑

K,i

m(K)∆y Mi

+
1

2

∑

K,i

m(K)∆y fK,i

∣

∣

∣

∣

ln

(

fK,i(t)

Mi

)∣

∣

∣

∣

.

On the other hand, observing that r ln(r) ≥ r | ln(r)| − 2/e for r > 0, we have

fK,i ln

(

fK,i

Mi

)

≥ fK,i

∣

∣

∣

∣

ln

(

fK,i

Mi

)∣

∣

∣

∣

− 2Mi

e
,

hence it gives

∑

K,i

m(K)∆y fK,i

∣

∣

∣

∣

ln

(

fK,i(t)

Mi

)∣

∣

∣

∣

≤
∑

K,i

m(K)∆y fK,i ln

(

fK,i(t)

Mi

)

+
2

e

∑

K,i

m(K)∆y Mi,

≤ H(fh|M) +
∑

K,i

m(K)∆y

(

fK,i +
2

e
Mi

)

.

Combining the two inequalities yields

1

2

∑

K,i

m(K)∆y fK,i(t) ≤
(

e2 +
1

e

)

∑

K,i

m(K)∆y Mi +
1

2
H(fh(t)|M),

≤
(

e2 +
1

e

)

∑

K,i

m(K)∆y Mi +
1

2
H(fh(0)|M) =: C0.

13



Next, let us prove (39). We start with the entropy estimates (37), which we integrate with
respect to time t ∈ R

+, it gives

H(fh(t)|M) +

∫ t

0
∆y

∑

K,i

∑

σ∈EK

d(yi−1/2) τσ
(DK,σfK,i)

2

fK|L,i
ds +

∫ t

0
D(fh(s))ds

≤ H(fh(0)|M).

Then, since H is a convex function, we know that H(fh(t)|M) is bounded from below and we
get the result (39).

Finally, we show there exists C0 >, only depending on f in and M , such that

(41)

∫ t

0







Ny
∑

i=0

∑

σ∈Eint
σ=K|L

m(σ) d(yi−1/2)
1/2 |DfK,i,σ(s)|







2

ds ≤ C0, ∀ t ∈ R
+.

To this aim, we start with the Cauchy-Schwarz inequality

Ny
∑

i=0

∑

σ∈Eint
σ=K|L

m(σ) d(yi−1/2)
1/2 |DfK,i,σ|,

≤







Ny
∑

i=0

∑

σ∈Eint
σ=K|L

τσ d(yi−1/2)
|DfK,i,σ|2

fK|L,i







1/2 





Ny
∑

i=0

∑

σ∈Eint
σ=K|L

m(σ)d(xK , xL) fK|L,i







1/2

.

Applying (20) and (36), (37), it follows that







Ny
∑

i=0

∑

σ∈Eint
σ=K|L

∆y m(σ) d(yi−1/2)
1/2 |DfK,i,σ|







2

≤ 2

ξ







Ny
∑

i=0

∑

σ∈Eint
σ=K|L

∆y τσ d(yi−1/2)
|DfK,i,σ|2

fK|L,i











Ny
∑

i=0

∑

K∈T

∆y m(K) fK,i



 ,

≤ 2C0

ξ







Ny
∑

i=0

∑

σ∈Eint
σ=K|L

∆y τσ d(yi−1/2)
|DfK,i,σ|2

fK|L,i






.

Then, for each t ∈ R
+ we integrate the latter inequality with respect to time over the interval

[0, t], and use the entropy dissipation (37) which guarantees that the right hand side is uniformly
bounded with respect to time. �

Now, we prove that the numerical solution converges to a steady state. Let (tn)n≥0 be a
sequence of positive real numbers such that tn → +∞ and set fn(t) = fh(tn + t) for n ≥ 1 and
t ∈ R

+. Owing to the construction of fn, it is easily seen that fn is a weak solution to (23)-(27)
14



on [0,+∞) with initial datum fh(tn). We fix T ∈ R
+ and infer from above that

sup
t∈[0,T ]

∑

K,i

m(K)∆y (1 + yi) fn
K,i(t) + H(fn(t)|M) ≤ κ0.

Moreover, by construction of fn and applying Lemma 4.1, it implies that

∆y

∫ T

0

Ny
∑

i=0

∑

σ∈Eint

d(yi−1/2)
1/2 m(σ) |Dfn

K,i,σ(t)| dt(42)

≤ ∆y

∫ tn+T

tn

Ny
∑

i=0

∑

σ∈Eint

d(yi−1/2)
1/2 m(σ) |DfK,i,σ(t)| dt

−→
n → ∞ 0.

and

∆y2

∫ T

0

∑

K,i

i
∑

l=0

(

al,i−l f
n
K,l f

n
K,i−l − bl,i−l f

n
K,i

)

[

ln

(

al,i−l f
n
K,l f

n
K,i−l

bl,i−l f
n
K,i

)]

dt(43)

≤ ∆y2

∫ tn+T

tn

∑

K,i

i
∑

l=0

(al,i−l fK,l fK,i−l − bl,i−l fK,i)

[

ln

(

al,i−l fK,l fK,i−l

bl,i−l fK,i

)]

dt

−→ 0, as n → ∞.

Thanks to theses estimates, we deduce that there are a subsequence of (fn)n∈N (not relabeled)
and a weak solution f̄ to (23)-(27) such that

(44) fn → f̄ , inC([0, T ]), as n → +∞.

Moreover, passing to the limit in (30), it easily follows that

(45) QK,i(f
n) −→ QK,i(f̄), in L1(0, T ), as n → +∞.

and passing to the limit in the discrete diffusion operator, we get

(46) d(yi−1/2)
∑

σ∈EK

τσ Dfn
K,i,σ −→ d(yi−1/2)

∑

σ∈EK

τσ Df̄K,i,σ in L1(0, T ), as n → +∞.

On the one hand, we use (43) and (44) to conclude that

D(f̄) = 0, a.e. in (0, T ).

Consequently, f̄ satisfies
ai,j f̄K,i(t) f̄K,j(t) = bi,j f̄K,i+j(t),

for almost every t ∈ (0, T ) and each (K, i, j) ∈ T × {0, . . . , Ny}2. In particular, it implies that

QK,i(f̄(t)) = 0, (K, i, j) ∈ T × {0, . . . , Ny}2.

On the other hand, (42) and (46) ensure that

(47) DK,σf̄K,i = 0, (K, i, σ) ∈ T × {0, . . . , Ny} × E
for almost every t ∈ (0, T ). Therefore, f̄(t) does not depend on time and satisfies the steady
states equation (23). Moreover, using the zero flux boundary conditions (3) and (47), f̄ does
not depend on K ∈ T . Recalling that the differential equation (23) conserves global volume, we
conclude there is α ∈ R

+ such that

f̄K,i := Mi, a.e. in (0, T ),
15



where
Ny−1
∑

i=0

∑

K∈T

∆y m(K) yi−1/2Mi =

Ny−1
∑

i=0

∑

K∈T

∆y m(K) yi−1/2f
in

K,i.

5. Numerical simulations

This section is devoted to the numerical study of the convergence to equilibrium under the
detailed balance condition and when this condition is not satisfied. We also investigate numerically
the case with non homogeneous Dirichlet boundary conditions.

5.1. Detailed balance kernels and convergence to equilibrium. We assume that the co-
agulation and fragmentation coefficients fulfil the detailed balance condition: there exists a non-
negative function M ∈ L1

1(R
+ × R

+), such that

(48) a(y, y′)M(y)M(y′) = b(y, y′)M(y + y′), (y, y′) ∈ R
+ × R

+.

Since in that case there exists a Lyapunov functional H at the discrete level, we have proven that
the numerical solution fh converges to a discrete equilibrium Mh. Here, we choose kernels a and
b as follows:

a(y, y′) = b(y, y′) = 1,

which yields M(y) = exp(−y/
√

M1). It is the Aizenman-Bak model for reacting polymers which
diffuse in space with a non degenerate size-dependent coefficient d(y) = α > 0. In [5], the authors
demonstrate that the entropy-entropy dissipation methods developed by Desvillettes and Villani
for the Boltzmann equation [6] applies directly and gives the exponential convergence with explicit
rates towards global equilibrium for constant diffusion coefficient in any spatial dimension or for
the non degenerate diffusion in dimension one. Thuerefore, the global equilibrium is given by

M(y) = exp(−y/
√

M1), y ∈ R
+,

where the number M1 is given by

M1 :=
1

|Ω|

∫

Ω

∫

R+

y fin(x, y) dx dy,

and M satisfies

d(y)∆xM + Q(M) = 0.

On the other hand, the local equilibrium Mloc is

Mloc(x, y) = exp(−y/
√

M1(x))

where the function x ∈ Ω → M1(x) ∈ R
+ is given by

M1(x) :=

∫

R+

y f(t, x, y) dy,

and Mloc satisfies

Q(Mloc) = 0.

The relative entropy H(f |M) can be split in two different parts

(49) H(f |M) = H(f |Mloc) + H(Mloc|M),

where the first term in the right-hand side represents the “distance” between f and the local
equilibrium whereas the second term evaluates the distance between the local and global equilibria
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(a) (b)

Figure 1. Evolution of (a) the total number of particles M0, the total volume M1,
M2 and M3 (b) the functional H(f |M), H(f |Mloc) and H(Mloc|M) in log scale.

and only depends on the macroscopic quantity M1. In the following we present some numerical
results. As an initial datum, we take

fin(x, y) = exp(−α(x) y),

with α(x) = 1 + 0.1 cos(2π x1) cos(2π x2) and x = (x1, x2) ∈ (−1/2, 1/2)2 . The diffusion is taken
to be constant d(y) = 0.1, R = 20, Ny = 64 and next 128 and finally ∆t = 0.002.

Let us first mention that in [14, 15] a similar problem i.e.; trend to equilibrium of the solution
to the nonhomogeneous Boltzmann equation, is investigated numerically. It is shown that the
relative entropy with respect to the local equilibrium oscillates with time when the solution
becomes close to the equilibrium. Here, we will show that the situation is completely different
and much simpler.

In Figure 1, we report the evolution of the total number of particles M0, the high order mo-
ments in y of fh with respect to time and the Lyapunov functional H(f |M). As expected, the
total volume M1(t) remains constant throughout time evolution and the moments stabilize to a
fixed value. As regards the asymptotic profile, our numerical results are in fair agreement with
the equilibrium M(x) = exp(−x). Moreover, we observe that the scheme is able to give the
correct behavior of the numerical entropy H(f |M), which converges exponentially fast to zero [5].
However, we observe that trend to equilibrium for the coagulation-fragmentation with diffusion is
much more simpler than trend to equilibrium for the Boltzmann equation [14] since no oscillation
occurs for the relative entropy H(f |Mloc). Indeed, after a short transient regime, the solution f
converges to equilibrium as an exponential with respect to time.

5.2. Convergence to equilibrium for not detailed balance kernels. After this first result,
we now explore a different situation where nothing is known about equilibrium and entropy

17



(a) (b)

Figure 2. Evolution of (a) the total number of particles M0, the total volume M1,
M2 and M3 (b) the functional H(f |M), H(f |Mloc) and fh(t ≃ ∞, y) in log scale.

dissipation. Indeed, we choose kernels a and b as follows:

a(y, y′) = (y y′)1/2, b(y, y′) = 1.

The situation becomes much more complicated since we do not know neither the expression of
the steady state nor the expression of entropy. As an initial datum, we take

fin(x, y) = exp(−α(x) y),

with α(x) = 1+0.5 cos(4π x1) cos(4π x2) and x = (x1, x2) ∈ [−1/2, 1/2]2. Moreover, the diffusion
is taken to be

d(y) = 0.1/(1 + y),

which is degenerated for large y. We choose the truncation such that R = 20, Ny = 64 and
next 128 and finally ∆t = 0.002. In Figure 2, we still report the evolution of the total number
of particles M0 and other high order moments in y of fh, that is M1, M2 and M3. As expected,
the total volume M1(t) remains constant throughout time evolution, whereas high order moments
vary and next stabilize to a fixed value, which means that the solution converges to a steady state.
In the same figure (right hand side), we also report the distribution function with respect to y in
log scale for large time, which indicates that the tail with respect to y of the steady state f̄ is
still exponentially decreasing and f̄ is of course constant in x ∈ Ω.

5.3. Convergence to equilibrium for non homogeneous boundary conditions. In this
last section, we study the coagulation-fragmentation operator with diffusion in space and mixed
boundary conditions in x ∈ Ω. More precisely, we aim to approximate the solution in Ω =
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(0, 1/8) × (0, 1) to










































∂f

∂t
− d(y)∆xf = Q(f), ,

f(t = 0, x, y) = fin(x, y), (x, y) ∈ Ω × R
+,

f(t, x1 = 0, x2, y) = exp (−y/α̃(x2)) , (x2, y) ∈ ∂Ω × R
+,

∇xf · ν(x) = 0, x1 = 1/8, or x2 = 0, or x2 = 1,

with α̃(x2) = (1 + cos(4πx2))/2 and ν the external unit normal to ∂Ω.
We consider an initial condition, which is at equilibrium for the coagulation fragmentation

operator

fin(x, y) = exp(−y/α(x)), (x, y) ∈ Ω × R
+,

with α(x) = (1 + cos(32π x1) cos(4π x2))/2.
We perform numerical simulations using the finite volume scheme with diffusion coefficient

d(y) = 0.01/(1 + y) and a = b ≡ 1. The following figures (Fig 3, 4 and 5) are illustrations of the
profile of the number of particles M0(t, x) and total volume M1(t, x) for t ∈ R

+ and x ∈ Ω and
also the projections

P (t, x2, y) =

∫ 1/8

0
y f(t, x, y)dx1, x2 ∈ (0, 1), y ∈ R

+.

It allows us to observe the qualitative behavior of the system. The profiles are in that case smooth
and also converges to an equilibrium. For such a computations we have considered Ny = 64 and
128 × 128 grid points for the space variable x ∈ Ω. In this situation, we cannot characterize
explicitly the equilibrium in space since the diffusion coefficient is not constant and H is not
valid here due to the Dirichlet boundary conditions for x1 = 0 and then the total volume is not
preserved at all. However, we still observe that the numerical solution converges to a discrete
equilibrium (see Fig. 3-5).

6. Conclusion

In this paper, we make use of different principles (volume conservation, entropy dissipation,
existence of steady states) which allow to build a stable and accurate numerical scheme for the
nonlinear dynamics of coagulation, fragmentation and diffusion equations. Such an algorithm is
able to recover the main properties of the exact solution and in some particular cases, it is proven
that the method is asymptotically stable, in the sense that the numerical solution converges to an
equilibrium which is consistent with the exact equilibrium of the system. Numerical simulations
illustrate the efficiency of the algorithm even when we cannot prove convergence to equilibrium.

Here, we have only considered the time evolution of a distribution function, but the method
can be easily coupled with Euler or Navier-Stokes equations after some adaptations. Typical
applications are transport problems (including linear and nonlinear diffusion or fluid dynamics),
which are coupled with population balance dynamics represented by a distribution function f
depending on space x ∈ Ω and “size” variable y ∈ R

+.
On the other hand, for some coagulation and fragmentation kernels [12, 4], total volume is not

conserved at all and then a non conservative formulation can be used to dicretize the coagulation
and fragmentation operators using the same kind of finite volume scheme. Then, the finite volume
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Figure 3. Time evolution of the density M0(x) at time t = 0; 0.33; 0.66 and 4

approach allows to use non uniform meshes for the volume variable y ∈ R
+, which is particularly

well suited in this case [12].
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