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Abstract 

This work is an extension of the incomplete probability theory from the simple case of 

monofractals previously studied to the more general case of multifractals which can occur in the 

phase space without equiprobable partition.   
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1) Introduction 

The incomplete probability distribution (IPD) has been proposed for the case where the 

probability cannot be normalized, i.e., 1
1

≠∑
=

w

i
ip . For a class of IPD, we have suggested the 

following incomplete normalization (IN)[1]: 

1
1

=∑
=

w

i

q
ip  (1) 

The reader can find discussion of the various reasons for the existence of this nonadditive or 

unnormalizable probability distribution in the references [1][3][4][5][6][7].  

One of the cases for which IN is suggested is the chaotic systems evolving in phase space 

having fractal attractors [2][3][4]. In our previous papers[3][4], IN was studied on monofractals 

having homogeneous distribution of segments of same length such as the standard Cantor set in 

Figure 1. This set is constructed by iteration. At the kth iteration, the initial line of length L0 is 

transformed into a set with Nk = 2k segments of length 03
1 L

k

kki ⎟
⎠
⎞

⎜
⎝
⎛=δ=δ  (i = 1, 2, …, Nk are in the 

order say from left to the right). To understand the link between this structure evolution and the 

probability distribution of nonequilibrium systems, we can consider an ensemble of chaotic systems 

which evolve in their phase space[8] and are gradually attracted in a fractal structure (strange 

attractor) formed by their trajectories. At the same time, the occupied phase volume gradually maps 

into these attractors. To illustrate this evolution, let us take the example of a phase attractor in the 

form of the Cantor set of Figure 1. Suppose L0 is the volume of the initial states, the total occupied 

volume at a later time tk of the kth iteration is 03
2 LNL

k

kkk ⎟
⎠
⎞

⎜
⎝
⎛=δ= . If all the state points are 

equally probable, the usual definition of probability that a segment of length kiδ  is visited by the 

system is given by 
k

ki
ki L

P
δ

= . This probability can be normalized as follows : 
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Figure 1, Standard Cantor set (m = 2, ρ = 1/3) built at iteration orders from k = 0 

to k = 4. At first iteration, the total length of the curve is 01 3
2 LL ⎟
⎠
⎞

⎜
⎝
⎛=  with N1 = 2 

segments of length 01 3
1 L⎟
⎠
⎞

⎜
⎝
⎛=δ  ; at second iteration, 0

2

2 3
2 LL ⎟
⎠
⎞

⎜
⎝
⎛=  with N2 = 22 

segments of length 0

2

2 3
1 L⎟
⎠
⎞

⎜
⎝
⎛=δ , etc. 

 

The probability defined in Eq.(2) is scientifically sound and in agreement with the 

probability theory. Its only drawback is that it is not convenient for describing physical systems out 

of equilibrium. If the system is in equilibrium at a stage k, the above definition of probability is 

reasonable and sufficient for the statistical description of the equilibrium state on the total phase 

volume Lk. However, if the system is out of equilibrium and Lk is only an intermediate phase 

volume changing in time, it will be more convenient, in order to take into account the time 

evolution of the distribution, to define the probability finding a system in kiδ  with respect to the 

initial volume L0[1][3] , i.e., 

0L
p ki

ki
δ

= . 
(3) 

This probability not only gives us the nonequilibrium distribution at any moment but also the 

evolution of the distribution with respect to the initial conditions. Notice that this probability is not 

normalizable since we have 1
00

1

1

≠=
δ

=
∑

∑ =

= L
L

L
p k

N

i
kiN

i
ki

k

k
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In our previous work[3], it was shown that, for the case of self-similar monofractal, the 

probability of Eq.(3) can be normalized by : 

1
1

=∑
=

kN

i

q
kip  

(4) 

for any stage k with a unique q = d, where d is the self-similarity dimension of the monofractals 

(see definition below). The parameter q characterizes the evolution of the phase space. When q < 1, 

the phase volume shrinks in time, when q > 1, there is phase space expansion. The normalization 

becomes complete for q = 1 without evolution of distribution. Eq.(4) has been derived on 

monofractals having segments of same length such as in Figure 1. It was only conjectured[3] that 

the same calculation would hold for multifractals which in general contain segments of different 

lengths, but no proof has been given. 

In this work, it will be shown that Eq.(4) holds for any multifractal with self-similar 

structure having the same iteration rule at each stage. In order to be clear for the readers who have 

not followed the previous work, we will begin by the simplest case of homogeneous monofractals. 

More complicated cases with different segments will be analyzed first with two segments of 

different lengths replacing a segment of precedent stage, and then with an arbitrary number m of 

different segments. Proof for the uniqueness of q will also be given. 

2) Monofractals 

In this section, we recapitulate some essential results obtained previously for the case of 

monofractals. Let us consider a deterministic mass fractal form F such as the usual Cantor set on 

Figure 1. Let Fk be the intermediate kth stage of construction. When the initiator F0 is a segment of 

length L0, F1 is defined by N1 = m copies of F0 with same scale factor ρ. We suppose that two 

different copies never intersect. At the kth stage, Fk is composed of Nk = mk segments of same 

length 0Lk
kki ρ=δ=δ . The total length of the kth stage Fk form is given by : 

( ) 0
1

LmNL k
kk

N

i
kik

k

ρ=δ=δ= ∑
=

 
(5) 

The notion of self-similar dimension is defined from the idea of fractal content of order α of the 

form Fk : 
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( ) αααα
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α
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(6) 

The fractal similarity dimension d is derived from the behavior of the content in the k → +∞ 

limit : 

⎪⎩

⎪
⎨
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(7) 

In the monofractal case, 1=ρdm  so that 
)/1ln(

ln
ρ

md = . 

Now let us consider two approaches leading to two different measures. 

First we only look at the stage k and choose a point M on Fk. As Fk is composed of Nk segments, M 

belongs to one of these segments. As mentioned above and used in many textbooks[8], the measure 

k

ki
ki L

P
δ

=  is a probability. The monofractal character of F implies that at any stage k
k

k
ki P

L
P =

δ
=  is 

independent of i. It is given by :  

kk

k

k

ki
kki mLm

L
L

PP 1
)( 0

0 =
ρ
ρ

=
δ

==  
(8) 

and normalized by : 

11
1

===∑
=

k
k

kk

N

i
ki m

mPNP
k

. 
(9) 

This distribution {Pki}, 1 ≤ i ≤ Nk, only concerns the kth stage Fk of the monofractal form. The 

fractal character of the distribution and of its time evolution is not taken into account. 

Now let us look at the fractal building in an evolutionary point of view by choosing a point M 

on the initiator F0 and following its behavior in time. In a mass fractal like Cantor set, we have 

Fk ⊂ Fk-1 for any k, which implies Fk ⊂ F0. So M may or may not belong to the kth stage Fk. This is a 

kind of loss of state points (or information). To evaluate this evolution, we introduce the quantity 

0L
p ki

ki
δ

= [3]. The monofractal character of F implies that at any stage k
k

ki p
L

p =
δ

=
0

 is 
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independent of i. We get from the definition of fractal dimension : 

k
kd

dkd

kd
ki mL

L
L

p 1

0

0

0

=ρ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ρ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ δ
=  

(10) 

and  
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=
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mpNp
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(11) 

The distribution {pki}, 1 ≤ i ≤ Nk is essentially different from the normalizable probability 

distribution Eq.(8). As indicated above, it measures the probability to encounter the ith segment of 

Fk when the system comes from somewhere on the initial set F0. It takes into account the fractal 

nature of the evolution of set F. 

3) Binary multifractals  

As in the case of monofractal sets, a probability law with IN can be defined on a multifractal set 

characterized by different scale factors for each copy of the initial segment. In this section, we first 

treat the case of a “binary” multifractal set. At each stage, a segment is replaced by m = 2 copies 

with scale factors ρ1 and ρ2, respectively (0 < ρ1, ρ2 < 1). An example is given on Figure 2. 

 

 

 

 

 

 

Figure 2, Modified binary multifractal Cantor set (m = 2, ρ1 = 1/2, ρ2 = 1/3) built at iteration 

orders from k = 0 to k = 4. 
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At the kth stage, Fk is composed of Nk = 2k segments. Let j ∈ {0,…, k}. On Fk, we can find ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
j
k

 

segments of length 021, Ljjk
jk ρρ=Δ − . The total length of the kth stage Fk form is given by : 

( ) 021
0

,
1

L
j
k

L k
k

j
jk

N

i
kik

k

ρ+ρ=Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=δ= ∑∑

==

 
(12) 

The notion of self-similarity dimension can be extended to the case of a multifractal set. The 

content of order α of the form Fk takes the form : 

∑∑∑
=

ααα−

=

α

=

α
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1
,  

(13) 

 

( ) ( ) ( ) ααα

=

αα−α
α ρ+ρ=ρρ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑ 021

0
021, LL

j
k

C
kk

j

jjk

k  
(14) 

The multifractal similarity dimension d is introduced by Eq.(7). It verifies : 

121 =ρ+ρ dd  (15) 

The quantities Pki and pki are introduced in the same way as in Section 2, by setting 
k

ki
ki L

P
δ

=  

and 
0L

p ki
ki

δ
=  respectively. We note that the distributions {Pki} and {pki}, 1 ≤ i ≤ Nk  are no longer 

homogeneous due to the different scale factors ρ1 and ρ2. Indeed, they verify the same 

normalization relationships as Eqs.(9) and (11) in Section 2. Again, Pki is normalizable : 

111
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==δ= ∑∑
==
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k

N

i
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k

N

i
ki L
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P

kk

 
(16) 

For the calculation of the sum of pki
d, let us classify all segments (denoted by i) of Fk into groups 

(denoted by j) of segments of same length jk ,Δ , such that the sum over i be replaced by a sum over 

j, i.e.,  
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or 

( ) ( ) ( ) 1121
0

21
1

==ρ+ρ=ρρ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑∑

=

−

=

kkdd
k

j

jdjkd
N

i

d
ki j

k
p

k

. 
(18) 

So in the binary multifractal case, a probability distribution with incomplete normalization such as 

Eq.(1) can still be defined according to Eq.(18) at each stage of a given multifractal with q=d.  

Since the factor ( )k
21 ρ+ρ  appears in Eq.(12), all the distributions {Pki}, 1 ≤ i ≤ Nk can be 

derived from the distribution of F1 stage {P1i}, 1 ≤ i ≤ 2 = N1. For instance, from Figure 2, we get 

P11 = 3/5, P12 = 2/5 and P21 = 9/25 = P11
2, P22 = P23 = 6/25 = P11P12, P24 = 4/25 = P12

2, 

respectively. In the same way, the factor ( )kdd
21 ρ+ρ  appears in Eq.(18), so all the distributions 

{pki}, 1 ≤ i ≤ Nk can be derived from the F1 stage distribution {p1i}, 1 ≤ i ≤ 2 = N1. From Figure 2, 

we have p11 = 3/5, p12 = 2/5, and p21 = 9/25 = p11
2, p22 = p23 = 6/25 = p11p12, p24 = 4/25 = p12

2. It 

means that for a given fractal F, the essential relationships for Eqs.(16) and (18) to hold are the 

iteration rules applied to k =1 and to each following stage of the structure. 

4) General multifractals  

In this section, we consider the case of general deterministic multifractal sets. At each stage, 

each segment is replaced by m copies with scale factors ρ1, ρ2, …, ρm respectively. For any integer 

i ∈ {1, 2, …, m}, 0 < ρi < 1. Such an example is given on Figure 3. 

 

 

 

 

Figure 3, Modified multifractal Cantor set (m = 3, ρ1 = 1/3, ρ2 = 1/6, ρ3 = 1/4) built at iteration 

orders from k = 0 to k = 3. 

At the kth stage, Fk is composed of Nk = mk segments of length δki. We note J any set of integers 
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{j1, j2,…, jm}, that verify : 

{ } { } kjkjmi
m

i
ii =∈∈∀ ∑

=1
,,...,1,0,,...,2,1  

(19) 

For any set J that verifies Eq.(19), we can find 
∏
=

m

i
ij

k

1

!

!  segments of length 0
1

, L
m

i

j
iJk

i

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ=Δ ∏

=

 

on Fk . The total length of the Fk form at kth stage is given by : 
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(20) 

where the sum is extended upon the all possible sets of the form in Eq.(19). We see a multinomial 

series expansion such as 

0
1

LL
km

i
ik ⎟
⎠

⎞
⎜
⎝

⎛
ρ= ∑

=

 
(21) 

The content of order α of the form Fk can be performed : 
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(22) 

We deduce the identity verified by the multifractal similarity dimension d : 

1
1

=ρ∑
=

m

i

d
i  

(23) 

In order to see the uniqueness of d, let us define f by ∑
=

αρ=α
m

i
if

1
)(  which is a strictly 

decreasing and continuous function. We have in addition f(α) = m for α=0 and f(α) → 0 for 

α → +∞, meaning that Eq.(23) is satisfied by a unique real d. 
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The quantities Pki and pki are defined in the same way as in Sections 2) and 3), by setting 

k
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ki L

P
δ

=  and 
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p ki
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δ
=  respectively. The incomplete normalization relationship Eq.(18) can be 

generalized into : 

( )∑ ⎟
⎠
⎞

⎜
⎝
⎛∏
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∏
=

∑ ⎟
⎠
⎞

⎜
⎝
⎛∏
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∏
=∑ Δ

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∏
=

∑
=∑

=

=

=

==

=

=

J

m

i

jd
im

i
i

d

J

dm

i

j
im

i
i

dJ

d
Jkm

i
i

dd

N

i

d
kiN

i

d
ki

i

i

k

k

j

k

L
j

k
Lj

k
LL

p

1

1

0
1

1
0

,

1
00

1

1

!

!

!

!1

!

!1

ρ

ρ
δ

 

(24) 

which is a multinomial series expansion : 
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As in the binary case, an IPD with a unique q can be defined on a general deterministic multifractal 

set with the same rule of iteration at each stage. For all the cases considered up to now, the 

uniqueness of q comes from the uniqueness of the fractal dimension d. The multifractal case is 

particularly interesting because it makes it possible to extend incomplete distribution beyond the 

simple case of equiprobable phase space partition. 

5) Multifractals with multidimensional initiators 

The above cases concern only one dimensional initiator F0. In this section, we address the 

multifractals having multidimensional initiators. The multidimensional monofractals have been 

studied in a previous work[3], which we will recapitulate in what follows before applying it to the 

multifractal case. An example of multidimensional monofractal defined by a unique scale factor ρ 

from a square initiator is given in Figure 4. 
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 .  .  .  

Figure 4, bidimensional Cantor set (m = 2, ρ = 1/3) built at iteration orders from k = 0 to 

k = 3. 

 

The fractal dimension is still introduced from a length measure. In Figure 4, the length 

0LLL k
kki ρ==  is given by the edge of any square of the fractal form Fk. For a more general 

initiator, we choose a characteristic length and call it a gauge. The fractal dimension is still defined 

by Eqs.(6) and (7). 

In the plane, F0 is a polygon of surface S0 and Fk is composed of Nk = mk polygons of surface 

0
2 Sk

kki ρ=σ=σ . The total surface Sk of the kth stage is given by : 
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(26) 

The quantities Pki and pki are now defined with respect to the surfaces, i.e., 
k
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ki S

P
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=  and 
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=  

respectively. 

The distribution {pki} still verifies an incomplete normalization relationship with a new 

exponent d/2. Indeed  
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 .  .  .  

Figure 5, bidimensional multifractal Cantor set (m = 4, ρ1 = 1/5, ρ2 = 1/3, ρ3 = 1/2, ρ4 = 1/4) 

built by iteration orders from k = 0 to k = 3. 

 

Now let us consider a bidimensional multifractal set like on Figure 5. The fractal dimension is 

still defined from a gauge, and verifies Eq.(23). The quantities Pki and pki are defined in the same 

way as for the bidimensional monofractal case, by 
k
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ki S

P
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=  and 
0S

p ki
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σ
=  respectively. 

Let S0 be the surface of the initiator F0. At the kth iteration, the form Fk is composed of Nk = mk 

copies of F0 of surface kiσ . For any set J that verifies Eq.(19), we can find 
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(28) 

where the sum is carried out over all the possible sets of the form Eq.(19). We get a multinomial 

series expansion : 

0
1

2 SS
km

i
ik ⎟
⎠

⎞
⎜
⎝

⎛
ρ= ∑

=

. 
(29) 

The incomplete normalization relationship Eq.(25) now becomes : 
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i.e.,  
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which is a multinomial series expansion : 
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An incomplete probability distribution with unique q=d/2 (still resulting from the uniqueness of 

the fractal dimension) can be defined on a general bidimensional multifractal set with the same rule 

of iteration at each stage. This result can be extended to higher dimensional initiators. For the 

“three dimensional” case for example, one obtains an exponent q=d/3. For arbitrary topological 

dimension dT, we should have : 
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(33) 

 

6) Concluding remarks 

The present work is an extension of the IPD from the simple case of monofractals to the 

multifractals. This extension is useful for the understanding of the incomplete statistics and of their 

relevance in the study of nonequilibrium complex systems evolving in fractal geometry such as the 

strange attractors in phase space. The conclusion of the present work is that the mathematical 

formalism of IPD having incomplete normalization with a unique parameter q=d/dT is valid for any 

deterministic multifractal with the same rule at each iteration.  
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However, the uniqueness of q may be perturbed in the case of the fractals which change rules 

during their iterations or for different scales.  The possible relationships between q and the different 

iteration rules and the consequences of this multi-rule evolution are under investigation. The result 

is expected to be helpful for the understanding of the evolution of many complex systems with 

obvious dynamical transition in time and in scale, such as the degree distributions in multiple 

regimes observed in many scale free networks. 
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